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Abstract. Remotely sensed data are often used as prox-

ies for indirect precipitation measures over data-scarce and

complex-terrain areas such as the Peruvian Andes. Although

this information might be appropriate for some research re-

quirements, the extent at which local sites could be related to

such information is very limited because of the resolution of

the available satellite data. Downscaling techniques are used

to bridge the gap between what climate modelers (global and

regional) are able to provide and what decision-makers re-

quire (local). Precipitation downscaling improves the poor

local representation of satellite data and helps end-users ac-

quire more accurate estimates of water availability. Thus, a

multifractal downscaling technique complemented by a het-

erogeneity filter was applied to TRMM (Tropical Rainfall

Measuring Mission) 3B42 gridded data (spatial resolution

∼ 28 km) from the Peruvian Andean high plateau or Alti-

plano to generate downscaled rainfall fields that are relevant

at an agricultural scale (spatial resolution ∼ 1 km).

1 Introduction

The Andes is the longest and highest mountain range in the

tropics and a suitable site to study precipitation patterns in

relation to complex topography. Assessing the variability in

precipitation plays a key role in the sustainability of agri-

culture, which is one of the most important human activities

in the Andes (Sanabria et al., 2009; Vuille, 2011; Garreaud,

2000). There is no clear pattern of decreasing or increasing

precipitation in the Andes, mainly due to little spatial coher-

ence (Vuille et al., 2003). This uncertainty in precipitation

patterns is recurrent in projected climate change scenarios

(Thibeault et al., 2011) and therefore studying the behavior

of precipitation in this region is crucial.

In the last 20 years, satellite missions, such as the Tropical

Rainfall Measuring Mission (TRMM), were developed with

the objective of measuring agroclimatic events around of the

planet. TRMM is able to measure rainfall intensities in places

of scarce local information. Due to their global nature, these

missions generate data at very low resolution. The coarse

resolution represents poorly rainfall variation in areas with

complex terrain. In places such as the Peruvian Andes, bet-

ter resolution information is either scarce, too expensive or

nonexistent. Hence, the resolution of the available informa-

tion is not high enough to assess climate change variability

on smallholder agriculture and thus new approaches to fur-

ther downscaling the data to model crop yields are required.

Moreover, in the case of using global circulation models

(GCM), the computational power together with parameter-

izations necessary to simulate processes at small scales may

introduce nonlinear errors and biases in the simulated vari-

ables (Baron et al., 2005). Therefore, an alternative to in-

creasing the scales is by performing downscaling of the vari-

ables involved such that relevant information can be obtained

at the smallest usable scale.

This paper addresses a statistical downscaling model in-

volving a cascade disaggregation process of satellite precipi-

tation data. The downscaling procedure is based on the con-
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cept of multiplicative cascades. A general cascade process

assumes that data on a given area is available at a coarse res-

olution of l0 km over some interval of time (Fig. 1). However,

a more realistic assessment of the information requires a res-

olution of lr km (local scale), where l0� lr. Initially, an arbi-

trary value ρ0, corresponding to the height of the box at the

top of Fig. 1, is distributed uniformly on an area of l20 km2.

Then, to increase the spatial resolution, a statistical model

is used to generate a set of weights whose values are used

to disaggregate ρ0 into subdivisions with area l21 = l
2
0/b km2,

where b is the number of subdivisions (branching parame-

ter). The random variable producing the weights at each level

is usually called the generator of the cascade. The procedure

is repeated until the desired resolution is reached at level r ,

where the area of each subdivision is l2r = l
2
0/b

r km2. An im-

portant requirement of the cascade process is that the values

at level k− 1 must be preserved by the corresponding means

at level k. Thus, only the spatial distribution of the measured

precipitation changes and therefore provides a realistic rain-

fall distribution at a higher spatial resolution.

One way to infer the parameters of the generator is by

characterizing its behavior at different scales based in a dis-

crete form of multiplicative random cascades having the abil-

ity to generate rainy and non-rainy outcomes (Schertzer and

Lovejoy, 1987; Over and Gupta, 1994). An advantage of this

approach lies in that it describes the complex process of rain-

fall precipitation in a wide range of scales using very few

parameters. The evidence concerning the multiple scaling or

multifractal behavior of the rainfall fields has been well doc-

umented in the scientific literature (Schertzer and Lovejoy,

1989; Over and Gupta, 1996; Perica and Foufoula-Georgiou,

1996; Deidda et al., 1999; Stolle et al., 2009; Lovejoy et al.,

2012). Multifractal applications to rainfall includes multi-

fractal objective analysis, statistics of extreme values, multi-

fractal modeling, space–time transformations, the multifrac-

tal radar observer problem, stratification, and texture of rain.

These have been discussed at large in Lovejoy and Schertzer

(1995, 2013). The rainfall modeling based on discrete mul-

tiplicative random cascades has been tested for spatial and

temporal disaggregation under different climate conditions

with the conclusion that it is possible to capture rainfall vari-

ability of subgrid scale using this multifractal approach (Ols-

son, 1998; Güntner et al., 2001; Molnar and Burlando, 2005).

Moreover, there has been some research in which spatial het-

erogeneity in the random cascade process was incorporated

in different manners (Jothityangkoon et al., 2000; Pathirana

and Herath, 2002; Tachicawa et al., 2004; Sharma et al.,

2007). For instance, the application of a pointwise filtering

approach, which accounts for the local details at the desired

final resolution.

The main goal of the paper is to obtain a reliable repre-

sentation of the spatial variability of rainfall intensities by

applying the multifractal downscaling technique over the Al-

tiplano, a region that is characterized by its complex ter-

rain and a relatively high spatial (and temporal) coverage of
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Figure 1. Cascade procedure.

weather stations (compared to other regions in Peru). Specif-

ically, this study characterized the consistency of physical

parameters in conditions where topography and spatial dis-

tribution of precipitation are moderately heterogeneous, and

applies a lognormal disaggregation of rainfall measurements

via the generation of a multifractal random cascade model by

using the Mandelbrot–Kahane–Peyriere (MKP) function to

characterize the sample moments and scalability of the pro-

cess.

The paper is organized as follows. In Sect. 2, a descrip-

tion of the studied region, the TRMM data and gauge rain-

fall data are provided. A brief description of the correction

of TRMM data and a simple assessment of its lognormal-

ity are also given in this section. The multifractal downscal-

ing procedure is described in Sect. 3. This includes the de-

scription of the disaggregation model and the introduction

of the information heterogeneity in the method. In particu-

lar, TRMM heterogeneity and local heterogeneity produced

using standard techniques in hydrology is presented and dis-

cussed. Section 4 shows the results of the application of the

multifractal downscaling method on the Andean high plateau

and its vicinity, using TRMM rainfall data. Also, the quality

of the generator is assessed on a spatial and temporal basis.

Finally, Sect. 5 gives some conclusions and future research

comments.
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Figure 2. Study region: stations (black dots) and TRMM 8× 8 cell

grid (black line).

2 Materials

2.1 Study area

The studied region is defined by 8× 8 TRMM cells from the

southern Peruvian Andes (Fig. 2), with a spatial resolution of

approximately 28 km. The majority of these TRMM cells are

placed in the Peruvian Andean high plateau or Altiplano and

a few cells over the east side of the Andes. Geographical co-

ordinates of the study area are between latitudes 14 and 16◦ S

and longitudes 69 and 71◦W constituting an area of approxi-

mately 225× 225 km2. The altitudes range between 800 and

6500 m a.s.l., approximately. The annual rainfall varies, on

average, from∼ 250 mm in the arid southwest to∼ 5000 mm

in the Amazon basin at the northeast corner of the study site

(Garreaud et al., 2003). The year to year variability with re-

spect to extreme phenomena, such as El Niño, is mitigated by

the Andes and therefore the region’s climate can be consid-

ered as yearly invariant (Garreaud et al., 2003). The rainfall

over the Altiplano is largely concentrated in the austral sum-

mer months, when more than 70 % of the precipitation occurs

from December to February. On all timescales, the climatic

conditions on the Altiplano are closely related to the upper-

air circulation, with an easterly zonal flow aloft favoring wet

conditions and westerly flow causing dry conditions (Gar-

reaud et al., 2003). At a diurnal timescale, convective clouds

are particularly common during the afternoon and evening

(Vera et al., 2006), and are produced by the insolation-driven

surface heating and the consequent destabilization of the lo-

cal lower troposphere (Garreaud et al., 2003). At intrasea-

sonal timescales, within the rainy season, the Altiplano expe-

riences rainy and dry episodes lasting between 5 and 10 days

(Aceituno and Montecinos, 1993), as a reflection of the po-

sition and intensity of the Bolivian High (Lenters and Cook,

1999), which is modulated by Rossby waves emanating from

the midlatitude South Pacific. Interannual variability is pri-

marily related to changes in the mean zonal flow over the

Altiplano, reflecting changes in meridional baroclinicity be-

tween tropical and subtropical latitudes, which in turn is a

response to sea-surface temperature changes in the tropical

Pacific (Garreaud et al., 2003).

In this area of study, there are 19 stations (black dots in

Fig. 2) from which observed rainfall measurements are ob-

tained during a period of 8 years (from 1999 to 2006). A

tipping bucket rain gauge was used to obtain these on-site

rainfall measurements (Garreaud et al., 2003). The role of

the data from the stations in this paper is twofold. The first

one is to validate the generation of downscaled rainfall data,

and the second is to aid in the generation of the deterministic

local heterogeneity; see Sect. 3.2.

2.2 TRMM rainfall data

The Tropical Rainfall Measuring Mission is a joint space

mission between the National Aeronautics and Space

Administration (NASA) and Japan’s National Space Devel-

opment Agency (NASDA) designed to monitor and study

tropical and subtropical precipitation and the associated

release of energy. The primary rainfall instruments on

TRMM are the TRMM Microwave Imager (TMI), the PR

(polarization radiometers) and the Visible and Infrared

Radiometer System (VIRS). In addition, TRMM satel-

lites carry two related Earth Observing System (EOS)

instruments: the Clouds and the Earth’s Radiant Energy

System (CERES) and the Lightning Imaging Sensor (LIS)

(Kummerow et al., 1998). The TMI is the main instrument

used for precipitation; see http://climatedataguide.ucar.

edu/guidance/trmm-tropical-rainfall-measuring-mission

for additional information about the TRMM mis-

sion. Our interest is in daily TRMM 3B42 v7 grid

data. The information was downloaded directly

from http://iridl.ldeo.columbia.edu/SOURCES/.NASA/

.GES-DAAC/.TRMM_L3/.TRMM_3B42/.v7/.daily/ for

the period of 1 January 1999–31 December 2006. TRMM

3B42 v7 is a 3 h average, extrapolated to a daily temporal

scale, 0.25◦ spatial resolution (∼ 27.8 km) TRMM product

derived from calibrated geosynchronous IR imagery merged

with TRMM and other satellite data. Hereafter, TRMM

3B42 v7 will be called simply TRMM. TRMM rainfall

(mm) is distributed uniformly in each grid cell. A total

of 8× 8 TRMM cells cover the study area with rainfall
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Table 1. Weather station locations an altitudes.

Weather Longitude Latitude Altitude

station (degrees) (degrees) (m a.s.l.)

Arapa −70.12 −15.14 3920

Ayaviri −70.59 −14.88 3920

Azángaro −70.19 −14.91 3863

Cabanillas −70.35 −15.64 3890

Capachica −69.84 −15.62 3819

Chuquibambilla −70.73 −14.80 3910

Cojata −69.36 −15.02 4344

Crucero Alto −70.02 −14.36 4130

Huancané −69.76 −15.20 3860

Huaraya Moho −69.49 −15.39 3890

Lagunillas −70.66 −15.77 4250

Lampa −70.37 −15.36 3900

Llally −70.90 −14.95 4111

Mañazo −70.34 −15.81 3942

Muñani −69.97 −14.78 4119

Pampahuta −70.68 −15.49 4320

Progreso −70.36 −14.69 3965

Puno −70.02 −15.82 3840

Tambopata −69.15 −14.22 1340

between 450 and 2000 mm yr−1. Although TRMM tends to

underestimate rainfall in terrain with complex topography,

we used the correction protocol described in Heidinger et

al. (2012). To correct TRMM daily rainfall over the Andean

plateau, the procedure in Heidinger et al. (2012) incorporates

the high-frequency component (detail or noise) from rain

gauge signals into the low-frequency component (tendency

or base) derived from TRMM using wavelet multiresolution

analysis (MRA). For each TRMM cell, the high-frequency

component of the closest meteorological station was added

to the low-frequency component of TRMM. The MRA

reconstruction was started at the third level of the Haar

wavelet decomposition of TRMM and rain gauge signals. It

is important to emphasize that the main reason for selecting

the study site was the rainfall heterogeneity found in that

small area including arid, semi-arid, and humid tropics and

the availability of a rain gauges (Table 1)1. As mentioned in

the introduction, precipitation data is not widely available in

this region and therefore missions such as TRMM become

essential as the starting point of downscaling techniques.

Another fact about the corrected TRMM information is

that its spatial distribution fits approximately a lognormal

distribution, which can be confirmed by a simple lognor-

mality test. Such test is applied to the corrected TRMM by

eliminating the zero intensity rainfall and computing its log-

arithm. As a result, the logarithm of the information mostly

1The Tambopata station was not used to correct TRMM rainfall

information since there were not enough neighboring stations to ac-

curately represent the details in the region surrounding the station

(Heidinger et al., 2012).
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Figure 3. Lognormal test of TRMM data for 15 April 2003.

agrees with a normal distribution and thus any test for nor-

mality should give the desired answer. This procedure must

be applied on a daily basis since the parameters of the dis-

tribution vary with time. Figure 3 exemplifies the method

for 15 April 2003 and provides evidence of lognormality.

The lognormality assumption is also supported, for example,

by Lin (1978) and Kedem and Long (1987). The interested

reader can find another perspective on the nature of satellite

information and its relationship to the cascade structure of

precipitation in Lovejoy et al. (2012).

As the reader can observe in Fig. 3, there are some dis-

crepancies with respect to the high values of rainfall inten-

sity. There are several factors that may contribute to such

discrepancies. First, the northeast corner of the studied region

lacks enough meteorological stations to correctly perform the

MRA correction of TRMM. That region is in the rain forest

and its rainfall variability differs greatly with respect to the

rest of the studied area (there is an abrupt change of topogra-

phy, also the Andes is a high elevation area whereas the rain

forest is at a low elevation). Also, each snapshot is comprised

of 64 pixels from which the zero values must be removed

to perform the test due to the fact that zero is not included

in the domain of lognormal distributions. Even though this

is a small sample of points for applying an statistical test,

this very simple test shows a good relationship between the

rainfall field and a lognormal distribution, but we argue that

there are not enough extreme values (corresponding to the

tail of the distribution), which contributes to the discrepan-

cies shown in Fig. 3.

Nonlin. Processes Geophys., 22, 383–402, 2015 www.nonlin-processes-geophys.net/22/383/2015/



A. Posadas et al.: Spatial random downscaling of rainfall signals in Andean heterogeneous terrain 387

3 Methods

3.1 Discrete disaggregation model

To describe a general disaggregation model, it is first as-

sumed that the initial information, at level 0, is comprised by

only one value of TRMM rainfall rate (Fig. 1). That is, the

rainfall total rate ρ0 is uniformly spread over the initial area

l20 . At level 1, the initial area is partitioned into four identical

boxes of length l0/21. For subdivision i at level n, a part of

the initial rainfall rate ρ0, denoted as ρni , is uniformly dis-

tributed over an area of l20 /4n, and is expressed in terms of ρ0

as

ρin = ρ0

n∏
j=1

wi,j ,

where wij are the weights at which the rainfall rate is disag-

gregated throughout the cascade process. In particular, these

weights are outcomes of a random variable W that follows

some distribution law and satisfiesE[W ] = 1, whereE[·] de-

notes the expected value of a random variable. This condition

also means that if n tends to infinity then ρ∞ will exist and

not be degenerated; i.e., ρ∞ 6= 0. The procedure is repeated

until the nth level is reached. After n cascade steps, the orig-

inal information is disaggregated into 4n pieces.

A good disaggregation model is necessary for a realistic

and accurate distribution of the information. This is done

by describing the weights w in a probabilistic manner. The

class of log-stable random variables constitutes a broad class

of generators used for this purpose and therefore character-

izes the class of multifractal fields that can be generated; see

Royer et al. (2008) for an accessible introduction to general

multifractal analysis. In particular, such a log-stable genera-

tor has the form

Y = bγ+σX,

where X is a stable (Lévy) random variable (Over, 1995;

Schertzer and Lovejoy, 1987). The goal of this paper is to uti-

lize a particular type of such generators. That is, those whose

generator is lognormal. In the language of log-stable gener-

ators, this corresponds to those characterized by the stability

index α= 2 (Samorodnitsky and Taqqu, 1994). In order to

preserve E[Y ] = 1, it follows that

E[Y ] = E
[
bγ+σX

]
= bγE

[
bσX

]
= bγE

[
eσX ln(b)

]
,

where the expectation in the right hand side is simply the mo-

ment generating function of an unitary normal distribution.

Thus, eγ ln(b)+ 1
2
σ 2 ln(b)2

= 1, which implies γ =−
σ 2 ln(b)

2
and

Y = b−
σ2 ln(b)

2
+σX.

It is obvious that the generator Y is not able to generate zeros

as expected from a precipitation simulation. In this regard, a

more realistic generator, W , is given by including an atom at

zero in a composition manner (representing the presence and

absence of data). That is,

W = BY, (1)

where

P [B = 0] = 1− b−β and P
[
B = bβ

]
= b−β (2)

and is known as the β model. This composition results in the

β-lognormal model specified by

P [W = 0] = 1− b−β and P

[
W = bβ−σ

2 log(b)
2
+σX

]
= b−β , (3)

where X is a standard normal variable, and β and σ fully

describe the generator W probability distribution (Over and

Gupta, 1994, 1996; Sharma et al., 2007; Kang and Ramírez,

2010; Pathirana and Herath, 2002). Other models, in one di-

mension, that introduce a measure of zero rainfall can be

found in Gires et al. (2013) and Schmitt et al. (1998). Since

β and σ completely characterize the downscaling process,

the key for the generation of a downscaling rainfall model is

to estimate these parameters via a scale invariant method. In

Over (1995), Pathirana and Herath (2002) and Sharma et al.

(2007), it was shown that the parameters β and σ can be eas-

ily computed using multifractal sample moments obtained

directly from rainfall information. Specifically, the multifrac-

tal sample moments are defined as

Mn(q)=

bn∑
i=1

µ
q
ni, (4)

where µni = b
−n ρni is the value of the field at the ith box

at the resolution scale λn= ln/l0 with ln being the scale of

interest, l0 is the current scale, n� 1 and Mn(q)> 0. To the

multifractal moments in Eq. (4), one can associate λn to a

parameter τ as follows:

Mn(q)∝ λ
−τ(q)
n , (5)

which provides

τ(q)= limn→∞

logMn(q)

− logλn
.

An underlying assumption is that the measures of rainfall

are independent and identically distributed (iid), and that

there exists ergodicity in the rainfall process (at least ap-

proximately), which allows us to approximate E[Mn(q)] by

Mn(q) (Over and Gupta, 1994).

www.nonlin-processes-geophys.net/22/383/2015/ Nonlin. Processes Geophys., 22, 383–402, 2015
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The multifractal parameter τ characterizes the downscal-

ing process and has the property of being scale invariant

(Chhabra and Jensen, 1989; Chhabra et al., 1989). The dis-

aggregation process is then characterized by computing τ for

all desired levels for each multifractal moment q. This char-

acterization is analogous to the one provided by the parame-

ters β and σ in Eq. (3). Therefore, there exists a relationship

between τ and the parameters β and σ . To see such rela-

tionship, one has to rely on the MKP function (Mandelbrot,

1974; Kahane et al., 1976). The MKP function is literally the

slope of the linear regression of the log–log plot of Mn(q)

versus λn for different values of q, and it is specifically given

by

χb(q)= logbE
[
W q

]
− (q − 1).

Theorem 3.2 in Over (1995) adapted a theorem of Holley and

Waymire (1992) to account for the presence of zero rainfall

giving the relationship

τ(q)= dχb(q), (6)

where again d constitutes the domain of the cascade (here

d = 2). Thus, one can explicitly compute the MKP function

for the generatorW and equate it with the multifractal sample

q moments. That is,

χb(q)= logbE
[
W q

]
− (q − 1)

= 1− q + logb
(
E[W = 0] +E

[
W q
= BqY q

])
= 1− q + logbE

[
Bq
]
+ logbE

[
Y q
]
,

where

E
[
Bq
]
= bqβP

[
B = bβ

]
= bβ(q−1)

and

E
[
Y q
]
= b

−qσ2 logb
2 E

[
bqσX

]
= b

−qσ2 logb
2 b

q2σ2 logb
2

]
= b

σ2 logb
2

(
q2
−q
)
.

Thus,

χb(q)= (β − 1)(q − 1)+
σ 2 logb

2

(
q2
− q

)
.

By considering the first and second derivatives of χb(q) in

Eq. (6) with respect to the moment q, the parameters β and σ

can be obtained as follows:

β = 1+
τ ′(q)

d
− σ 2 log(b)

2
(2q − 1) and σ 2

=
τ ′′(q)

d log(b)
. (7)

The validity of Eq. (6) is given by the conditions in Theo-

rem 3.2 in Over (1995); however, one can empirically test the

linearity of logMn(q) vs. log λn directly from measurements

coming from a multifractal field. Thus, the formalism above

is valid for the q moments in which linearity is observed. The

first and second derivatives of τ with respect to q can be com-

puted, for example, by using finite differences. It is normal

to compute the parameters of the β-lognormal model using

q = 1. Note that τ(1) is always zero, and this obviously holds

for all multifractal fields analyzed in this paper’s application.

This provides a common point of reference when computing

the parameters β and σ . One way to argue the use of q = 1 is

that it is related to the mean of the generator, and this is what

is preserved at every step of the disaggregation process.

3.2 Heterogeneity information

The random generator model is only good for an isotropic

distribution of the information at every step of the disaggre-

gation process. From the spatial point of view, the presence

of highly variable mountainous terrain in the Andean high

plateau adds spatial heterogeneity to any rainfall measure-

ment. From the temporal point of view, averaging rainfall

over a given timescale, say hourly or daily, decreases ran-

domness in the sense that averaging acts as a smoothing filter

for the rainfall time series. The rainfall field after averaging

shows the tendency of the field (usually dependent on the to-

pography of the area), which reveals the heterogeneity in the

data due to rainfall intensity. This was originally considered

in Pathirana and Herath (2002). In meteorological wording,

convective activity from cumulus clouds is much more het-

erogeneous that the total amount of precipitation observed

over a month or larger timescale. Even temporal aggregation

on a minute scale to obtain an hourly scale can cause spatial

heterogeneity, however, this is usually masked by the infor-

mation variability. For instance, the accumulated rainfall over

all seasons in the Andean high plateau may cause the win-

ter and summer to compensate each other to a large degree

and produce a more uniform field than the winter or summer

rainfall being measured separately. Since direct downscal-

ing produces homogeneous multifractal fields (each TRMM

cell is replaced by a set of random numbers distributed ac-

cording to the β-lognormal model), the process of the mul-

tifractal downscaling model (as any other type of statistical

downscaling model) is not enough to keep the heterogene-

ity information through the downscaling process. Pathirana

and Herath (2002), Over and Gupta (1996) and Kang and

Ramírez (2010) have applied suitable (pointwise) filters that

highlight the effect of spatial heterogeneity. In this respect,

rainfall is considered a combined effect of two processes:

(1) a multifractal process which is highly variable in space,

at least at regional and smaller scales, but statistically uni-

form; and (2) a deterministic process that represents the het-

erogeneity of rainfall in space and modifies the multifrac-

tal process. This is why prior to applying the β-lognormal

model to the TRMM data described in Sect. 2, it is first nec-

essary to remove the heterogeneity from the TRMM rain-

fall field. The rainfall field (spatial) under study is denoted

as R. R is assumed to have the following decomposition:
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Ri,j =Mi,j Gi,j , with M being a homogeneous multifrac-

tal field and G the deterministic component of weights cor-

responding to long-term monthly averages. For the applica-

tion of multifractal downscaling, one requires the multifrac-

tal field M , which is obtained simply as

Mi,j =
Ri,j

Gi,j
,

where Mi,j = 0 if Gi,j = 0. Specifically, G at position (i, j )

is computed as

Gi,j =N
Ri,j∑
i,j

Ri,j
, (8)

where Ri,j is the monthly mean for the pixel location (i, j ),

and N is the total number of pixels in a daily snapshot. In

Sect. 4, the effect of extracting the long-term monthly av-

erages during a month of the rainy season is shown in the

exceedance probability plots at the stations’ locations (see

Fig. 15). Also, in Fig. 19 the limitation of this type of hetero-

geneity is observed during a dry month (July).

After downscaling, the heterogeneity is introduced back

into the downscaled rainfall field. In this work, however,

downscaling is performed beyond the largest resolution of

TRMM (to reach a subkilometer rainfall resolution). There-

fore, details about the local heterogeneity at the final down-

scaling resolution are required in order to account for spatial

tendencies. Information at this scale is scarce or inexistent

in the Andean high plateau; however, we rely on a rainfall

field based on the stations’ measurements (stations’ locations

are shown in Fig. 2) and elevation maps widely used in hy-

drological, agricultural and other models in the area under

study (Hijmans et al., 2005). These rainfall fields are gener-

ated using the thin-plate smoothing spline algorithm imple-

mented in the ANUSPLIN 4.4 package (Hutchinson, 2006;

ANUSPLIN, 2007) for interpolation using scattered points of

on-field measured rainfall together with latitude, longitude,

and elevation as independent variables (Hutchinson, 1995).

It is worth mentioning that several references indicate its

higher accuracy compared to other methods in several parts

of the world (Hijmans et al., 2005; Hartkamp et al., 1999;

Jarvis and Stuart, 2001; Price et al., 2000). Also, the method

has been widely applied on well-known and used climate

products such as WorldClim ((Hijmans et al., 2005), http:

//www.worldclim.org) and IWMI (International Water Man-

agement Institute) Climate Atlas/CRU gridded data ((New et

al., 2002), http://www.iwmi.org, http://www.cru.uea.ac.uk).

The scalability properties of ANUSPLIN outputs are pre-

sented in Fig. 6. It is observed that the linearity of the plot of

logMn(q) vs. log λn is very good (determination coefficient

is above 0.98 for all ANUSPLIN snapshots in the studied pe-

riod from 1999 to 2006). Although these fields are “smooth”

because of the usage of splines, these fields serve as a source

for finding the monthly tendencies of rainfall at the desired

subkilometer resolution. More specifically, the local hetero-

geneity G′ is the normalized field of spatial heterogeneities

obtained as the monthly average of daily rainfall synthesized

from ANUSPLIN output rainfall fields, which is equivalent

to Eq. (8). The inclusion of the local heterogeneity provides

the corrected downscaled rainfall field R′ as follows:

R′i,j =K
Mi,jG

′

i,j∑
i,j

Mi,jG
′

i,j

, (9)

whereK is the large-scale forcing scale factor preserving the

rainfall mean magnitude (Over and Gupta, 1994; Pathirana

and Herath, 2002). Finally, the heterogeneity for the months

of February and August is shown in Fig. 4 for both TRMM

and ANUSPLIN outputs.

To end this section, the lognormality of the corrected

ANUSPLIN outcomes is tested (see Fig. 5). That is, the

monthly averages were pointwise filtered and then run over

a lognormality test as it was performed on the TRMM data.

Some disagreement is expected from the high rainfall inten-

sities because of the northeast region being located in the

rain forest rather than the Andean high plateau, and the fact

that the ANUSPLIN outcomes did not use any station on that

area for its construction. Note that since a lognormal distribu-

tion is stable, assembling all days in a period of time should

amount to a set of numbers also lognormally distributed.

Thus, Fig. 5 shows that the ANUSPLIN outcomes resemble

a lognormal behavior for not too high rainfall intensities. Al-

though, as already mentioned, it appears that the distribution

may have a heavy tail for the reasons argued before.

4 Results: a regional downscaling application using

TRMM rainfall data on the southern Andes

This section is divided in four parts. First, we describe the

range of scales in which a multifractal downscaling is al-

lowed. Then, the cascade generator is parameterized using

the β-lognormal parameters β and σ . Next, the TRMM, the

on-site stations and the downscaled corrected data are com-

pared. This is followed by the spatial and temporal assess-

ment of the generated downscaled rainfall intensity informa-

tion.

4.1 Multifractal-scale range

Prior to applying a multifractal technique, an assessment of

the available information was performed in order to detect

multifractality in the data (TRMM precipitation in this case).

This is summarized by the multifractal linear analysis (Over

and Gupta, 1994; Deidda, 2000; Deidda et al., 2006). In sum-

mary, a multifractal characterization can only be performed

if the log–log plot of the sample moments versus the reso-

lution parameter (Eqs. 4, 5) shows a linear relationship for

each moment order q (see Fig. 6). The multifractal param-

eter τ is then obtained as the slope of the linear tendency
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Figure 4. Illustration of summer and winter heterogeneity information from TRMM and ANUSPLIN outcomes.
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tire 2001 year.

for each q. It has been reported in Gires et al. (2012) and

Tchiguirinskaia et al. (2011) the possibility of two different

multifractal behaviors at approximately the 16 km resolution

(scale breaking). However, there is a fundamental difference

between the data used in those studies and that used in this

study. First, TRMM is obtained on a daily temporal frame-

work and it is the result of a 3 h accumulation and extrapo-

lated to reflect daily rainfall, whereas in Gires et al. (2012)

and Tchiguirinskaia et al. (2011) the temporal framework is

on a minute scale. Therefore, if such scale breaking were to

occur, the described temporal averaging or dressing of the

TRMM data accounts for the hindering of such scale break-

ing. Figure 7 shows the difference of τ as a function of the

moments q for the summer and winter seasons for the years

2001 and 2004. Each curve τ(q) corresponds to a nonzero

rain day in the corresponding month.

The multifractal linear analysis was performed on TRMM

data and also on the ANUSPLIN output snapshots. The latter

was done in order to assess the validity of the equations pre-

sented in Sect. 3 when downscaling beyond the highest reso-

lution of TRMM data. For TRMM data, three cascade levels

were assessed in which the resolutions run from ∼ 225 to

∼ 28 km. For ANUSPLIN data, eight cascade levels were

considered sweeping from∼ 225 to∼ 0.875 km. The cascade

levels correspond to the scale parameter λn= 2n. The range

of q’s considered in the analysis was [0, 5]; see Fig. 6 for the

analysis on 26 February 1999 for both TRMM and ANUS-

PLIN data. Specifically, the coefficients of determination for

the linear regression for q’s in the interval of [0, 5] are above

0.98 throughout the period of time studied (every day from

1999 to 2006). This result allows for the application of a mul-

tifractal procedure; i.e., the parameter τ is well defined in this

range and therefore the MKP function can be used to infer

the parameters β and σ . Here we have used finite difference
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Figure 6. Multifractal linear analysis of TRMM and ANUSPLIN data for 26 February 1999 and q values in the range [0, 5].

methods to evaluate the first and second derivatives of τ(q),

with respect to q as implemented by Over (1995), Over and

Gupta (1994, 1996), and Sharma et al. (2007). In particular,

these derivatives were estimated using a partition of step 0.1

on the q values, so that τ ′(1) and τ ′′(1) were estimated using

q = 0.9 and q = 1.1.

4.2 Multifractal characterization and lognormal

parameters

Lognormal parameters β and σ were computed for each

snapshot (daily timescale). Their features, in this paper’s ap-

plication, correspond to specific aspects of precipitation dy-

namics. For example, β is associated with the degree of in-

termittency in the precipitation field, and σ determines the

variance of the cascade generator. The relationship between

the given information (rainfall intensity, variance, energy, en-

tropy indicators, etc.) and the lognormal parameters is key to

understand the role of the cascade parameters and the mea-

surements. Here only the rainfall intensity (mean over all

TRMM grids at time t) is compared with respect to the β

and σ lognormal parameters. This relationship between data

and the lognormal parameters is inferred from Eqs. (4), (5)

and (6). In Sect. 3.1, τ was computed from the sample mo-

ments, which are direct consequence of the rainfall intensity

data in Eq. (5). Given that β and σ are obtained from Eq. (7),

they are implicitly related to τ . The monthly values of β and

σ vs. the logarithm of mean rainfall intensity (per snapshot),

for the period running from 1999 to 2006, are fitted with re-

spect to the empirical models used in Pathirana and Herath

(2002) and Jothityangkoon et al. (2000). The nonlinear re-

gressions for the months of February and July are provided

in Fig. 8, and only snapshots with nonzero rainfall intensity

were considered. These plots visually express the relation-

ship of the parameters β and σ with respect to the large-scale

forcing, which here is the mean. One can observe that while

β shows high variability the parameter σ does not. In Pathi-

rana and Herath (2002), σ was set to a fixed number due to

its lack of sensitivity with respect to rainfall intensity. A sim-

ilar behavior is observed in the Andean high plateau, but in

this paper σ is allowed to vary. Given that the probability

of nonzero rain is b−β , one can observe that in February the

majority of β values are close to zero (probability close to 1),

which is expected from a rainy month, whereas for July the

probability of rain for snapshots with rain on them decreases
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Figure 7. τ(q) for summer and winter of 2001 and 2004.

to around 50 % indicated by the value of β ≈ 0.4. Note that

the scatter plot for July is much less populated than the one

for February since there are less rainy days during July. The

stability analyses of β and σ are given in Tables 2 and 3.

It is observed that the minimum value of the average β oc-

curs in February (β = 0.1568 gives probability ≈ 80 %) and

the maximum occurs in June (β = 0.7284 gives probability

≈ 35 %), as expected from the usual seasonal cycle of pre-

cipitation in the Andes. On the contrary, the exact opposite

happens with the values of σ in which the wet season has

more variance during the wet season compared to the local-

ized rainfall during the dry season given by low values of σ .

This last fact simply tells us that the rainfall is much more

spread out in the region during the rainy season while it is

more localized in the dry season. This is of course observed

when comparing February and July in Fig. 8.

4.3 Generation of expected scenario

The main tool in the generation of rainfall data at smaller

scales, as described in previous sections, is a disaggregation

Table 2. Monthly statistics for β (1999–2006).

Month Mean Median SD Skew

January 0.1693 0.0434 0.2586 1.9906

February 0.1568 0.0419 0.2572 2.1882

March 0.1843 0.0490 0.2709 1.7880

April 0.4713 0.4226 0.3872 0.2663

May 0.6560 0.6337 0.3492 −0.3614

June 0.7284 0.9491 0.3030 −0.5844

July 0.7142 1.0000 0.3262 −0.5900

August 0.6927 1.0000 0.3674 −0.6224

September 0.5840 0.4847 0.4063 −0.2053

October 0.3795 0.4192 0.3603 0.6665

November 0.4244 0.4224 0.3683 0.4507

December 0.2656 0.1196 0.3065 1.1686

Table 3. Monthly statistics for σ 2 (1999–2006).

Month Mean Median SD Skew

January 0.0382 0.0273 0.0345 1.4670

February 0.0387 0.0299 0.0326 1.0053

March 0.0403 0.0323 0.0344 1.2436

April 0.0268 0.0136 0.0334 1.6286

May 0.0168 0.0018 0.0269 1.6558

June 0.0163 0.0004 0.0297 2.1931

July 0.0130 0.0000 0.0236 2.4033

August 0.0128 0.0000 0.0234 2.0872

September 0.0211 0.0036 0.0337 2.0339

October 0.0284 0.0135 0.0368 2.1377

November 0.0313 0.0164 0.0375 1.5117

December 0.0339 0.0245 0.0319 1.0955

procedure having a random generator associated with a β-

lognormal model with parameters β and σ . Recall that this

generator includes the possibility of no rain in the genera-

tor (see Eq. 3). Figure 9 shows TRMM data with no hetero-

geneity along with its downscaling to a subkilometer resolu-

tion averaging 1000 realizations and its heterogeneity correc-

tion as described in Sect. 3. Specifically, the parameters of

the β-lognormal distribution for this day are β = 0.0266 and

σ = 0.1109.

Based on this consideration, the objective of this section is

to compare the quality of the disaggregation procedure with

respect to TRMM precipitation. The information to be gener-

ated is the mean rainfall intensity of all days in a month over

the period of 8 years. Figure 10 shows two scatter plots com-

paring the means of observed and generated rainfall snap-

shots. The plots for February and July were chosen since they

correspond to distinct rainfall patterns. The former is repre-

sentative of a summer month (rainy season) and the latter

is representative of a winter month (dry season). The scat-

ter plots show all information over the period of 8 years to

assure a good statistical assessment. Similar behavior is ob-

served for all the other months (not shown). One can observe
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Figure 8. Relationship between β and the daily TRMM mean values for the months of February, May, August and December for the period

of 1999–2006.
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Figure 9. Comparison of observed, downscaled and corrected rainfall measurements for day 25 January 2000 and 1000 realizations

(β = 0.0266 and σ = 0.1109).

that the mean of each snapshot is preserved accurately as ex-

pected. This is caused by the large-scale forcing factor, K ,

used in the correction procedure described in Sect. 3.2. On

the other hand, increasing the resolution via the downscaling

process increases the variability (or randomness) of rainfall

as expected from the fact that the sample q = 2 moment is

proportional to λ
τ(2)
n . This is observed when comparing the

variances of observed and generated snapshots over a period

of time. In addition, the heterogeneity correction procedure

was devised for preserving the means and not other statistical

moments. Also, note that the increment in variability changes

depending on the season, i.e., February (wet season) shows

on average about 4 times more variability after downscal-

ing and correction (values outside the regression line). Ob-

serve that the variance can only increase, and that the very

few cases in Fig. 10 were the variance decreases are mainly
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Figure 10. Comparison between TRMM and simulated rainfall means from 1999 to 2006 in the months of February and July.

due to the correction process. On the other hand, July (dry

season) exhibits about 2.5 times more variability after down-

scaling. In general, an argument for such changes in variance

is that, from a temporal point of view, the second moments

are proportional to λ
τ(2)
n in contrast with the case for q = 1,

where all τ(q) curves coincide (τ(1)= 0 always) (see Fig. 7).

With the objective of illustrating the disaggregation pro-

cedure used in the paper, Fig. 11 presents the level by level

downscaling for 25 January 2000.

Also, the ensemble mean realization is given in Fig. 12

for 10, 100 and 1000 realizations of the downscaling and cor-

rection procedure described in Sect. 3.

4.4 Validation of downscaled and corrected rainfall

This section begins with a pointwise (spatial) comparison

of some statistics between observed and generated (down-

scaled and corrected) time series for the Capachica and Co-

jata stations. Such time series are shown in Fig. 13. In Ta-

ble 4 the statistics of observed and generated time series are

provided. In particular, it is observed that the Hurst expo-

nents for the whole 8 years (all seasons) between on-site

observed and generated (downscaled and corrected) rain-

fall mostly agree. For the Capachica station, it was found

that Hobs= 0.7453 and Hgen= 0.6750; for the Muñani sta-

tion Hobs= 0.6766 and Hgen= 0.6838. A Hurst exponent in

the range 0.5<H < 1 indicates a long-term positive auto-

correlation, which implies the tendency of a high value to

be followed by another high value. This behavior, H > 0.5,

is shared by the other stations as well. However, the fact that

H 6= 0.5 may indicate that the multifractal field is not conser-

vative, which is usually handled by studying the field fluctu-

ations (Lovejoy and Schertzer, 2013). However, H here is in

general close to 0.5 and the differences can be attributed to,

for example, uncertainty/error in the precipitation measure-

ments of both TRMM and the stations. A fluctuation analysis

would be the concern of future research. Also, it is important

to highlight that the only source of correlation among snap-

shots of downscaled rainfall is carried over from the correla-

tion of TRMM data since the downscaling process is exclu-

sively spatial.

4.4.1 Wet season (November–March)

Figure 14 shows the quantile–quantile (Q–Q) plots of four

stations during the wet season: Capachica, Chuquibambilla,

Cojata and Mañazo. The plots show that the distributions

of the observed and generated rainfall information largely

agree. The very last point in the Q–Q plot represents the dif-

ference between 99 and 100 % quantile information. It ex-

hibits peaks originated from the downscaling procedure. We

also point out that for Capachica and Chuquibambilla sta-

tions the agreement for high rainfall values may improve by
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Figure 11. Downscaling for TRMM snapshot on 25 January 2000 for λn= 14, 7, 3.5, 1.75, and 0.875 (km).
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Figure 12. Ensemble test for the downscaling and correction of TRMM information for 25 January 2000.
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Figure 13. Observed and generated time series for the Capachica and Cojata stations.
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Figure 14. Quantile–quantile plots.

increasing the number of realizations in the rainfall genera-

tion (downscaling) procedure since the probability of these

rainfall intensities is low. Specifically, the Capachica station

is largely affected by Lake Titicaca, which explains some dif-

ferences in the Q–Q plots for higher values of rainfall. Other

reasons for the discrepancy are (1) temporal heterogeneity

only being introduced indirectly via the monthly correction

using the fields G′, (2) the uncertainty about extremes that

the local heterogeneity (from ANUSPLIN) cannot mitigate

due to the intrinsic smoothness of the splines used by the

ANUSPLIN package, and (3) that perhaps a period of 8 years

is not long enough to statistically produce correctly the ex-

treme values causing the differences in the Q–Q plots pre-

sented here.

Another form of temporal assessment consists in compar-

ing the temporal variation of rainfall intensity at a particu-

lar location by using cumulative plots. First, this analysis is

used to illustrate the effect of the heterogeneity correction on

the TRMM data. Obviously, in Fig. 15 (left panel) one can

group the on-site stations in at least two classes, which is

due to the heterogeneity of the studied area. During the wet

seasons this heterogeneity mainly correlates to rainfall inten-

sity long-term averages. Thus, by weighting TRMM with the

heterogeneityG, the rainfall TRMM fields get homogenized.

This results in the overlapping of all the exceedance curves

(see Fig. 15, right panel).

In Fig. 16, the exceedance probabilities over the period of

8 years for station-measured precipitation and the generated

(downscaled and corrected) from TRMM data are overlaid

over four places in which a meteorological station is located

(indicated by black dots in Fig. 2). They were chosen to rep-

resent the terrain and precipitation heterogeneities in the An-

dean plateau. Specifically, the Capachica station is located

close to Lake Titicaca, which is considered a humid zone

due to the lake’s influence. The Chuquibambilla station is lo-

cated in a semi-arid zone. The Cojata station corresponds to
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Figure 15. Exceedance probability plots for February over an 8-year period of (right) TRMM data (R rainfall field) and (left) TRMM with

long-term averages (monthly) removed (M rainfall field).
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Figure 16. Exceedance probability plots for the rainy season (November–March) over an 8-year period of observed and simulated TRMM

measurements for stations Capachica, Chuquibambilla, Cojata and Mañazo.

an abrupt mountain terrain. The Mañazo station is located in

the arid section of the study area, with a slight influence of

the mountains, and the Tambopata station is located in the

rain forest. In Table 4, the statistics of the on-site observed

and generated via downscaling and correction rainfall for the

mentioned stations are compared. It shows a good agreement

taking into consideration that the information provided by

the stations has been assumed comparable with respect to

the generated rainfall at a spatial resolution of ∼ 0.875 km.

That is, while the downscaled and corrected information has

a resolution of ∼ 0.875 km, the measurements at the stations

are punctual. This is an intrinsic source of error and it justi-

fies some of the differences in the statistics between observed

and generated rainfall information.

Table 5 shows the following indicators of the goodness of

fit of the exceedance probability curves: MAE (mean average

error), RMSE (root mean square error), CORR (correlation

coefficient), PBIAS (percent Bias), NSE (Nash–Sutcliffe ef-

ficiency) and RSR (ratio of RMSE to the standard deviation

of the observations); see Moriasi et al. (2007) for more in-

formation about goodness of fit indicators. In general, the

model simulation can be considered satisfactory if the in-

dicator NSE is greater than 0.50 and the indicator RSR is

around 0.80 or less.
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Table 4. Statistics of temporal information during the wet season

(November–March) from 1999 to 2006.

Station H Mean Max Q50 Q75 Var

Capachica
Obs 0.65 4.26 45.60 1.00 6.90 39.55

Gen 0.57 3.28 79.27 0.89 4.42 38.13

Chuquibambilla
Obs 0.55 4.05 52.70 1.20 5.90 40.01

Gen 0.38 3.03 54.14 0.71 4.00 29.65

Cojata
Obs 0.61 3.55 61.10 1.20 5.38 28.60

Gen 0.58 3.52 70.66 0.69 4.97 36.95

Mañazo
Obs 0.71 3.76 54.00 1.00 5.30 38.69

Gen 0.61 3.12 40.03 1.52 4.50 20.23

Tambopata
Obs 0.50 6.42 105.1 1.90 8.18 109.8

Gen 0.57 4.16 80.66 1.40 5.98 48.23
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Figure 17. Exceedance probability of the Tambopata station dur-

ing the wet season over an 8-year period. Comparison of observed,

generated and corrected rainfall for the Tambopata station.

It is clear that the multifractal downscaling and correction

procedures give appropriate results and, in particular, they

are very close to the ones measured on-site by the weather

stations in Capachica, Chuquibambilla, Cojata and Mañazo

(see Fig. 16). However, the correction for the Tambopata sta-

tion clearly fails to provide an acceptable result, even though

the NSE and RSR are within the acceptable ranges, because

this station was not employed in the generation of the lo-

cal heterogeneity matrix (ANUSPLIN outcomes). This is be-

cause there are no other stations at a reasonable distance,

which introduces undesired errors in the interpolation pro-

cedure utilized by the ANUSPLIN package. Reasons for the

lack of stations in the area are the inaccessibility, cost, and

human factor, all of which are needed to maintain more sta-

tions in the tropical forest. This fact can be clearly observed

in Fig. 17, where the correction improves the exceedance

curve but not enough for its usage in agriculture models for

the rain forest region. The Tambopata station illustrates how

sensitive the correction procedure is with respect to the het-

erogeneity used.

Finally, a validation during the wet season is performed

on a station that has not been used for either correcting

Table 5. Goodness of fit for exceedance probability curves on the

wet season (November–March) from 1999 to 2006.

Station MAE RMSE CORR PBIAS NSE RSR

Capachica 0.05 0.06 0.98 25.58 0.85 0.39

Chuquibambilla 0.05 0.05 0.99 24.72 0.88 0.34

Cojata 0.01 0.02 1.00 7.36 0.98 0.12

Mañazo 0.04 0.04 0.99 17.96 0.93 0.26

Tambopata 0.05 0.06 0.99 26.86 0.88 0.35

Table 6. Goodness of fit for exceedance probability curve and statis-

tics on the dry season for the Santa Rosa station (November–March)

from 1999 to 2006.

Obs Gen

H 0.57 0.45

Mean 4.03 3.56

Min 0 0

Max 43.50 62.81

Skew 2.19 3.74

Q25 0 0

Q50 1.80 1.24

Q75 5.70 4.68

VAR 33.46 35.09

MAE 0.025 0.025

RMSE 0.029 0.029

CORR 0.997 0.997

PBIAS 12.65 12.65

NSE 0.98 0.98

RSR 0.17 0.17
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Figure 18. Exceedance probability and quantile–quantile plot of the

Santa Rosa station during the dry season over an 8-year period.

Comparison of observed, generated and corrected rainfall for the

Santa Rosa station.

TRMM information or to generate the heterogeneity matri-

ces using the ANUSPLIN package. This is the Santa Rosa

station. The Santa Rosa station is geographically located at

longitude 70.79◦W, latitude 14.62◦ S and has an altitude of

3940 m a.s.l. This location corresponds to the pixel at col-
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Figure 19. Exceedance probability plots for July over an 8-year period of (right panel) TRMM data (R rainfall field) and (left panel) TRMM

with long-term averages (monthly) removed (M rainfall field).
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Figure 20. Quantile–quantile plots dry season.

umn 27 and row 81 of the 256× 256 grid constituting the

scale after downscaling. The exceedance probability plot and

quantile–quantile plots are shown in Fig. 18 as well as its

quantified time series statistics and exceedance probability

plot of goodness of fit in Table 6. A good agreement, similar

to the one shown in Tables 4 and 5, is observed. This is due

to the fact that the location where the Santa Rosa station is

located possesses enough stations to characterize the area’s

heterogeneity. As mentioned in the previous paragraph, an

isolated station like Tambopata fails the validation due to the

fact that the area does not have other stations that charac-

terize the heterogeneity of the rain forest region in the area

under study.

4.4.2 Dry season (June–October)

The exceedance probability assessment is repeated for the

dry season. This is to confirm the limitations of the het-

erogeneity correction as indicated in Pathirana and Herath

(2002). Note first that the heterogeneity is not completely

removed by weighting TRMM data using long-term aver-

ages (see Fig. 19). The heterogeneity now is due to rain-

fall intermittency rather that rainfall intensity (Pathirana and

Herath, 2002). Observe that the stations’ exceedance proba-

bility plots do not overlap after removing the long-term rain-

fall average heterogeneity. In spite of that, the Q–Q plots in

Fig. 20 show very good agreement, but this result could be

misleading since during the dry season percentiles are mostly

zero except for the high ones (above 90 %).

The results of the downscaling and correction procedures

show mixed results. Table 7 shows a comparison of the ob-

served and generated rainfall statistics of these stations. All

stations except Tambopata show significant agreement. How-

ever, the analysis of the exceedance probability shows the

limitations of the technique during the dry season. More pre-

cisely, the Cojata and Mañazo stations show some discrep-

ancies reflected in their NSE and RSR indexes (Table 8).
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Figure 21. Exceedance probability plots for the non-rainy season (June–October) over an 8-year period of observed and simulated TRMM

measurements for stations Capachica, Chuquibambilla, Cojata and Mañazo.

Mañazo results, for example, seem to depend heavily on the

intermittency heterogeneity, which has not been considered

and is reflected in the bad NSE=−2.51 and RSR= 1.86.

Also, the effect of the surrounding water sources on the Ca-

pachica and Chuquibambilla stations seems to be minimal in

comparison to the wet season. This is shown in their strong

goodness of fit indicators (NSE≈ 0.88 and RSR= 0.34 for

both stations).

Finally, the Tambopata station is analyzed for validation

during the dry season. In general, the rain forest behavior

is quite homogeneous during both wet and dry seasons. Re-

moving the long-term averages of TRMM basically removes

a constant value to the whole northeast corner of the stud-

ied area as observed in the downscaled curve in Fig. 22.

The ANUSPLIN outcomes provides a constant factor, as ob-

served in the corrected curve in Fig. 22, that is not large

enough to agree with the on-site measurements at the station.

Therefore, more information is needed around Tambopata in

order to produce better local heterogeneity, which is the same

conclusion reached in the analysis during the wet season for

the rain forest region.

5 Conclusions

The downscaling multifractal technique was used for obtain-

ing rainfall estimations at small spatial scales in the Andean

high plateau region. It was pointed out that the mountains

in the Andean high plateau alter the cloud dynamics of the

TRMM rainfall measurements. Some of these effects were

attenuated by removing the monthly averages of TRMM

data. This procedure worked consistently for the wet season

whereas for the dry season the results were mixed. Overall,

the downscaled and corrected TRMM rainfall data showed

that the procedure employed in this paper is a reliable down-

scaling technique for the Andean high plateau with potential

Table 7. Statistics of temporal information during the dry season

(April–October) from 1999 to 2006.

Station H Mean Max Q50 Q75 Var

Capachica
Obs 0.50 0.82 23.30 0 0 7.60

Gen 0.48 0.96 31.39 0 0 9.02

Chuquibambilla
Obs 0.61 0.62 24.30 0 0 5.19

Gen 0.43 0.76 28.59 0 0 6.48

Cojata
Obs 0.55 0.95 22.10 0 0 6.22

Gen 0.53 0.79 29.43 0 0 7.55

Mañazo
Obs 0.44 0.47 30.10 0 0 3.82

Gen 0.56 0.77 28.78 0 0.51 4.40

Tambopata
Obs 0.56 2.41 82.30 0 1.65 37.62

Gen 0.53 0.38 19.00 0 0 2.67

Table 8. Goodness of fit for exceedance probability curves on the

dry season (April–October) from 1999 to 2006.

Station MAE RMSE CORR PBIAS NSE RSR

Capachica 0.01 0.02 0.99 17.72 0.88 0.35

Chuquibambilla 0.01 0.01 0.98 21.87 0.87 0.35

Cojata 0.02 0.03 0.99 27.90 0.78 0.47

Mañazo 0.05 0.08 0.98 88.61 −2.51 1.86

Tambopata 0.10 0.13 0.46 88.24 −0.97 1.40

application as an input for agricultural models requiring sub-

kilometer precipitation information, but some extra research

is required in order to overcome the heterogeneity related to

intermittency, which was shown in the analysis of the dry

season.

It was also observed that the multifractal technique is sen-

sitive in relation to the heterogeneity of local corrections.

In particular, the Tambopata station had no surrounding sta-

tions helping in the generation of local heterogeneity in the

northeast corner of the area under study. This showed in the
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Figure 22. Exceedance probability of the Tambopata station dur-

ing the dry season over an 8-year period. Comparison of observed,

generated and corrected rainfall for the Tambopata station.

large differences between on-site measurements and gener-

ated (downscaled and corrected) precipitation values. The

disagreement occurred in both wet and dry seasons.
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