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Abstract. Almost all climate time series have some degree

of nonstationarity due to external driving forces perturbing

the observed system. Therefore, these external driving forces

should be taken into account when constructing the climate

dynamics. This paper presents a new technique of obtaining

the driving forces of a time series from the slow feature anal-

ysis (SFA) approach, and then introduces them into a predic-

tive model to predict nonstationary time series. The basic the-

ory of the technique is to consider the driving forces as state

variables and to incorporate them into the predictive model.

Experiments using a modified logistic time series and winter

ozone data in Arosa, Switzerland, were conducted to test the

model. The results showed improved prediction skills.

1 Introduction

Many previous studies have concluded that the climate sys-

tem is essentially nonstationary (Trenberth, 1990; Tsonis,

1996; Yang and Zhou, 2005; Boucharel et al., 2009). How-

ever, the lack of any general theory for predicting nonstation-

ary processes has become one of the main barriers in the field

of climate prediction. To unravel this issue, in recent years,

increasing effort has been devoted to devising methods to an-

alyze and predict nonstationary time series (e.g., Hegger et

al., 2000; Verdes et al., 2000; Wan et al., 2005; Wang and

Yang, 2005; Yang et al., 2010). The most used method in

such studies was to remove or reduce the nonstationarity of

the predicted system using some mathematical techniques,

thereby improving the prediction skills.

The nonstationarity exists due to the fact that the driving

forces that perturb the observed system change with time

(Manuca and Savit, 1996). Consequently, the most effec-

tive way to remove the nonstationarity may be to incorpo-

rate all the driving forces into the constructed dynamical sys-

tem, and to consider them as the state variables of that sys-

tem when establishing a prediction equation within a general

circulation model (GCM). Based on this principle, lately a

data-driven modeling path that is compatible with a GCM

was proposed to predict several artificial nonstationary time

series with known external forces. It has achieved success

in improving predictions when driving forces were included

in some ideal or climate systems, such as the Lorenz sys-

tem, a logistic model, or global temperature over seasonal

timescales including the North Atlantic Oscillation (NAO),

the Pacific Decadal Oscillation (PDO), the El Niño–Southern

Oscillation (ENSO), and the North Pacific Index (NPI) vari-

ability (Wang et al., 2012, 2013). However, a disadvantage of

this technique is that it can not differentiate between the as-

sumed driving forces from the predictive model. Therefore,

in the present study, we considered the extraction of driving

forces from the time series itself and established a predictive

model by incorporating the constructed driving forces. As a

result, the extraction of driving forces became the focus of

this study.

Wiscott (2003) developed a technique called slow feature

analysis (SFA) to extract driving forces from time series.

This technique has been applied to nonstationary time se-

ries with some success (Wiskott, 2003; Berkes and Wiskott,

2005; Gunturkun, 2010; Konen and Koch, 2011). In this pa-

per, we used SFA to construct the driving forces from a test-
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ing time series, and then established a predictive model that

incorporated the driving forces. The paper is organized as

follows: a brief description of the predictive technique is pre-

sented in Sect. 2. In Sect. 3, results are reported from apply-

ing the approach to a modified logistic time series and the

total ozone data of Arosa, Switzerland. A summary is pro-

vided in Sect. 4.

2 Methodology

SFA is a method that extracts slowly varying driving forces

from a quickly varying nonstationary time series. In this sec-

tion, we provide a brief overview of SFA and its application

for the extraction and construction of the driving forces from

the time series. The details of SFA are presented in Wiscott

(2003), but the basic steps of the technique are provided here

for convenience and completeness. Let us assume that we

have a single variable time series {x(t)}t=1,2,...n from a dy-

namical system.

1. Embed the above time series into an m-dimensional

space (also named the length of the m window), a phase

trajectory in the m-dimensional space denoted as

X(t)= {x(t),x(t − 1), . . .,x(t − (m− 1))}t=1,...,N or

X(t)= {x1(t),x2(t), . . .,xm(t)}t=1,...,N (1)

where N = n−m+ 1.

2. Generate an expanded signal H(t) for a quadratic ex-

pansion; all monomials of degree 1 and 2 including

mixed terms are used:

H(t)= {x1(t), . . .,xm(t),x
2
1(t), . . .,x1(t)xm

(t), . . .,x2
m−1(t),xm−1(t)xm(t),x

2
m(t)}t=1,...,N , (2)

whereH(t) is a k×N matrix and k =m+m (m+1)/2.

Simplify (2) as

H(t)= {h1(t),h2(t). . .,hk(t)}t=1,...,N . (3)

The general objective of SFA is to extract slowly

varying features from the time series {x(t)}t=1,2,...n,

in other words, to find a set of coefficients, W ∗ =

(w∗1,w
∗

2, . . .,w
∗

K), to make the output signal y∗(t)=

W ∗ ·H(t) satisfy

(ẏ∗ẏ∗T )=min
k
{(ẏk ẏ

T
k )}. (4)

Here, ẏk is a first-order derivative, calculated by

1yk(ti)= yk(ti+1)− yk(ti).

3. Normalize the expanded signal H(t) by an affine trans-

formation to generate H ′(t) with zero mean and a unit

covariance matrix:

H ′(t)= {h′1(t),h
′

2(t). . .,h
′

k(t)}t=1,...,N , (5)

where h̄′j = 0, h′jh
′T
j = 1, h′j (t)= (hj (t)− h̄j )/S and

S = 1
k

√
k∑
j=1

(
hj (t)− h̄

)2
.

4. By means of the Schmidt algorithm, the function space

Eq. (5) is orthogonalized as

z1(t)= h
′

1(t), (6)

zj (t)= h
′

j (t)−

j−1∑
i=1

h′i+1(t) · zi(t)

‖zi‖
zi(t) (j = 2, . . .,K),

which is also denoted as Z(t)=

{z1(t),z2(t). . .,zk(t)}t=1,...N . Here, zi(t) · zj (t)= 0 i6=j

and it guarantees that every variable of the output is

uncorrelated.

5. Establish the covariance matrix of Z(t), denoted as

B = (ŻŻT )K×K . The k eigenvectors with the small-

est eigenvalues, λK , yield the normalized weight vec-

tors with λ1 ≤ λ2 ≤ . . .≤ λk , which can be easily found

by principal component analysis. The smallest eigen-

value, λ1, corresponding to the eigenvectorW1, can sat-

isfy Eq. (4), which represents the weight coefficient of

the slowest varying component. Here, W1 has a free

scale factor (presented as r), and then the slowest vary-

ing variable, or the driving forcing, can be obtained by

the following equation:

y1(t)= rW1 ·Z(t)+ c, (7)

where c is a given constant and {y1(t)} is the output

signal of the slowest driving force obtained by Eq. (7).

In this study, the SFA was tested on a logistic map

st+1 = µt st (1− st ) (8)

with a given driving force parameter

µt = 3.5− 0.45cos(3πt/1600)exp(−t/2500). (9)

To test the ability to construct the driving force from this

modified logistic map, we took a time series that consists

of 5000 data points from this map. Applying the SFA algo-

rithm to this time series with the embedded dimension cho-

sen as 3, we constructed the driving force shown in Fig. 1, in

which the dotted line represents the true driving force given

by Eq. (9) and the solid line the driving force constructed by

the SFA approach. There is good agreement between the con-

structed and true driving forces, with a correlation coefficient

of 0.998. This suggests that SFA was able to extract the driv-

ing force from the observed time series in an unsupervised

manner.

So far we have two time series: one is the original time

series {x(t)}; the other is the slowest driving force {y1(t)}.

Next, we demonstrate how to establish a predictive model
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Figure 1. The true and constructed driving forces.
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Figure 2. The comparison of prediction skills between models com-

bined with or without driving force.

that includes the driving force constructed by the SFA proce-

dure described above. We present the basic principle to build

the prediction model; for convenience, we assume a nonsta-

tionary process is composed of two series, {x(t)}t=1,2,...n and

{y1(t)}, with the former being the state variable time series

and the latter the constructed external driving force obtained

through the SFA approach. The two time series were embed-

ded in an m1 + m2 dimensional phase space with a selected

time lag τ . The constructed phase trajectory using the em-

bedding theorem of Takens (1981) is shown as

E(t)= {x(t),x(t − τ), . . .,x(t − (m1− 1)τ ); (10)

y1(t),y1(t − τ), . . .,y1(t − (m2− 1)τ )}t=1,2,...,N .

Here, m1 and m2 are the given embedding dimensions

for {x(t)} and {y1(t)}, respectively, and N = n−(max (m1,

m2)− 1) τ is the number of phase points on the trajectory.

Based on this trajectory, a predictive model to predict the

future state of the system can be established as

x(t +p)= f̂p(x(t);y1(t))+ ε(t). (11)
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Figure 3. The slowest driving force with different embedding di-

mensions for total ozone data.

Where p is the prediction time step (considered as 1 in the

present study), ε(t) is the fitting error, and f̂ is assumed to be

a quadratic polynomial in this study. The Takens embedding

theorem is only appropriate for an autonomous dynamical

system; therefore, we followed the method of Stark (1999)

to embed the driving forces in the same state space for a non-

stationary system. The next task is to find the cost function

η =

N∑
t=1

[f (x(t),y1(t))− x(t + 1)]2, (12)

when it reaches its minimum value. For more details, refer

to the studies of Farmer and Sidorowich (1987) and Cas-

dagli (1989).

3 Experiments

We applied the prediction technique described above to per-

form some prediction experiments using several given non-

stationary time series. The experiment presented in Sect. 3.1

was performed with data from the modified logistic model

given above.

3.1 Prediction experiments for ideal time series

The prediction experiments were based on 5000 data points

from the above-verified logistic map (Eq. 8) with the as-

sumed driving force (Eq. 9). The first 4800 data points were

applied to establish the predictive model, and the remaining

200 data points were used to test the prediction and estimate

the correlation coefficient between the actual and predicted

values as a function of the prediction time step. The embed-

ding dimension of the verified logistic time series, namely

m1, took values from 2 to 3, and the embedding dimension

of the driving force time series, namely m2, was set to ei-

ther 0 (the driving force was not taken into account, and is

www.nonlin-processes-geophys.net/22/377/2015/ Nonlin. Processes Geophys., 22, 377–382, 2015
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Table 1. RMSE comparison of the prediction experiments (unit: Dobson units).

1 2 3 4 5 6 7 8 9 10

Stationary model 0.80 0.88 0.90 0.94 0.96 0.99 1.03 1.02 1.04 1.05

Forcing model 0.62 0.55 0.62 0.74 0.87 0.93 0.97 0.98 1.01 1.01
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Figure 4. The comparison of prediction skills between models com-

bined with or without driving force.

referred to as the “stationary model” hereinafter) or 1 (the

driving force extracted from the verified logistic map by SFA

was taken into account, and is referred to as the “forcing

model” hereinafter). The time lag τ was always set to 1.

Figure 2 shows the prediction skill with and without the in-

fluence of the driving force, which was constructed by the

SFA approach. The forcing model excelled over the station-

ary model. In particular, at the fourth prediction step, the cor-

relation coefficients were below 0.2 in the stationary model

compared to above 0.6 in the forcing model. The average cor-

relation across the prediction time steps was improved, indi-

cating that introducing the driving force extracted through

the SFA approach into the prediction model can yield a sig-

nificant improvement in accuracy.

3.2 Prediction experiment for total ozone

Many studies have sought to explain the variables involved

in ozone dynamics, such as the Quasi-Biennial Oscillation

(QBO), the 11-year solar cycle, volcanic eruptions, the El

Niño–Southern Oscillation (ENSO), and the North Atlantic

Oscillation (NAO) (e.g., Brasseur and Granier, 1992; Hood,

1997; Schmidt et al., 2010; Rieder et al., 2010). In this pa-

per, we focused on prediction experiments with total ozone

data. The total ozone data were from Arosa, Switzerland,

and were the world’s longest total ozone record. Homog-

enized total ozone data from 1927 to 2007 were obtained

from the World Ozone and Ultraviolet Radiation Data Centre

(WOUDC; http://www.woudc.org).
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Figure 5. Errors (Dobson units) at prediction steps with or without

forcing input.

By using the SFA technique on Arosa’s daily total ozone

data in winter (from January to March) for the period 1927

to 2007, we obtained the first output of the driving force {y1}

when the embedding dimension was chosen as 3, 5, 7, 9, and

11, respectively (shown in Fig. 3). Note that the result did

not change significantly with different embedding dimension

values.

We established a prediction model for winter ozone data

by incorporating the driving force constructed by SFA. The

prediction was based on 7305 data points. Out of the 7305

data points, the first 7125 data points were used to build

the predictive model, and the remaining 180 data points

were used to test the prediction using root-mean-square er-

ror (RMSE) and the correlation coefficient between observed

and predicted values. The time lag τ was taken to be 1, the

embedding dimension of the total ozone data m1 took val-

ues from 3 to 5, and the embedding dimension of the driving

force time series m2 was set to either 0 for the stationary

model or 3 to 5 for the forcing model.

The experimental results for this case are listed in Ta-

ble 1, and are also shown in Figs. 4 and 5. From Table 1,

it can be seen that all RMSE values given by the forcing

model were much lower than those given by the stationary

model. Figure 4 presents the correlation coefficients between

the observed and predicted values. The forcing model out-

performed the stationary model, especially at the first two

steps. At the first prediction step, the correlation coefficients

Nonlin. Processes Geophys., 22, 377–382, 2015 www.nonlin-processes-geophys.net/22/377/2015/
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reached 0.61 for the stationary model but 0.91 for the forcing

model. At the eighth prediction step, the correlation coeffi-

cients were reduced to 0.39 for the stationary model, but still

maintained at 0.45 for the forcing model. At the twelfth pre-

diction step, the correlation coefficients were 0.22 and 0.33

for the stationary model and the forcing model, respectively.

This has clearly shown that, when the constructed driving

force is introduced, the accuracy of prediction is dramatically

improved. The average correlation over the prediction time

steps is improved by 50 % when the driving force extracted

through the SFA technique is included. Figure 5 illustrates

the error between the prediction and the observation. The

prediction error for every time step is lower for the forcing

model than for the stationary model. All these results indi-

cate that the inclusion of the driving force constructed by the

SFA approach in the prediction model largely improves the

predictive skill of winter total ozone in Arosa. Some sensi-

tivity analysis with different training/verifying lengths does

not alter this conclusion.

4 Discussion

In this study, we first constructed the driving forces of a time

series based on the SFA approach, and then the driving forces

were introduced into a predictive model. By doing so, we

extend the study by Wang et al. (2012, 2013) and present a

novel technique to predict nonstationary time series. Unlike

the former works by Wang et al. (2012, 2013) with assumed

driving forces, in this study, the driving force was extracted

from original time series. The experimental results obtained

from a modified logistic time series and winter ozone data in

Arosa confirmed the effectiveness of the model.

The driving force construction technique based on SFA

represents a progress for climate causal relations. Such an

approach may provide a compatible and direct window for

studying causality using external driving forces. We con-

structed the driving forces with SFA and then combined these

driving forces to establish the predictive model. Although we

found this approach was able to effectively improve the pre-

dictive ability, the constructed driving force time series still

lacks physical explanation. In order to understand the real

background of these, one has to further explore the physi-

cal processes behind it. One recommended method, provided

by Verdes (2005), suggests using a measure called “trans-

fer entropy” to analyze the causality; another recommended

method is named “convergent cross mapping”, provided by

Sugihara et al. (2012), which measures causality in nonlinear

dynamic systems. Work in this area is in progress and will be

reported in future publications.
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