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Abstract. The work aims to check one of the assumptions

under which the kinetic equation for water waves was de-

rived in order to understand whether it can be applied to

the situations described by the Phillips spectrum. We eval-

uate a spectral line width of the spectrum from the simula-

tions in the framework of primordial dynamical equations at

different levels of nonlinearity in the system, corresponding

to the weakly turbulent Kolmogorov–Zakharov spectra ω−4,

Phillips spectra ω−5, and intermediate cases. The original

motivation of the work was to check one of the assumptions

under which the kinetic equation for water waves was de-

rived in order to understand whether it can be applied to the

Phillips spectrum. It is shown that, even in the case of rela-

tively high average steepness, when the Phillips spectrum is

present in the system, the spectral lines are still very narrow,

at least in the region of the direct cascade spectrum. It allows

us to state that, even in the case of the Phillips spectrum, one

of the assumptions used for the derivation of the Hasselmann

kinetic equation is still valid, at least in the case of moderate

whitecapping.

1 Introduction

Two really seminal papers were published in the area of

physical oceanography about half a century ago: the article

by Phillips (1958) and the work of Hasselmann (1962). Both

of them concentrated on the same problem: what is going on

with ocean waves growing under the influence of wind?

O. Phillips suggested that this growth is arrested by wave

breaking, in other words, by the formation of “white caps”

(or “white horses”). Wave breaking is the main mechanism

of energy dissipation. In “white caps”, mechanical energy of

waves transforms to turbulence on small scales, then to heat.

This is a strongly nonlinear phenomenon that cannot be stud-

ied by perturbative methods. An analytical theory of wave

breaking has not been developed yet. The Phillips’ assump-

tion on dominance of wave-breaking effects allowed him

to offer, on the basis of dimensional considerations, a uni-

versal ω−5 energy spectrum of wind waves (Phillips’ spec-

trum), whereas a more elaborate explanation of the underly-

ing physics was put forward by Kuznetsov (2004).

K. Hasselmann developed a completely different theory.

He noticed that a typical ensemble of ocean waves possesses

a small parameter: the average steepness (slope) of the sur-

face µ. One can define it, for instance, as

µ=

√
〈|∇η|2〉, (1)

where η is the shape of the surface. This definition has the

clearest geometrical meaning. Another definition estimates it

as the average amplitude A of the waves multiplied by the

wave vector of the spectral peak kp. This definition is easy to

use for experimental observations. Later, we shall consider

another definition, which involves the spectral distribution

function. All these definitions give close values of the av-

erage steepness. Typically, µ' 0.1. This fact allows one to

assume that the wind-driven sea is an ensemble of weakly

interacting waves, which can be described statistically by the
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use of expansion in powers of average steepness µ. This is a

tedious procedure because one has to expand up to order µ4.

However, K. Hasselmann coped with this hard work and de-

rived his famous Hasselmann kinetic equation for a wave en-

ergy spectrum.

Then, it was found that the Hasselmann equation has ex-

act stationary solutions (Kolmogorov–Zakharov or KZ spec-

tra) (Zakharov and Filonenko, 1967a, b; Zakharov and Za-

slavskii, 1982; Zakharov et al., 1992) decaying at a high-

frequency range as ω−4, i.e., slower than the Phillips spec-

trum. A question arises as to which theory is closer to reality.

The answer is given by experiment.

Numerous measurements (e.g., Hwang et al., 2000;

Donelan et al., 1985) performed in large lakes and the ocean

demonstrated that the spectrum is the weak-turbulent KZ one

E(ω)∼ω−4, at least for the range of scales ωp<ω< 4ωp;

here, ωp is the frequency of the spectral peak. At the same

time, the Phillips spectrum was observed for rough seas for

the tail of the spectrum. This fact has the following explana-

tion. Wave turbulence in the wind-driven sea is a mixture of

weak and strong turbulence. This is a question of phase cor-

relation. Weakly nonlinear interaction provides correlations

of waves phases on large scales – hundreds of characteristic

wavelengths. At the same time, the wave breaking and white-

capping is the phenomenon localized in space. As a result,

looking at the wind-driven sea, one observes the formation

of short-lived localized wave breaking events embedded into

a homogeneous weakly nonlinear background (Nazarenko

et al., 2010).

A similar situation, the coexistence of weak turbulence

and localized coherent structures, is typical of wave turbu-

lence in general. It takes place, for instance, in nonlinear op-

tics (Dyachenko et al., 1992), where optical turbulence co-

exists with self-focusing or in isotropic plasma where weak

Langmuir turbulence coexists with Langmuir collapses (Za-

kharov et al., 1992). Similar phenomena were observed re-

cently in numerical simulations for gravity waves (Zakharov

et al., 2007). In all these situations, the usual course of action

is to augment corresponding kinetic equations of weak tur-

bulence by the introduction of an additional term, describing

dissipation of energy in the coherent structures (correspond-

ing to whitecapping onsets and wave breaking) (Zakharov

et al., 2009). The question arises whether it is still reasonable

to use a kinetic equation as an adequate model of wave in-

teraction in the presence of coherent structures. Maybe, the

first attempt to answer this question was the work by Hassel-

mann (1974) on spectral dissipation due to whitecapping. In

this work, the concept of a “weakly nonlinear on average” sea

was introduced, which justifies the weakly nonlinear descrip-

tion, resulting in the Hasselmann equation. This hypothesis

was not confirmed numerically because the required numer-

ical simulation of primordial dynamical equations was not

feasible at that time.

In this paper, we show that at least some of the assump-

tions under which the Hasselmann kinetic equation was de-

rived still hold in the presence of a number of whitecapping

events. To do this, we perform massive numerical simula-

tions of primordial weakly nonlinear dynamical equations

(Hamiltonian equations with a Hamiltonian truncated at four-

wave interaction terms) describing potential flow of Euler

equations of an ideal fluid with a free surface. It should be

noted that we only mimic energy dissipation due to white-

capping through the regularization of the equations by rel-

atively close dissipation regions (approximately one decade

from the pumping scale). As a result, although the whitecap-

ping cannot be described rigorously in the weakly nonlinear

model, one can dissipate part of the energy of the wave in-

volved in the whitecapping by the proposed mechanism. The

statement that we dissipate the right part of the energy is a hy-

pothesis, although we give some explanations showing that it

looks like quite a reasonable claim.

In our numerical experiments, we study Fourier spectra of

space–time correlation functions of normal canonical vari-

ables describing the surface dynamics. Our goal was to de-

termine the “shape of the line”, i.e., the frequency spectra of

certain spatial Fourier harmonics. According to the theory of

weak turbulence, these spectra must be narrow and concen-

trated near the frequency given by the dispersion relation for

waves of small amplitude. We obtained the following impor-

tant result: in a broad range of wave numbers, the spectra

remain narrow even in the presence of whitecapping dissipa-

tion events, when the spatial spectrum obeys the Phillips law.

This justifies the construction of an appropriately adjusted

dissipation term that can be used thereafter in wave forecast-

ing.

2 Basic model

We solve numerically weakly nonlinear Euler equations for

dynamics of incompressible deep fluids with free surfaces

in the presence of gravity by the pseudo-spectral code de-

scribed in Korotkevich et al. (2012). The code was verified

in our previous papers (Dyachenko et al., 2003a, b, 2004;

Zakharov et al., 2005, 2007; Korotkevich et al., 2008; Ko-

rotkevich, 2008, 2012, 2013). The equations are written for

surface elevation η(x, y, t) and hydrodynamic velocity po-

tential on the surface ψ(x, y, t). Equations are the result

of weakly nonlinear expansion of the Hamiltonian up to the

fourth-order terms in steepness (Zakharov et al., 1992)

η̇ = k̂ψ − (∇(η∇ψ))− k̂[ηk̂ψ] + k̂(ηk̂[ηk̂ψ])

+
1

2
1
[
η2k̂ψ

]
+

1

2
k̂
[
η21ψ

]
− F̂−1

[
γkηk

]
,

ψ̇ =−gη−
1

2

[
(∇ψ)2− (k̂ψ)2

]
− [k̂ψ]k̂[ηk̂ψ]

− [ηk̂ψ]1ψ − F̂−1
[
γkψk

]
+ F̂−1 [Pk] . (2)

Here, the dot means the time derivative, 1=∇2 the Laplace

operator in the r = (x, y)T plane, k̂=
√
−1, F̂−1 is an in-
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verse Fourier transform, γk is a dissipation rate depending

on the scale (according to recent work by Dias et al. (2008),

it has to be included in both equations), which corresponds to

viscosity on small scales and, if needed, “artificial” damping

on large scales. Pk is the driving term that simulates pump-

ing on relatively large scales. Here and further on, we use the

following formula for coefficients of Fourier series

ηk =
1

(2π)2

∫
ηre
−ikrd2r.

The specific form of pumping is not important in our simula-

tions. We have chosen it in the following form:

Pk = fke
iRk(t), fk =

{
4F0

(k−kp1)(kp2−k)

(kp2−kp1)
2 ,

0− if k < kp1 or k > kp2.
(3)

Here, kp1= 28, kp2= 32 and F0= 1.5× 10−5; Rk(t) was a

uniformly distributed random number in the interval (0, 2π ]

for each k and t . The initial condition was a low-amplitude

noise in all harmonics. The time step was 1t = 6.7× 10−4.

The dissipation function is γk = γ
(1)
k + γ

(2)
k .

Artificial viscosity γ
(1)
k was the same in all experiments:

γ
(1)
k =

{
γ0(k− kd)

2, k > kd,

0, if k ≤ kd,
(4)

where kd= 256 and γ0= 0.97× 102.

γ
(2)
k is the dissipation concentrated in small wave num-

bers. It was zero only in one of three experiments. It is de-

scribed separately for every experiment below.

The linear dispersion relation for gravity waves was

ωk =
√
g k, with g the gravity acceleration, which was taken

as g= 1. Equation (2) was solved in a 2π × 2π periodic box.

The number of modes was 1024× 1024.

3 Derivation of contribution to steepness from

different scales

Let us consider explicitly discrete Fourier transforms in the

case of the 2π × 2π periodic box:

ηk =
1

(2π)2

2π∫
0

2π∫
0

ηre
ikrd2r,

ηr =

Nx/2−1∑
−Nx/2

Ny/2−1∑
−Ny/2

ηke
−ikr
'

∫
ηke
−ikrd2k. (5)

Here, we took into account the fact that, for the 2π × 2π re-

gion, 1k= 1.

The same for ψr and ψk . Normal canonical variables are

ak =

√
ωk

2k
ηk + i

√
k

2ωk
ψk

ηk =

√
k

2ωk

(
ak + a

∗

−k

)
,

ψk =

√
ωk

2k
(ak − a∗−k) . (6)

Inside, the box spectra were practically isotropic; thus, one

can put

|ηk|
2
'

k

2ωk
(nk + n−k) , nk = |ak|

2.

For average squared steepness, we obtain

µ2
= 〈|∇η(r)|2〉 =

1

(2π)2

∫
|∇η(r)|2d2r

=
(2π)2

(2π)2

∫
k2
|ηk|

2d2k.

Using Eq. (6), one can get

|ηk|
2
=

k

2ωk

(
|ak|

2
+ |a−k|

2
+ a∗ka

∗

−k + aka−k

)
.

If we consider cases of random phases (as in our simulation),

in the isotropic case,

〈a∗ka
∗

−k〉φ = 〈aka−k〉φ = 0, (7)

where 〈·〉φ means averaging over the azimuthal angle

〈f (k)〉φ =
1

2π

2π∫
0

f (k,φ)dφ.

Using Eq. (7), we can simplify the expression for µ2:

∫
k2
|ηk|

2d2k =

+∞∫
0

k2 k

ωk

2π∫
0

|ak|
2dφkdk.

For isotropic cases, it is natural to introduce a spectrum av-

eraged by an angle (this is what we usually measure in our

numerical experiments):

nk = 〈nk〉φ =
1

2π

2π∫
0

|ak|
2dφ. (8)

Then, we have

µ2
=

∫
k2
|ηk|

2d2k = 2π

+∞∫
0

k2 k

ωk
nkkdk. (9)
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For surface gravity waves over the fluid of infinite depth,

ωk =
√
gk. In our simulations, g= 1, so from Eq. (9), we get

µ2
total = 2π

+∞∫
0

k7/2nkdk. (10)

We would like to emphasize that, for the isotropic case defi-

nition, Eq. (10) coincides with Eq. (1).

In order to understand which scales are important for the

steepness, we can introduce µ2(k) as follows:

µ2(k)= 2π

k∫
0

k7/2nkdk. (11)

Essentially, we introduced a steepness µ(k) accumulated by

the scales with wave numbers less than k as a square root of

Eq. (11).

Here, we use angle-averaged nk (Eq. 8), and summation is

replaced by integration over k= |k|. Average steepness can

be obtained as a limit:

µtotal = lim
k→+∞

µk.

This definition gives a value of average steepness that differs

from the geometrical definition µ=
√
〈|∇η|2〉; in our exper-

iments, the discrepancy does not exceed 0.005, which is in

most cases just a few percent of the characteristic average

steepness. This discrepancy arises from the fact that, close to

the origin of the k plane, we have a small number of harmon-

ics for the angle averaging. As a result, terms in Eq. (7) do

not vanish completely, because the summation over a coarse

discrete grid of wave numbers is too crude an approximation

of the integration.

It is worth noting that the usual definition of the steepness

through the average squared amplitude and the wave num-

ber of the spectral peak takes into account mostly regions of

the spectral peak, while our computations of function µ(k)

show that the contribution from the tail of the spectrum is a

significant part of total steepness µ and cannot be neglected.

For the spatial harmonic with wave vector k, we defined

the time Fourier transform as follows:

a(k,ω)=
1

T

T∫
0

a(k, t)e−iωtdt.

Here, T = 2π/ωk is the period of the chosen wave. There-

after, I (k, ω)= |a(k, ω)|2, which is a spatio-temporal spec-

trum of the wave field.

4 Description of experiments

We performed three series of experiments, choosing different

functions γ
(2)
k describing damping in the area of small wave

numbers.

The picture we observed is typical of wave turbulence

and was described theoretically in detail by Zakharov et al.

(1992). Firstly, we get fast growth of waves corresponding to

the pumping scale. Then, a direct cascade of energy results

in the relatively fast formation of the spectrum tail from the

pumping region to the high wave numbers until it reaches

the dissipation scale kd. The wave turbulence theory predicts

the KZ tail for the direct cascade 〈|ak|
2
〉∼ k−4. The Phillips

spectrum corresponds to 〈|ak|
2
〉∼ k−9/2. We observed both

spectra.

There is a simultaneous, although much slower, process of

formation of the inverse cascade, corresponding to the flux

of wave action from the pumping scale into the larger scales

(smaller wave numbers). After very slow development of the

inverse cascade spectrum, formation of a strong long wave

background starts. This strong long wave background is of-

ten called the condensate (the name comes from some sim-

ilarity to the phenomenon of Bose–Einstein condensation).

Formation of the condensate is due to the fact that, at large

scales (small wave numbers), the discrete grid of wave vec-

tors becomes too coarse for resonant interaction of waves.

In this range of scales, we switch from normal weak tur-

bulence through the mesoscopic regime as described in Za-

kharov et al. (2005) into regimes without nonlinear resonant

interaction. As a result, we have an influx of waves’ action

from small scales to the large scales due to the inverse cas-

cade, which is arrested by the discreteness of the wave num-

ber grid at large scales. We get an accumulation of waves

on the border of the scales where at least mesoscopic wave

turbulence is still possible. These accumulated waves form

the intense long wave background, which we call the con-

densate. It should be emphasized that a discrete grid of wave

vectors appears not only in numerical simulations, but also

in all wave tank experiments or other finite-size systems. The

formation of the condensate in large lakes or the sea can be

neglected due to the fact that downshift of the spectral maxi-

mum becomes slower the further it is shifted in large scales.

As a result, the free path time of the wave is not enough to

reach the scale where resolution of the grid of wave numbers

becomes significant.

4.1 Without condensate and inverse cascade

In the first series of experiments, we assumed that γ
(2)
k was

linearly growing in small wave numbers k < 28:

γ
(2)
k =

{
0.2|k− 28|, k ≤ 28,

0, if k > 28
.

In this case, the inverse cascade of wave action was com-

pletely suppressed. We observed the formation of the di-

rect cascade, reasonably described by the standard KZ spec-

trum |ak|
2
'β1 k

−4, which corresponds to energy spectrum

E(ω)∼ω−4, with β1' 1.2× 10−4. This spectrum was ob-

served in the range of scales 32<k< 150. The spectra in

the linear and logarithmic scales are presented in Fig. 1.
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Figure 1. Angle-averaged spectrum with both the condensate and

inverse cascade suppressed. Slopes for the KZ spectrum and Phillips

spectrum are shown for reference by dashed and dotted lines respec-

tively. Main figure: logarithmic scale; inset: linear scale.
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Figure 2. Steepness as a function of absolute value of wave number.

Both the condensate and inverse cascade were suppressed.

Here and further on we consider angle-averaged spectra of

direct and inverse cascades. This averaging can be consid-

ered to be a cheaper replacement for ensemble averaging in

the case of isotropic spectrum with respect to angle situa-

tion. The steepness grows in this range of scales as shown in

Fig. 2. At kmax' 200, steepness reaches its saturation level

µmax' 0.104. The shapes of spectral lines at k equal to 50,

100, 150, 200, and 250 are represented in Figs. 3–7. One can

see that the spectral lines are narrow. Only in areas of large

k' 250 do we observe bounded (slave) harmonics that do

not obey the linear dispersion relation.

4.2 Without the condensate, an inverse cascade is

present

In the second series of experiments, the low-frequency damp-

ing was presented only in small wave numbers k < 10, where

the dissipation rate was a constant γ
(2)
k = 0.05. In this ex-
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Figure 3. Spectral line of the harmonic k= (0, 50). Both the con-

densate and inverse cascade were suppressed.
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Figure 4. Spectral line of the harmonic k= (0, 100). Both the con-

densate and inverse cascade were suppressed.

periment, we observed the formation of both direct and in-

verse cascades. The dynamic range for inverse cascades was

too short for accurate evaluation of the power of the spec-

trum; the only statement that can be made is that it is rela-

tively close to the predicted |ak|
2
∼ k−23/6 spectrum, with the

power exponent α in k−α ranging from 3.1 to 4.0. In the area

of direct cascades, we observed a slightly steeper spectrum

than the KZ-spectrum slope. In the area 32<k< 150, the

spectrum can be approximated by |ak|
2
∼ k−4.2. This devia-

tion from the pure KZ slope k−4 can be explained by the in-

fluence of wave breaking and whitecapping effects (Korotke-

vich, 2012). The spectra are presented in Fig. 8. The steep-

ness in this case reaches the level µmax' 0.130 (see Fig. 9).

The spectral lines in this series of experiments were still nar-

row for k= 50, 100, 150, and 200. In the area of significant

damping k= 250, we observed intensive formation of slave

(bond) harmonics (see Figs. 10–14). We would like to men-

tion that, although for harmonics around k= 250, dissipation

is not formally present (it starts from kd= 256), in reality,

dissipation manifests itself in the inertial interval through

the process of multiple harmonics generation. If we con-

sider a second harmonic generated from a harmonic around

kd= 250, it will be in the region of very strong dissipation

www.nonlin-processes-geophys.net/22/325/2015/ Nonlin. Processes Geophys., 22, 325–335, 2015
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Figure 5. Spectral line of the harmonic k= (0, 150). Both the con-

densate and inverse cascade were suppressed.
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Figure 6. Spectral line of the harmonic k= (0, 200). Both the con-

densate and inverse cascade were suppressed.

and, as a result, energy will be drained from the harmonic for-

mally free from dissipation. In other words, additional dissi-

pation appears in the inertial interval. It has to be noticed that,

for sharper waves, this nonlinear process is more efficient,

which means the drain of energy through multiple harmonics

generation is stronger. This explains the noisy character of

the spectral lines’ plot, which is even more prominent in the

next experiment due to stronger nonlinearity.

It should be noted that, when we say “sharper waves”

above, it does not mean that we violate the weakly nonlinear

approximation under which our model equations were de-

rived. When the wave starts to sharpen, the spectrum widens

and reaches the dissipation scale. Because, in our model dis-

sipation, the scale is relatively close to the pumping (only

approximately one decade away), this dissipation regularizes

the wave by draining the energy from it through the mech-

anism described above and, as a result, making the wave

less sharp. So, even when waves start to sharpen after some

threshold, the spectrum widens enough and the process stops,

preventing violation of the assumptions used for the deriva-

tion of primordial Eq. (2).
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Figure 7. Spectral line of the harmonic k= (0, 250). Both the con-

densate and inverse cascade were suppressed.
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Figure 8. Angle-averaged spectrum with the condensate sup-

pressed. Slopes for the KZ spectrum and Phillips spectrum are

shown for a reference by dashed and dotted lines respectively. Main

figure: logarithmic scale; inset: linear scale.

4.3 Both the condensate and inverse cascade are

present

In the last series of experiments, we completely eliminated

low-frequency dissipation γ
(2)
k = 0. In this case, we observed

the formation of an intensive inverse cascade leading to the

creation of the condensate at k' 5− 4.

The spectrum in the area of the inverse cascade is the

same as in the previous series of experiments, while in the

area of the direct cascade, we observed the Phillips spectrum

〈|ak|
2
〉∼ k−9/2 instead of the weak-turbulent KZ spectrum

〈|ak|
2
〉∼ k−4 (Korotkevich, 2008). The spectra are presented

in Fig. 15. In order to check that the spectrum slope is not

changing any more, long time calculation was performed

on a smaller grid, which showed motion of the conden-

sate position by one wave-number grid step without any no-

table influence on the inverse cascade region (dashed line in

Fig. 15). The average steepness was significantly higher than
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Figure 9. Steepness as a function of absolute value of wave number.

Only the condensate was suppressed.
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Figure 10. Spectral line of the harmonic k= (0, 50). Only the con-

densate was suppressed.

in the previous experiments, reaching its maximum value of

µmax' 0.142 (see Fig. 16). We would like to stress that the

difference from the previous case, which looks quite small in

absolute values (0.130 and 0.142), is really quite strong, be-

cause in this range the dissipation rate depends strongly on

the average steepness (Zakharov et al., 2009); the probabil-

ity of whitecapping grows pretty quickly with average steep-

ness (Banner et al., 2000). It is important to notice that the

steepness of the condensate was quite moderate (µ' 0.06;

it is worth noting that average steepness gets a significant

contribution from small scales, quite far from the spectral

peak, which means that the often used definition of the av-

erage steepness through the product of mean amplitude and

wave number of the spectral peak can deviate significantly

from the geometrical definition through the average slope

of the surface). However, modulation of the short waves by

long waves caused whitecapping that resulted in the Phillips

spectrum (the process described qualitatively in Korotkevich

(2008, 2012)). The physical picture is quite simple: shorter

waves propagating over a strong long wave background (con-

densate) that moves with acceleration tend to increase the

steepness of the front slope, which can result in the onset
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Figure 11. Spectral line of the harmonic k= (0, 100). Only the con-

densate was suppressed.
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Figure 12. Spectral line of the harmonic k= (0, 150). Only the con-

densate was suppressed.

of whitecapping, causing additional dissipation. One could

recall that our governing primordial dynamical Eq. (2) was

derived in the weakly nonlinear approximation, while foam

formation in the case of whitecapping is a strongly nonlin-

ear phenomenon. It could be mentioned that the description

of wave breaking in all details would give us a picture of

how the energy was transferred from large to small scales

and dissipated. At the same time, if we need only to dissipate

the wave energy transferred to small scales during foam for-

mation, one can use the dissipation already available in the

scheme for robustness. Although we shall not be able to de-

scribe the process of dissipation of energy in all details, most

of the energy, which was transferred into high wave num-

bers when one of the slopes of the wave became too steep,

will be dissipated. Here is a simple analogy: let us suppose

we have pile of stones on a cliff and throw them down one

by one; in order to understand how many stones fall down,

all we need to do is to calculate how many of them have

been thrown; we do not need to describe the rotation of every

stone in all details while it is falling down. As a result, we

mimic whitecapping dissipation, staying in the framework of

a weakly nonlinear Hamiltonian expansion with all the ad-

vantages of an accurate description of the nonlinear wave
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Figure 13. Spectral line of the harmonic k= (0, 200). Only the con-

densate was suppressed.
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Figure 14. Spectral line of the harmonic k= (0, 250). Only the con-

densate was suppressed.

interaction, without fully nonlinear simulation of the wave

breaking, which is challenging even in the case of 2-D hy-

drodynamics (Chalikov and Babanin, 2012). Similar stimula-

tion of whitecapping dissipation can be caused by interaction

of short waves with inhomogeneous background currents or

strong long-scale swell in the ocean.

The most interesting and important question we focus

upon is about the shape of spectral lines in the area of the

Phillips spectrum. Samples of spectral lines are presented in

Figs. 17–21. For this experiment, we analyzed the longest

time series that resulted in higher-frequency resolution. Af-

ter obtaining the frequency spectrum, we used moving aver-

aging in order to get rid of noise.

One can see that, in the most interesting area 32<k< 150,

the spectral lines are still narrow, while essentially “contam-

inated” by the slave harmonics. The maxima of the spectral

peaks are shifted to the high-frequency area according to the

theoretically predicted nonlinear frequency shift. In the area

of shorter waves k > 200, the spectrum is a chaotic mixture

of leading and slave harmonics. A detailed picture character-

izing how the dispersion relation changes in the presence of

the condensate can be found in Korotkevich (2013).
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Figure 15. Angle-averaged spectrum with the condensate. Two grid

sizes. Slopes for the KZ spectrum and Phillips spectrum are shown

for a reference by dashed and dotted lines respectively. Main figure:

logarithmic scale; inset: linear scale.
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Figure 16. Steepness as a function of absolute value of wave num-

ber. The condensate was present.

5 Conclusions

We believe that our experiments make possible a “Marriage

of Heaven and Hell” in the spirit of William Blake. Both out-

standing scientists – O. Phillips and K. Hasselmann – were

right. If the local steepness µ is small (µ≤ 0.1), the Has-

selmann kinetic equation is valid without any augmentation

by additional dissipation terms, at least for not too broad a

spectrum, similar to what we have in the experiments. For µ

noticeably higher than 0.1, in the area of very short waves,

the kinetic equation is not applicable in its “pure” form. It is

impossible to separate “free” and “slave” harmonics in this

area. This part of the ocean spectrum cannot be described an-

alytically by the use of perturbative methods. Nevertheless,

the Phillips spectrum in this area is still applicable. The only

theoretical reason for this statement is dimensional consid-

erations supported by experimental data. At the same time,

there is also a “grey area”, which is especially interesting be-
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Figure 17. Spectral line of the harmonic k= (0, 50). The conden-

sate was present.
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Figure 18. Spectral line of the harmonic k= (0, 100). The conden-

sate was present.

cause it generates a significant part of the steepness where

whitecapping has equal footing with weakly nonlinear reso-

nant wave interaction. As a result of the balance of nonlinear

flux and dissipation, the spectrum slope can change (Newell

and Zakharov, 2008), as has been demonstrated in our simu-

lations.

We expect that spectra in this range could be described

by an “augmented” Hasselmann equation, including an addi-

tional term describing dissipation energy due to wave break-

ing. Similar additional “dissipation terms” Sdiss are widely

used in well-developed operational wave forecasting models.

But, they are introduced “out of the blue” and are not sup-

ported either by theoretical considerations or, in many cases,

by experimental observations. Moreover, it is not clear a pri-

ori that one can use the Hasselmann kinetic equation in a sit-

uation where wave-breaking events are frequent enough. We

hope that our experiments showed that this is likely possi-

ble. A necessary condition of the applicability of the Hassel-

mann equation is narrowness of the spectral line (we should

stress that, in this paper, the “dynamical” effects, like “gusty”

pumping, described in a recent work by Annenkov and Shrira

(2009) and confirmed numerically in Annenkov and Shrira
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Figure 19. Spectral line of the harmonic k= (0, 150). The conden-

sate was present.

0.0×100
5.0×10-18
1.0×10-17
1.5×10-17
2.0×10-17
2.5×10-17
3.0×10-17
3.5×10-17
4.0×10-17

 0  5  10  15  20

|
a
(
k
,

ω
)
|
2

ω

Figure 20. Spectral line of the harmonic k= (0, 200). The conden-

sate was present.
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Figure 21. Spectral line of the harmonic k= (0, 250). The conden-

sate was present.

(2011), are not considered). In the present article, we assert

that, in the “grey area” with a frequency range in one half

of the decade, the frequency spectra of harmonics are still

narrow lines. It means that the Hasselmann equation is appli-

cable there in the sense that it is a good approximation for the

description of nonlinear wave interaction. Of course, it must

be augmented by a proper dissipative term. The existing and
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widely used dissipative terms can be improved. One possi-

ble and hopefully plausible variant was recently suggested

by Zakharov et al. (2012), another by Zakharov and Badulin

(2015). The dependence of the dissipation term on the aver-

age steepness was recently measured directly from the nu-

merical experiment; the preliminary results can be found in

Zakharov et al. (2009). In our next paper, we shall analyze

what information about possible shapes of the dissipative

term can be extracted from massive numerical experiments.
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