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Abstract. We formulate and analyze a simple dynamical sys-

tems model for climate–vegetation interaction. The planet

we consider consists of a large ocean and a land surface on

which vegetation can grow. The temperature affects vegeta-

tion growth on land and the amount of sea ice on the ocean.

Conversely, vegetation and sea ice change the albedo of the

planet, which in turn changes its energy balance and hence

the temperature evolution. Our highly idealized, conceptual

model is governed by two nonlinear, coupled ordinary dif-

ferential equations, one for global temperature, the other for

vegetation cover. The model exhibits either bistability be-

tween a vegetated and a desert state or oscillatory behavior.

The oscillations arise through a Hopf bifurcation off the veg-

etated state, when the death rate of vegetation is low enough.

These oscillations are anharmonic and exhibit a sawtooth

shape that is characteristic of relaxation oscillations, as well

as suggestive of the sharp deglaciations of the Quaternary.

Our model’s behavior can be compared, on the one

hand, with the bistability of even simpler, Daisyworld-style

climate–vegetation models. On the other hand, it can be in-

tegrated into the hierarchy of models trying to simulate and

explain oscillatory behavior in the climate system. Rigorous

mathematical results are obtained that link the nature of the

feedbacks with the nature and the stability of the solutions.

The relevance of model results to climate variability on vari-

ous timescales is discussed.

1 Introduction

1.1 Background

Climate has an important effect on vegetation. Plant growth

is affected by temperature, carbon dioxide (CO2) levels and

nutrient availability. The space available for growth matters

as well: ice-covered parts of land are not suitable for it. The

interaction also works the other way around, though: vege-

tation plays an important role in climate regulation. Many

different effects are at play, with the albedo being one of the

most important ones: vegetation is darker than bare ground

or ice and therefore absorbs more solar radiation and warms

the planet.

This vegetation–albedo feedback appears to be important

in semi-arid regions (Otterman, 1974), where it interacts with

the hydrological cycle. J. G. Charney and colleagues (Char-

ney, 1975; Charney et al., 1975) were the first to include in

a model this biogeophysical feedback, as he called it; many

others have followed since (Claussen et al., 1999; Zeng et al.,

1999; Zeng and Neelin, 2000). The vegetation–albedo feed-

back also matters in certain high-latitude regions (Otterman

et al., 1984), where boreal forests mask snow in winter, caus-

ing an effective warming of the surface (Brovkin et al., 2003;

Bonan, 2008).

The uptake of CO2 by plants is another major effect: it

attenuates the greenhouse effect and thus cools the surface.

This is an example of a biogeochemical feedback. In addi-

tion to the obvious effects of albedo change and CO2 uptake,

there are many other mechanisms through which vegetation

influences climate. Examples are the effect of phytoplankton

on cloud formation – called the CLAW hypothesis, after the
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initials of the original authors (Charlson et al., 1987; Ayers

and Cainey, 2007) – evapotranspiration or more exotic feed-

backs, such as the so-called lightning–biota feedback (She-

pon and Gildor, 2008). Meir et al. (2006) review several im-

portant mechanisms by which terrestrial ecosystems affect

climate, while Claussen (2009) provides an introduction to

vegetation–climate interactions on paleoclimate timescales.

Although vegetation plays an essential role in the climate

system, it has only been rather recently included as an active

player in climate models. The hierarchy of climate models

(Schneider and Dickinson, 1974; Ghil and Robertson, 2000;

Ghil, 2001) ranges from simple, conceptual ordinary differ-

ential equation (ODE) models – through intermediate models

of varying complexity – all the way up to full-scale general

circulation models or global climate models (GCMs). Across

this whole range, vegetation can be included to better ex-

plain various climatic phenomena and trends. In some cases,

the predictions of models that couple atmosphere, ocean and

vegetation dynamics – often referred to as Earth system mod-

els (ESMs) – differ radically from models that exclude the

vegetation (Meir et al., 2006). It follows that it is of the

essence to include vegetation in our models to obtain a better

understanding of climate evolution and variability.

The simplest climate models are conceptual models,

which are usually governed by a small number of ODEs.

These models do not claim to be realistic in the sense of mak-

ing precise quantitative predictions, but allow one to study

basic underlying mechanisms. They are also useful for ex-

ploring qualitative changes in the climate system’s behavior,

commonly known in dynamical systems theory as bifurca-

tions (Ghil and Childress, 1987; Dijkstra and Ghil, 2005),

and related more recently to the broader and fuzzier concept

of “tipping points” (Lenton et al., 2008). Bifurcations or tip-

ping points correspond to situations in which a small param-

eter change can have a large effect on the behavior of the

whole system.

Studying conceptual models can also provide guidance

in interpreting results from larger, more detailed models

(Brovkin et al., 1998, 2003; Ghil and Robertson, 2000). Early

applications of dynamical systems theory and of numerical

bifurcation studies to the climate system included H. Stom-

mel’s bistability study of the thermohaline circulation (Stom-

mel, 1961) and E. N. Lorenz’s study of chaos in a simple con-

vection model (Lorenz, 1963). Another such application was

to explain Quaternary glaciation cycles as climatic-oscillator

solutions (Källèn et al., 1979; Le Treut and Ghil, 1983; Saltz-

man, 1983; Ghil and Childress, 1987; Ghil, 1994; Crucifix,

2012).

In the latter idealized climate-oscillator models, vegeta-

tion is not usually included. There are, however, some simple

models that explore the interaction between climate and veg-

etation, and we will briefly review some noteworthy ones in

the next section.

1.2 Simple ODE models for climate–vegetation

feedbacks

A pioneering model dealing with vegetation and climate was

Daisyworld (Watson and Lovelock, 1983). This model illus-

trates how vegetation may act to regulate planetary tempera-

ture through the albedo feedback, for a wide range of param-

eter values. The varying parameter is in this case the incom-

ing solar radiation. The model has been thoroughly studied

and extended; see the review of Wood et al. (2008).

Svirezhev and von Bloh (1996, 1997) introduced an-

other set of simple, spatially zero-dimensional (0-D) mod-

els for vegetation–climate interactions. These highly simpli-

fied models include an ODE for temperature evolution, ab-

sent from Daisyworld, but look at only one type of vegeta-

tion, whereas Daisyworld has two. In their two-ODE model,

Svirezhev and von Bloh (1996) find multiple steady states.

Such bistability seems to occur across a hierarchy of climate–

vegetation models, from the simplest (Dekker et al., 2007;

Janssen et al., 2008; Aleina et al., 2013) to more complex

(Brovkin et al., 1998; Claussen, 1998; Irizarry-Ortiz et al.,

2003; Renssen et al., 2003) ones, although it is, of course,

harder to ascertain in the latter. In models across the hi-

erarchy, vegetation and temperature are often coupled with

precipitation, which provides an additional feedback mecha-

nism.

Beyond the possibility of multiple steady states, it is of in-

terest to examine in the simplest conceptual models the pos-

sibility of internal, self-sustained oscillations. Oscillatory be-

havior has been observed in Daisyworld-like models, for ex-

ample when an explicit temperature equation is added (Nevi-

son et al., 1999; Fernando Salazar and Poveda, 2009), or

when delays are introduced (De Gregorio et al., 1992).

So far, though, simple, 0-D climate–vegetation models

seem not to have included an ocean component. Earth’s

oceans constitute about 70 % of the area of the planet, and

are a very important factor in determining its climate (Stom-

mel, 1961; Saltzman, 1983; Ghil, 1994; Dijkstra and Ghil,

2005). The global ocean is often included in 0-D paleocli-

mate models for glacial cycles (Källèn et al., 1979; Le Treut

and Ghil, 1983; Ghil and Childress, 1987; Gildor and Tziper-

man, 2001; Crucifix, 2012). Our model will include an ocean

and the associated sea ice, and will combine certain features

of Daisyworld-like models and climatic-oscillator models.

The purpose of this paper is to explore the solution space

of such a model and to relate its behavior to other models

and to observations. In the next section, we formulate the

model, and the numerical results are presented in Sect. 3. The

model’s behavior and its relation to more detailed models and

to observations are discussed in Sect. 4.
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Figure 1. Schematic representation of the model planet’s surface,

including a fraction p of land and 1−p of ocean. The fraction of

the ocean that is covered by sea ice depends on the global tempera-

ture T , while the land is covered by a fraction A of vegetation.

2 Model description

The climate system contains several subsystems, all work-

ing together to produce highly nonlinear behavior through

its many feedback mechanisms. Some of the simplest and

most important feedback effects act via the planetary albedo:

darker areas – like the vegetated ones – absorb more so-

lar energy and thus warm the planet, while lighter areas –

such as those covered by snow and ice – tend to cool it. The

ice–albedo feedback was included in energy balance models

(EBMs) of climate long ago (Budyko, 1969; Sellers, 1969),

and a vegetation–albedo feedback regulates Daisyworld’s be-

havior. The latter will constitute the main mechanism in our

present model.

The model’s two governing equations are given below:

CT

dT

dt
= (1−α(T ,A))Q0−Ro(T ), (1a)

dA

dt
= β(T )A(1−A)− γA. (1b)

The variable T denotes global average temperature, while A

denotes the fraction of land that is covered by vegetation.

Temperature T changes in Eq. (1a) as a result of the bal-

ance between incoming and outgoing energy. The parame-

ter Q0 is the incoming solar energy, which is equal here to

342.5 Wm−2. The function α=α(T , A) denotes the depen-

dence of the albedo on T and A, and it is given by

α = (1−p)αo(T )+p
(
αvA+αg(1−A)

)
, (2)

where p is the fraction of the planet that is land, taken to

be 0.3 like on Earth.

The values αo, αv and αg denote the albedo of the ocean,

of the vegetation and of bare ground, respectively. The latter

two are constant, and an essential ingredient of our model

is that αv<αg, i.e., that forests and savannas are darker and

absorb more energy than bare ground.

The albedo of the ocean will be taken as a function of

global temperature T , to account for the possible presence of

sea ice. We will use a ramp function, as in Sellers (1969) and

Ghil (1976). This function is given by the following equa-

tion:
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Figure 2. Fraction of sea ice cover (blue) and ocean albedo (red)

as a function of temperature T . The ocean albedo is a weighted

average of the albedo of open water and of ice, and is therefore

directly dependent on the fraction of sea ice.

αo(T )=


αmax if T ≤ Tα,`,

αmax+
αmin−αmax

Tα,u−Tα,`

(
T − Tα,`

)
if Tα,` < T ≤ Tα,u,

αmin if Tα,u < T.

(3)

Here αmax= 0.85 for the ice-covered ocean, αmin= 0.25 for

the ice-free ocean, Tα,`= 263 K and Tα,u= 300 K. The value

of Tα,u is rather high – almost 27 ◦C – which means that a

tiny bit of sea ice will be present even for very high global

temperature. Figure 1 shows a schematic representation of

our planet’s surface features and a plot of the ocean albedo

versus temperature is shown in Fig. 2.

The function Ro(T ) denotes the energy outgoing from

the planet. Several EBMs have used a modified version

of the quartic Stefan–Boltzmann law (Sellers, 1969; Ghil,

1976), while other such models have used a linearization

thereof (Budyko, 1969). We will also use here a linear de-

pendence of outgoing radiation on temperature, but radia-

tion increases in it more slowly with temperature than in the

Stefan–Boltzmann case. This slower increase takes into ac-

count the fact that increasing temperature entrains increasing

CO2 levels and thus an increased greenhouse effect, which

tends to decrease the outgoing radiation.

The form of Ro(T ) we choose is

Ro(T )= B0+B1

(
T − Topt

)
, (4)

where B0 and B1 are constants, while Topt is the optimal

growth temperature for the vegetation. There is a huge uncer-

tainty in the values of these parameters, especially in B1, the

linearized effect of temperature on radiative forcing (IPCC,

2013), since it all depends on which effects are taken into

account and which are not (Zaliapin and Ghil, 2010).

We will not attempt to estimate the most realistic values

of these or other model parameters – since that is not the

role of such simple, conceptual models (Ghil, 2001) – but for

definiteness we will use B0= 200 and B1= 2.5. Their exact

value does not play an important role in affecting the model’s

behavior; still, we note that – over the range of temperatures
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Table 1. Definition and values of the model parameters.

Symbol Meaning Value

CT Heat capacity 500 W yr K−1 m−2

Q0 Incoming solar energy 342.5 W m−2

p Fraction of land 0.3

αv Albedo of vegetation 0.1

αg Albedo of ground 0.4

αmax Albedo of ice-covered ocean 0.85

αmin Albedo of ice-free ocean 0.25

Tα,` Temperature below which ocean is ice-covered 263 K

Tα,u Temperature above which ocean is ice-free 300 K

B0 Constant in outgoing radiation 200 W m−2

B1 Constant in outgoing radiation 2.5 W K−1 m−2

Topt Optimal growth temperature 283 K

k Parameter for width of growth curve 0.004 yr−1 K−2

γ Death rate of vegetation 0.1 yr−1

we are interested in – they correspond rather well to a lin-

earization of an outgoing energy term of the form gσT 4 with

g= 0.55, where g is a constant denoting the grayness of the

atmosphere (see Fig. 3). Such a parametrization of outgo-

ing energy – the Stefan–Boltzmann law with a multiplicative

factor – is often used, but usually g is allowed to depend

on another variable, such as temperature (Sellers, 1969) or

CO2 level (Svirezhev and von Bloh, 1997), rather than being

merely a constant, as in Fig. 3 here.

Vegetation cover A in Eq. (1b) grows logistically, with a

temperature-dependent growth rate β(T ). The shape of the

function β follows Daisyworld and related models, to wit,

β(T )=max
{

0,1− k
(
T − Topt

)2}
. (5)

This means that the growth rate is zero, except for a certain

interval, in which the dependence is parabolic with a maxi-

mum at Topt, which is 283 K in our model.

The parameter γ is the mean death rate of the global vege-

tation A, and its value is, at first, set to 0.1 yr−1. Table 1 lists

the definition of the model parameters and their nominal val-

ues. In Sect. 3.2, γ will serve as a control parameter in our

exploration of model behavior.

3 Analytical and numerical results

3.1 Multiple equilibria and their stability

We start, as usual, by looking at the fixed points of the sys-

tem (Eq. 1), and will use, again as usual, interchangeably the

terms steady states, stationary solutions and equilibria. One

obvious fixed point is given byA=A0= 0, with temperature

T0 given by the solution of Q0(1−α(T0, 0))=Ro(T0). For

our parameter values, a solution T0 only exists when T <Tα,`
and it equals T0' 243 K.
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Figure 3. Outgoing energy as a function of temperature for different

parametrizations.

This result implies that a planet without vegetation will

necessarily drop into a very cold “snowball-Earth” state.

Note that this result differs from that of EBMs with no veg-

etation, in which two stable fixed points co-exist for suf-

ficiently high Q0 (North et al., 1981; Ghil and Childress,

1987).

A quick check shows that, for p= 0, i.e., for an “aqua-

planet”, three fixed points are found for A= 0, as in classi-

cal EBMs: (i) a snowball Earth – called a “deep freeze” in

the 1980s, before geological evidence for it was found; (ii) a

high global temperature, comparable to Earth’s present cli-

mate; and (iii) an intermediate one, between the former two,

and considerably closer to the present climate than to the sub-

freezing one. Hence, it is the inclusion of the relatively high

ground albedo for p> 0 that pushes our climate–vegetation

model to a low temperature, if no vegetation is present.
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Figure 4. The (T , A) phase plane of the model, with the two null

isoclines given by Eq. (6) (red straight line) and Eq. (7) (blue curve),

respectively. The fixed points for the vegetated states of our planet

are the intersections of these two curves. The non-vegetated fixed

point for A 6= 0 does not appear in this plot.

In the presence of vegetation, A 6= 0, a fixed point (T+,

A+) must satisfy

A+ = 1−
γ

β (T+)
, (6)

according to the vegetation equation (Eq. 1b). From the tem-

perature equation (Eq. 1a), we see furthermore that, at a fixed

point, one also has

A+ =
1

αv−αg

[
1

p

(
1−

Ro (T+)

Q0

− (1−p)αo (T+)

)
−αg

]
. (7)

The two curves in the phase plane (T , A) of the model that

are given by Eqs. (6) and (7) are called the null isoclines – or

nullclines, for short – of the system, and they are plotted in

Fig. 4. They intersect at two points, aside from the previously

discussed bare-land solution; hence, we have two additional

equilibria for a vegetated planet.

To study the stability of these fixed points, we consider the

Jacobian matrix J= J(T , A) for the system Eq. (1),

J=

(
a −1

CT
Q0

∂α
∂A

∂β
∂T
A(1−A) β(T )(1− 2A)− γ

)
, (8)

where

a =
−1

CT

[
Q0

∂α

∂T
+
∂Ro

∂T

]
. (9)

For the no-vegetation fixed point A= 0, the eigenvalues of

J(T , 0) are a and β(T )− γ . These eigenvalues are both neg-

ative, since T is so low at this fixed point that ∂α/∂T = 0 and

β(T )= 0. Hence, this non-vegetated state is always linearly

stable.
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Figure 5. The model’s phase plane with the two nullclines (dashed

lines) and the three fixed points (open and filled dots); the two filled

dots are stable, while the open one is unstable. The stable manifold

of the saddle (open dot) is shown in black and the unstable one

in magenta. The coordinates of the fixed points are (242.04, 0) for

the unvegetated state, and (280.8, 0.898) and (297.9, 0.129) for the

unstable and stable vegetated states, respectively.

Let us now look at the other two fixed points, shown in

Fig. 4, where A> 0. Note that since A= 1− γ /β(T ), the

temperature must be in the range where β(T )> 0. With our

choice of parameters, this range also lies in the interesting

range between Tα,` and Tα,u, within which we have sea ice

feedback; it corresponds to the decreasing part of the temper-

ature nullcline, given by Eq. (7), and shown as the dashed red

line in Fig. 5.

The leftmost of these two fixed points, where A> 0, is a

saddle. This can be seen from numerical computations, but

we can also deduce it analytically. In the following, we will

use β ′ instead of ∂β/∂T , since the function β depends on

temperature alone, and no confusion can arise. We have the

following proposition.

Proposition 1. A climate–vegetation fixed point (T+, A+),

where A+> 0, is a saddle, and hence unstable, if the vege-

tation growth rate β(T ) is an increasing function of global

temperature T , β ′(T+)> 0.

The proof is given in Appendix A, and it does not de-

pend on any particular parameter values, only on their rel-

ative signs; nor is the exact parametrization of the growth

rate β used.

The stable and unstable manifolds of the saddle were also

computed numerically, and they are plotted in Fig. 5. The

stable manifold acts as a separatrix of the phase-plane flow,

and it is almost vertical. This means that initial states with

lower temperatures than that of the saddle will lead to the

stable steady state (T0, A0= 0) that is characterized by freez-

ing temperatures and no vegetation, while initial states with

higher temperatures will lead to the steady state with at least

some vegetation present.

www.nonlin-processes-geophys.net/22/275/2015/ Nonlin. Processes Geophys., 22, 275–288, 2015
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For the stability of the latter, rightmost fixed point, Propo-

sition 1 above says nothing, since β ′(T )< 0 there. Numeri-

cal computation shows that the eigenvalues of the Jacobian

J(T , A) at this point are complex conjugate and equal to

λ±=−0.006± 0.028 i. Hence, the fixed point is a focus and

the real part λr= tr(J)/2, where tr(J) is the trace of the Jaco-

bian matrix, is negative; thus the focus is stable.

We can compute the trace of J analytically:

tr(J)= a+β(T )(1−2A)−γ = a−β(T )+γ = a+x. (10)

The term a on the right-hand side is larger than 0, but the

term x= γ −β(T ) compensates and, for the standard param-

eter values in Table 1, tr(J) is negative, implying the stability

of the focus. One suspects, however, that, as some of these

parameter values change, the focus may lose its stability.

We investigate next this loss of stability and the more com-

plex model behavior to which it leads.

3.2 Hopf bifurcation and oscillatory behavior

3.2.1 Analytical results

We study now in greater detail the stability of the fixed point

with non-zero vegetation (T+, A+). The result is stated in

the following proposition and the proof thereof is given in

Appendix A, after the one for Proposition 1.

Proposition 2. A model fixed point (T+, A+) that lies in

the region with active sea ice feedback (Tα,`<T+<Tα,u) is

a focus if and only if the following inequality holds:

(1− y)2 < 4η(y)y, (11)

where y= (γ −β(T+))/a, η(y) is (up to a sign change) the

ratio of the derivatives of the two nullclines and a is given by

Eq. (9).

Given the inequality (Eq. 11), the focus is stable if y <−1.

The proof in the Appendix relies simply on rewriting the

classic conditions on the Jacobian.

We know that y < 0, since x < 0 and a is positive, and also

that η(y) is always negative. Since for all negative y we have

(1− y)2 > 4|y|,

a necessary condition to have a focus is that |η|> 1, i.e., that

the ratio of the derivatives of the nullclines should be large

enough in absolute value.

The proof of Proposition 1 in the Appendix implies, how-

ever, that this condition is already necessary for a fixed point

to not be a saddle. Since the temperature nullcline is a piece-

wise linear curve, its derivative is a constant and a focus can

only occur when the vegetation nullcline is steep enough.

This condition, in turn, corresponds to the vegetation cover

A+ being small enough, as can be seen in the phase plane

plotted in Fig. 5. It follows that a Hopf bifurcation and, there-

fore, oscillations, can only occur around a model state with
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Figure 6. Bifurcation diagram, with the vegetation A plotted ver-

sus the death rate γ . The branches were computed using the

XPPAUT software package (Ermentrout, 2002).

low vegetation. Since we did not use the actual value of any

of the parameters, this result is quite general.

As shown in the caption of Fig. 5, the temperature value

for the vegetated fixed point is T+= 297.9. The correspond-

ing value of y is−1.96. The ratio η(y) of the nullcline slopes

equals −9.6; hence |η(y)|> 1, and thus the point could be

a focus. Substituting in Eq. (11) yields 8.75< 75.17, which

shows that the inequality is satisfied and that this point is a

focus. Since y=−1.96<−1, the focus is stable.

3.2.2 Numerical results

As announced at the end of Sect. 2, we now vary the death

rate γ of the vegetation and follow the change in model solu-

tions. For decreasing γ , i.e., for longer-lived vegetation, the

focus loses its stability and the associated Hopf bifurcation

gives rise to a limit cycle, as shown in the bifurcation diagram

of Fig. 6. This bifurcation occurs for γ = 0.02572, i.e., when

the overturning time 1/γ of the vegetation is about 40 years,

which corresponds definitely to trees rather than grasses.

We can also see in Fig. 6 that, when γ is higher than 0.41,

non-zero vegetation can no longer be a steady-state solution.

At γ ' 0.41, a saddle-node bifurcation gives rise to a sta-

ble (blue curve) and an unstable (red curve) branch of steady

states, in addition to the stable branch A≡ 0 studied in the

previous subsection and not shown in the figure.

We mentioned in Sect. 3.1 above that the parameter change

needs to make tr(J) positive in order to change the stabil-

ity. This also works if, instead of decreasing γ , we decrease

the thermal heat capacity CT. It is the product γCT that de-

termines the behavior of the system, not the two parameters

separately.

This product is a ratio of timescales, with CT a typical

timescale for temperature adjustments, while 1/γ is a typ-

ical timescale for vegetation. The oscillations occur, there-

fore, when the ratio of these two timescales satisfies a cer-

tain inequality. Such a condition was found to hold for other

Hopf bifurcations, where the timescales need to match. For
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Figure 7. Typical oscillatory model solution, shown here for γ = 0.02; i.e., γ /CT= 1/10. (a) Temperature and vegetation cover; and (b) frac-

tion of the ocean that is covered by sea ice. The period of these regular oscillations is a little under 1000 years.

instance, in the temperature–ice sheet oscillator of Källèn

et al. (1979), the characteristic time of ice sheet evolution

CL should be large enough in comparison with the timescale

CT associated with the thermal inertia of the oceans; see Ghil

and Tavantzis (1983).

Nevison et al. (1999) also obtained certain results that are

somewhat similar to ours. Their paper explores a Daisyworld

with an equation for temperature evolution. The system ex-

hibits self-sustained oscillations for a certain range of CT and

γ , just like in our model. The albedo feedback in this model

is due to two types of daisies, black (absorbing) and white

(reflecting) ones. The bimodality of the albedos in both mod-

els leads us to suspect that the role of sea ice in our model

corresponds roughly to that of the white daisies in the model

by Nevison and colleagues.

This analogy should not be pushed too far, however. White

daisy growth is favored by warmer temperatures, whereas sea

ice appears at low temperatures. A comparison between our

Fig. 7 and Fig. 2 in Nevison et al. (1999) shows that the be-

havior of black daisies and temperature is analogous to our

vegetation and temperature, while increases in sea ice and

white daisies have a different phase. The former occurs with

decreasing temperature, while the latter happens as tempera-

ture increases.

Another interesting difference between the two models lies

in the value of γ for which oscillations are obtained. We have

1/γ ' 40 yr, while Nevison and colleagues obtain the oscil-

lations when 1/γ is of the order of a few months, with a

similar value of CT. The difference probably resides in the

nature of the feedback: in our model, the ocean and sea ice

play a role, with both operating on seasonal and interannual

timescales. In the Nevison et al. (1999) model, it is two kinds

of daisies on an all-land planet that interact, both with much

shorter timescales.

Oscillatory behavior is also observed in the Daisyworld

variant studied by De Gregorio et al. (1992). In their paper,

an explicit delay is introduced into the Daisyworld system.

When the delay is long enough, oscillations are observed.

This again shows the importance of timescales in these oscil-

lations. The mechanism by which the oscillations arise in the

delayed system of De Gregorio and colleagues is also shown

to be a Hopf bifurcation, like in delayed, spatially dependent

EBMs (Bhattacharya et al., 1982; Roques et al., 2014) and

in certain simple and intermediate models of the El Niño–

Southern Oscillation (ENSO) (Jin et al., 1994; Tziperman

et al., 1994; Ghil et al., 2008, and references therein).

This again shows the importance of timescales: only when

the effect of temperature on the growth rate of the vegetation

is substantially delayed does the system exhibit internal os-

cillations. The discussion on timescales in Daisyworld is the

subject of a recent paper by Weaver and Dyke (2012), where

the persistency of regulatory behavior under a separation of

timescales is examined.

Figure 7 (upper panel) shows plots of temperature (red

curve) and vegetation cover (blue curve) versus time. The

oscillations have an amplitude of a few degrees for the tem-

perature, but are very large for the vegetation, going from

almost no vegetation to 70 % of the land being covered by

plants. In addition, the vegetation plot shows a sawtooth-like

shape, with the vegetation cover almost vanishing for long

times, after which it shoots back up.

Such sawtooth-like behavior characterizes the ice volume

evolution during Quaternary glaciations; see, for instance,

Ghil and Childress (1987, Ch. 11, and references therein).
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This behavior has been modeled using relaxation oscilla-

tions; cf. Le Treut and Ghil (1983), Ghil (1994) and Crucifix

(2012), among others. In these studies, the sawtooth shape is

due to a quick melting and slow build-up of the ice sheets,

whereas in Gildor and Tziperman (2001), the sea ice plays a

key role. In the intermediate-complexity model of Ganopol-

ski and Calov (2011), like in the early conceptual model of

Imbrie and Imbrie (1980), it is the strongly nonlinear re-

sponse of the climate–cryosphere system to orbital forcing.

In the present model, it is the surge in vegetation growth ac-

companying a temperature rise that provides the characteris-

tically asymmetric nature of the oscillation.

Given the importance of sea ice feedback in our model,

sea ice extent is plotted in Fig. 7b. In the temperature inter-

val in which the sea ice feedback is active, the sea ice extent

depends linearly on T , so the shape of the curve in this panel

is similar to that of temperature in the upper panel, with the

directions of waxing and waning reversed. There is a slow ex-

pansion of sea ice and rapid melting, which resembles the be-

havior of land ice volume during glacial–interglacial cycles.

This highly nonlinear oscillation in our model indicates that

it might be of interest to include vegetation in “ice age oscil-

lators”, possibly combining it with a simple carbon cycle. As

far as we know, this has not been done for ODE models. Cer-

tain results of more detailed models, however, do show that

vegetation plays an important role in glacial cycles (Meissner

et al., 2003; Horton et al., 2010).

4 Conclusions

4.1 Summary

We described a simple dynamical systems model for

climate–vegetation interaction. The model planet has a large

ocean, which can be covered by sea ice, and a land area,

which can be covered by vegetation. The system variables

are temperature and vegetation cover, and the coupling be-

tween those is given by the growth rate of the latter and by

the albedo, both of which are temperature-dependent.

The model is similar to Daisyworld and related models, the

main difference being the inclusion of an ocean. Our model

is also related to EBMs and, in this respect, the novelty lies

in the inclusion of vegetation as a main variable.

The model exhibits two stable states, one with and one

without vegetation. The vegetated state can lose its stability

through a Hopf bifurcation and give rise to a limit cycle. This

happens when the typical timescale for vegetation overturn

becomes high enough. The influence of the model’s sea ice

in reinforcing the albedo feedback is essential to the presence

of oscillatory behavior. The oscillations observed are anhar-

monic and have a sawtooth shape, reminiscent of deglacia-

tions during the Quaternary. We have obtained analytical re-

sults on the role of the feedbacks in determining the system’s

behavior and compared the resulting oscillations with other

models.

Although some parameter values in our highly idealized

model are not entirely realistic, the results add to the evi-

dence that vegetation, in combination with other feedback

effects, can play an important role in affecting climate. The

model studied herein is also interesting because it is one of

the simplest ODE models for climate–vegetation interactions

that exhibits oscillatory behavior. This intrinsic variability is

a basic manifestation of how vegetation affects climate, and

constitutes an example of how complex behavior arises in

the Earth system even at the lowermost levels of the mod-

eling hierarchy. Once demonstrated and understood at such

a level, one can ask next whether similar behavior does per-

sist in more detailed models, and whether it does reflect the

actual behavior of the natural climate–vegetation system.

4.2 Discussion of the results

While the sea ice albedo feedback plays a crucial role in

our model’s oscillatory behavior, the amplitude of the os-

cillations in sea ice extent is quite small, from 0 to a mere

6 %. Gildor and Tziperman (2001) first proposed sea ice as

a determining factor in the inception of glacial cycles, but

our model’s oscillations have a much shorter period than

the dominant 100 000 year cycle of the latter. Note that

our climate–vegetation model differs from that of Gildor

and Tziperman (2001) by the absence of the much slower

and more massive continental ice sheets, and it differs from

the model of Svirezhev and von Bloh (1996) by including

the ocean and the sea ice, as well as by the less crucial

parametrization of the outgoing radiation. The latter authors

actually prove the absence of limit cycles in their climate–

vegetation model by using the Bendixson–Dulac criterion

(e.g., Andronov et al., 1966). This proof reinforces our ar-

gument that sea ice plays an import role in intrinsic climate

variability on long timescales.

Because of Proposition 1 and the shape of the growth

curve, it is essential that the fixed point for which the Hopf

bifurcation occurs have a temperature higher than Topt, since

β ′(T ) needs to be negative, and lower than Tα,u, so that the

sea ice feedback be on. The former condition implies that the

optimal growth temperature for plants needs to be relatively

low, while the latter condition requires that sea ice be present

in polar regions for relatively high global temperatures.

Such distinctions between local and global variables are

hard to make in highly idealized, ODE models, and it is clear

that there is a need to pursue this type of analysis in more

detailed, spatially dependent models, either with several cli-

mate zones or with continuous dependence on latitude. Such

an extension would allow the model, for example, to have

vegetated taiga and tundra interact with sea ice at higher lat-

itudes and desert vegetation interact with atmospheric and

oceanic temperatures at lower latitudes.
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Spatially dependent versions of Daisyworld have al-

ready been studied and yielded interesting results. Adams

et al. (2003) observed pattern formation in a spatially one-

dimensional Daisyworld. In their model, vegetation in dif-

ferent latitude belts interacts with global temperature. Pat-

terns are also seen by Biton and Gildor (2012), whose one-

dimensional Daisyworld is forced by seasonal variations in

solar radiation. Both of these studies suggest that pursuing

our model analysis in higher dimension, while still including

ocean and sea ice, would be of interest.

Earth system models of intermediate complexity provide

some evidence that vegetation plays a role in Quaternary cli-

mate variations. In particular, the albedo changes that ac-

company shifts in vegetation act to amplify orbital forcing

(Claussen, 2009). In addition, more detailed models, such as

those by Zeng et al. (1999) and Zeng and Neelin (2000) con-

clude that vegetation in the Sahel region interacts strongly

with global temperatures on shorter timescales.

The concept of a hierarchy of models – already fairly

well accepted in climate modeling (Schneider and Dickin-

son, 1974; Ghil and Robertson, 2000; Ghil, 2001) – suggests

precisely this kind of further exploration of more detailed

models. The present paper clearly shows that intrinsic vari-

ability is possible in a climate–vegetation system, at least in

its simplest possible form – either as bistability or as self-

sustained periodic oscillations – and that the combined effect

of vegetation–albedo and ice–albedo feedbacks can give rise

to an oscillation-producing mechanism.

The conditions β ′(T )< 0 and ∂α/∂T < 0 on these two

feedbacks are necessary in our simple model for the veg-

etated fixed point to become unstable and lead to intrinsic

variability. We note that limit cycles are also observed when

changing for example the parametrization of outgoing radia-

tion into a modified Stefan–Boltzmann law, or if we change

the parameters Tα,u and Topt. The important thing is that the

conditions above on the derivatives be satisfied.

In our model, the feedback that produces oscillations is

negative: increasing temperature lowers vegetation cover,

which in turn lowers energy absorption and decreases tem-

perature. Due to the large number of interacting processes

in nature, the effective sign of the feedback is not known di-

rectly from observations, and it might be different in different

areas (Claussen, 2009; Meir et al., 2006). One can think of

different models, too, in which another component or physi-

cal process than sea ice and the associated feedback provide

the requisite oscillatory mechanism.

One such process is the hydrological cycle. Aleina et al.

(2013) and Brovkin et al. (1998), for instance, have included

it already in conceptual climate–vegetation models but ob-

served no oscillations. A study by Fernando Salazar and

Poveda (2009) did observe oscillations in a model where

Daisyworld is extended with clouds and a basic hydrolog-

ical cycle. The authors concluded that interaction between

clouds and vegetation can improve the circumstances for life

on the planet. Clouds are known to play an important role in

changing the radiation balance of the planet, but their exact

influence is poorly known (IPCC, 2013).

In addition to the influence of vegetation on the hydrolog-

ical cycle, there is a whole range of other feedback effects

between vegetation and several components of the climate

system. Of particular importance here is the biogeochemical

feedback, as opposed to the biogeophysical effects, such as

albedo change, that we have explored. Biogeochemical ef-

fects include the influence of vegetation on the carbon cycle,

and therefore on the greenhouse effect and the radiation bal-

ance of the Earth.

A more detailed model than the one studied here could

include a simplified version of these effects. Lovelock and

Kump (1994), for instance, have examined the regulatory ef-

fect of vegetation, both on land and in the ocean, under differ-

ent conditions. They conclude that vegetation is involved in

regulation for low temperatures, but that the regulatory sys-

tem collapses at high temperatures.

Another interesting model extension that comes to mind

is the inclusion of oceanic vegetation, i.e., phytoplankton.

Plankton interacts with climate in different ways, through its

possible effect on cloud formation (Ayers and Cainey, 2007),

but also through its albedo.

4.3 Broader context

The results of this paper have to be viewed in the broader

perspective of the hierarchy of climate models already men-

tioned repeatedly in its preceding sections (Schneider and

Dickinson, 1974; Ghil, 1994, 2001, 2015; Dijkstra and Ghil,

2005; Ghil and Robertson, 2000). Recall that this hierarchy

ranges from simple, conceptual ODE models (e.g., Stommel,

1961; Lorenz, 1963; Källèn et al., 1979), like the one formu-

lated and analyzed herein – through intermediate models of

varying complexity (e.g., Claussen et al., 2002; Ganopolski

and Calov, 2011) – all the way up to full-scale GCMs (e.g.,

IPCC, 2013, and references therein).

Within this hierarchy, the role of the simple models, some-

times referred to as “toy” models, is to provide insight and

help understand the behavior of the more complex models,

as well as of the climate system itself. The role of the inter-

mediate models is to refine these insights and bridge the gap

between the toy models and the GCMs (Ghil, 2001; Claussen

et al., 2002): on the one hand, they are still simple enough

to allow a fairly thorough analysis of their behavior; on the

other, they may be detailed enough for a direct comparison

with the GCMs and with increasingly more plentiful and ac-

curate observational data sets.

Finally, GCMs allow an extensive comparison with the

observations and can thus help invalidate (Popper, 1959)

the theories suggested by toy models, whether “validated”

(i.e., not refuted) by intermediate ones or contradicted by the

latter. Still, when GCM results are at variance with those of

simpler models, it is not always the former that are correct,

and it is a careful analysis of the observations that ultimately
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decides which results are closer to the elusive truth; see the

discussion in Dijkstra (2007) and Ghil (2015).

The results of our toy model suggest that vegetation might

play a larger role in climatic variability – whether in apparent

jumps between two or more types of near-stationary states or

in oscillatory behavior – than heretofore suspected. In par-

ticular, it might contribute to more-or-less regular, but not

necessarily simply periodic variability.

It is clear, for instance, that the clouds’ contribution to

planetary albedo is larger than that of vegetation (IPCC,

2013). It is also clear that our model’s change in land albedo

between its bare and vegetated state is unrealistically large;

cf. Crucifix and Hewitt (2005). But, the role of clouds has

been explored over the last few decades across the entire hi-

erarchy of climate models. While much remains to be done

to gain a complete understanding of cloud–radiation interac-

tions, greater attention to the role of vegetation in the evo-

lution of planetary albedo seems to be well worth the effort.

In particular, since the timescale of changes in vegetation is

considerable slower than that for changes in cloud cover, the

former might play a greater role in low-frequency climate

oscillations.

Recall also that, in the early days of energy balance mod-

els (EBMs; see Ghil, 2001, 2015, and references therein),

even larger and more unrealistic albedo differences between

low- and high-temperature surfaces were used in simple, al-

beit infinite-dimensional models. Still, the EBMs’ suggestion

of multiple equilibria being possible in the climate system on

long timescales has led to a rich literature on bifurcations –

more recently and excitingly called “tipping points” (Lenton

et al., 2008) – and their potential role in both past and future

climate evolution.

While some Earth models of intermediate complexity do

indeed show multiple equilibria, these appear to be mostly

of local relevance, for instance in the Sahel. Brovkin et al.

(2003), though, found no support for the co-existence of mul-

tiple equilibria at northern high latitudes. Moreover, when

global oscillations do appear in such models, they tend to be

attributed to cyclicity in the ocean circulation.

Our paper is only trying to make a case for the possibil-

ity of vegetation playing a more important role than con-

templated heretofore and does not claim in the least to have

definitively proven that this is so. A similar argument about

local versus global effects has been made with respect to

the oceans’ thermohaline circulation. Recall that the Stom-

mel (1961) paper – much quoted recently in the context of

multiple equilibria and symmetry breaking in the meridional

overturning of the Atlantic or even global ocean – was orig-

inally written to explain seasonal changes in the overturn-

ing of “large semi-enclosed seas (e.g. Mediterranean and Red

Seas)”; see, for instance, Dijkstra and Ghil (2005).

There is no better way of concluding this broader assess-

ment of our toy model’s results than by citing Karl Popper:

“Science may be described as the art of systematic oversim-

plification” (Popper, 1982). It might be well to remember this

statement, given an increasing tendency in the climate sci-

ences to rely more and more on GCMs, to the detriment of

simpler models in the hierarchy.
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Appendix A: Proof of Propositions 1 and 2

In this appendix, we prove the propositions from the main

text. Recall the definition

a =−C−1
T (Q0∂α/∂T + ∂Ro/∂T ), (A1)

and let b=−C−1
T Q0∂α/∂A. From now on, we focus on the

temperature interval where β(T ) is positive and, therefore,

where the sea ice feedback is active. For these values of T ,

both a and b are positive constants, because of the linear de-

pendence of the albedo on T and A and of the outgoing en-

ergy Ro on T .

For a fixed point (T+, A+), the Jacobian in Eq. (8) can be

rewritten as

J=

(
a b

−
β ′(T )

β2(T )
γ x x

)
, (A2)

where x= γ −β(T ). The determinant of the Jacobian is then

det(J)= ax+ b
β ′(T )

β2(T )
γ x = x

(
a+ b

β ′(T )

β2(T )
γ

)
.

Since the fixed point (T+, A+) lies on the A-nullcline, we

know that A+= 1− γ /β(T+). Because 0<A< 1, we de-

duce that x < 0, and we have

det(J) < 0⇔−
a

b
<
β ′(T )γ

β2(T )
. (A3)

This proves Proposition 1, since, when β ′(T )> 0, the

above inequality is always satisfied. Therefore, det(J)< 0,

which implies that the fixed point is a saddle and thus un-

stable.

We will now use the same notation to prove Proposition 2,

which we repeat here for the reader’s convenience.

Proposition 2. A model fixed point (T+, A+) that lies in

the region with active sea ice feedback (Tα,`<T+<Tα,u) is

a focus if and only if the following inequality holds:

(1− y)2 < 4η(y)y, (A4)

where y= (γ −β(T+))/a, η(y) is (up to a sign change) the

ratio of the derivatives of the two nullclines and a is given by

Eq. (A1).

Given the inequality (Eq. A4), The focus is stable if

y <−1.

Proof. In order to have a focus, the Jacobian matrix J has to

have eigenvalues with a non-zero imaginary part. This trans-

lates into the condition

tr(J)2− 4det(J) < 0. (A5)

We substitute the values into J above, while using our new

constants a and b and the variable x, and get the inequalities

(a+ x)2− 4

(
ax+ b

β ′

β2
γ x

)
< 0

⇔ (a− x)2 < 4
β ′

β2
γ bx ⇔ (1− y)2 < 4η(y)y, (A6)

where y= x/a and η(y)=β ′bγ /(β2a). To show that the

function η actually is, up to a change of sign, the ratio of

the slopes of the nullclines, is a matter of computation: a

quick calculation shows that the slope of the T -isocline is

equal to −a/b, cf. Eq. (7), and that of the A-isocline is

γ β ′(T )/β2(T ), cf. Eq. (6).

The statement about the stability of the focus follows from

the fact that a sufficient condition for the focus to be stable is

that tr(J)< 0. This translates into a+ x < 0, or y <−1.
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