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Abstract. Weakly nonlinear internal gravity waves are

treated in a two-layer fluid with a set of nonlinear

Schrodinger equations. The layers have a sharp interface with

a jump in buoyancy frequency approximately modeling the

tropopause. The waves are periodic in the horizontal but

modulated in the vertical and Boussinesq flow is assumed.

The equation governing the incident wave packet is directly

coupled to the equation for the reflected packet, while the

equation governing transmitted waves is only coupled at the

interface. Solutions are obtained numerically. The results in-

dicate that the waves create a mean flow that is strong near

and underneath the interface, and discontinuous at the inter-

face. Furthermore, the mean flow has an oscillatory compo-

nent that can contaminate the wave envelope and has a ver-

tical wavelength that decreases as the wave packet interacts

with the interface.

1 Introduction

Earth’s tropopause often has a vertical structure with a very

sudden change in the lapse rate with increasing altitude, and a

corresponding sudden increase in the buoyancy frequencyN .

This sudden increase in N can restrict upwardly propagating

internal waves, as has been known for some time (Scorer,

1949). Observations of flow in the vicinity of the tropopause

have also shown unusual dynamic behavior including high

turbulence levels (Partl, 1962; Worthington, 1998; Wolff and

Sharman, 2008; McHugh et al., 2008b) and large wave am-

plitudes (McHugh et al., 2008a; Smith et al., 2008). Turbu-

lence and waves at these altitudes are important aspects of

weather and climate, and serious hazards to aircraft.

McHugh (2008, 2009) considered horizontally periodic

internal waves interacting with an idealized model of the

tropopause. The waves in McHugh (2009) were uniform

while the waves in McHugh (2008) were confined to a ver-

tical packet and treated with numerical simulations. The re-

sults indicate that while nonlinear effects are stronger near

the interface even with uniform waves, a modulated ampli-

tude results in a localized jet-like mean flow near the inter-

face that can be strong enough to form a critical layer, with

important consequences for later waves.

Recently Grimshaw and McHugh (2013) treated weakly

nonlinear two-layer horizontally periodic waves for both un-

steady and steady flow. For unsteady flow, they show expres-

sions for the wave-induced mean flow for large time. They

then use these expressions to treat the steady problem. They

did not determine the evolution of the wave packet while it

transits the interface, which is treated here.

A related configuration is a layer with constant N (no in-

terface), treated theoretically by Grimshaw (1975), Shrira

(1981), Voronovich (1982), Sutherland (2006) and Tabaei

and Akylas (2007). Grimshaw (1975) considered waves with

a background shear flow using the wave action equation.

Shrira (1981) treated weakly nonlinear waves in three dimen-

sions assuming the modulation is the same in all directions.

Voronovich (1982) also treats weakly nonlinear waves but re-

stricts attention to the special case with the modulation along

a fixed direction. The weakly nonlinear waves in Sutherland

(2006) are horizontally periodic with the modulation only in

the vertical. Tabaei and Akylas (2007) treat weakly nonlinear

and finite amplitude theory with several different configura-

tions for the modulation. Associated numerical simulations

with constantN were performed by Sutherland (2001) in two

dimensions.
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260 J. P. McHugh: Incidence and reflection of internal waves

Packets of internal waves that propagate at a steep angle to

the horizontal will experience a modulational instability, as

discussed by Sutherland (2001). Wave packets experiencing

this instability will focus wave energy. Waves propagating at

a shallow angle will defocus. For the waves treated here, this

modulational instability may be important, depending on the

wavenumbers and on the distance from the wave source to

the interface. However for intermediate propagation angles,

the modulational instability is too slow, and the waves in-

teract with the interface before experiencing any significant

effects.

The stability of plane monochromatic internal waves prop-

agating at an angle to the horizontal was treated by Shrira

(1981) and Tabaei and Akylas (2007), who showed that non-

linearity can lead to instability. Indeed Tabaei and Akylas

(2007) show that the incident waves treated here are unstable

for shallow angles. However the growth rate of the instability

is second order in the nonlinearity parameter, and hence the

waves treated here will interact with the interface before this

instability has time to grow significantly.

The incident waves treated here are partially reflected at

the interface, resulting in incident, reflected, and transmit-

ted wave packets that are governed by coupled nonlinear

Schrodinger (NLS) equations. Similar coupled NLS equa-

tions have been treated previously by Knobloch and Gibbon

(1991) and Griffiths et al. (2006) starting with model equa-

tions such as the Klein–Gordon equation and groups of arbi-

trarily defined incident waves. The amplitude equations are

similar to the equations given below.

The reflection of nonlinear internal waves by a sloping

bottom has been treated by several authors; for example

Thorpe (1987) treats uniform wave trains and Tabaei et al.

(2005) treat wave beams. The results show that the first

few higher harmonics reflect at different angles than the pri-

mary harmonic while higher harmonics are evanescent, sim-

ilar to waves reflecting from the interface treated in McHugh

(2009). The mean flow in Thorpe (1987) has an oscillatory

component parallel to the slope with wavenumber equal to

the difference between incident and reflected wavenumbers,

and this is also found here. The mean flow in Tabaei et al.

(2005) is more complex as they considered wave beams, and

they do not report an oscillatory component; however, it is

likely present in their calculations. Thorpe (1987) and Tabaei

et al. (2005) do not include a modulation in the wave ampli-

tude, and their results do not have the associated mean flow.

The mean flow that is present in Tabaei et al. (2005) is con-

fined to the region where incident and reflected waves over-

lap. This same feature is true here only for the oscillatory

part of the mean flow. Results for a rigid horizontal lid are

given here at the end for comparison and show that the inter-

face and the rigid lid have similar behavior. The rigid bound-

ary creates a stronger mean flow due to the stronger reflected

waves.

The results given below show that the incident and re-

flected waves combine for a short period to create a strong

localized mean flow under the interface that is discontinu-

ous at the interface, as in Grimshaw and McHugh (2013).

Furthermore there is an oscillatory component of the mean

flow with a vertical wavenumber that increases as the wave

packet interacts with the interface. Section 2 provides the ba-

sic equations and interfacial boundary conditions. Section 3

chooses the wave modes to be included. Section 4 discusses

the important mean flow, and then Sect. 5 determines the am-

plitude equations. Results are discussed in Sect. 6, followed

by conclusions.

2 Basic equations

The flow is treated as incompressible and inviscid, and atten-

tion is restricted to two dimensions. The stratification is due

to the presence of a non-diffusing quantity, and the flow is

assumed to be Boussinesq. The flow is then governed by

Du

Dt
=−

1

ρ0

∂p

∂x
, (1)

Dw

Dt
=−

1

ρ0

∂p

∂z
− b, (2)

∂u

∂x
+
∂w

∂z
= 0, (3)

Db

Dt
−N2w = 0, (4)

where

D

Dt
=
∂

∂t
+ u

∂

∂x
+w

∂

∂z
,

the velocity is (u, w), the dynamic pressure is p, ρ0 is an

average (constant) density, and b is the buoyancy, defined by

b =
g(ρ− ρ̃)

ρ0

, (5)

where ρ̃ is the background density, and N is the buoyancy

frequency profile, defined by

N2
=−

gρ̃z

ρ0

. (6)

The base state must satisfy the equation of static equilibrium,

∂p̃

∂z
=−ρ̃g, (7)

where p̃ is the background pressure. These equations are

valid for a general profile N(z).

The kinematic condition at a sharp interface between two

layers is

ηt + uηx = w, (8)

which holds on the interface z= η, where η is the vertical

displacement of the interface. Expand in a Taylor series in

the same manner usually used for free surface flow:
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ηt +

[
u+ uzη+

1

2
uzzη

2
+ ·· ·

]
ηx

=

[
w+wzη+

1

2
wzzη

2
+ ·· ·

]
, (9)

now on z= 0.

The dynamic condition is continuity of total pressure pT

across the interface. The total pressure is segmented into two

parts:

pT = p̃+p. (10)

As the pressure difference along the interface is zero, the di-

rectional derivative of the pressure difference along this in-

terface is also zero. This directional derivative may be written

as

∂

∂x
+ ηx

∂

∂z
, (11)

which results in[(
∂

∂x
+ ηx

∂

∂z

)
p+ ηx p̃z

]+
−

= 0 (12)

on z= η. The equations of motion may now be used to elim-

inate the derivatives of the dynamic pressure, giving[
(ut + (uu)x + (wu)z)

+ηx (wt + (uw)x + (ww)z+ b)− ηx
1

ρ0

p̃z

]+
−

= 0 (13)

on z= η. A Taylor series is used as before, leading to(
1+ η

∂

∂z
+
η2

2!

∂2

∂z2
+ ·· ·

)[
(ut + (uu)x + (wu)z)

+ηx (wt + (uw)x + (ww)z+ b)
]+
−

−ηx

[
ηN2
+
η2

2!

d

dz

(
N2
)
+
η3

3!

d2

dz2

(
N2
)
+ ·· ·

]+
−

= 0 (14)

on z= 0. The N(z) profile considered below is a piecewise

continuous profile with lower and upper layers having con-

stant buoyancy frequency N1 and N2, respectively. For this

profile, derivatives of N2 in Eq. (14) are zero.

3 A vertically modulated wavetrain

The waves are horizontally periodic but modulated vertically.

The modulation is assumed to be slow as measured by the

small parameter ε. The amplitude of the waves is also as-

sumed small as measured by the small parameter α. The

two small parameters are assumed to have the same order

so that dispersion and nonlinearity are approximately in bal-

ance. The scaling here is similar to that of Grimshaw (1975),

except here the modulation is vertical and Grimshaw treated

a horizontal modulation. The configuration here is the same

as in Sutherland (2006), except now there are two layers.

The derivation of the amplitude equations is similar to that of

Shrira (1981) in that all terms are retained up to and includ-

ing the order where nonlinear effects first appear, although

Shrira (1981) included horizontal as well as vertical modula-

tions. Define the following variables:

ξ = x− cpt,

zj = ε
jz,

tj = ε
j t, (15)

where cp is the horizontal phase speed. Only j = 1, 2 are

needed for the present theory.

The linear solution for a wave with upward group velocity

is

w = αI
(
tj ,zj

)
ei(kξ−n1z)+ cc, (16)

where k and n1 are the horizontal and vertical wavenum-

bers, respectively, and cc means complex conjugate. All

wavenumbers are assumed positive and I =O(1). The dis-

persion relation is

c2
p =

N2
1

k2+ n2
1

. (17)

When an interface is included, the solution in the lower

layer requires the addition of reflected waves:

αR
(
tj ,zj

)
ei(kξ+n1z)+ cc. (18)

A peculiar fact of the Boussinesq equations is that when

N is constant in an infinite fluid (no interface), the linear

purely sinusoidal solution is also a fully nonlinear solution.

This can be verified by direct substitution of the periodic so-

lution to see that the nonlinear terms for each equation are

exactly zero. This fact is discussed by Thorpe (1968) and

Grimshaw (1976). Tabaei and Akylas (2007) made extensive

use of this fact to develop their finite amplitude theory. When

the waves are contained within a slowly varying packet, then

they are no longer purely sinusoidal, and nonlinear effects

such as the presence of higher harmonics are expected with

constant N (no interface) only as a result of the modulation.

These harmonics are O(εα2) and can be made weaker by

choosing a slower modulation. When incorporated into the

amplitude equations, the effect of these harmonics appears at

O(εα3) and hence the higher harmonics driven by the mod-

ulation are higher order and need not be included.

Further higher harmonics are generated by nonlinear ef-

fects at the interface, as shown previously by McHugh

(2009). The modulation of the wavetrain does not exert the

dominant influence on these interfacial harmonics, and in

fact they occur even when the wave amplitude is constant

(no wave packet). Hence these interfacial harmonics cannot
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be weakened by a slow modulation of the wave packet. How-

ever the vertical wavenumber of the interfacial harmonics is

not commensurate with the primary harmonic. Hence these

harmonics caused by the interface do not contribute to the

evolution of the primary waves and also need not be included,

except at the interface where nonlinear effects may influence

the reflection and transmission coefficients.

Combining all leading order contributions results in

w = αIei(kξ−n1z)+αRei(kξ+n1z)+ cc, z < 0. (19)

The corresponding solution for the upper layer is

w = αT ei(kξ−n2z)+ cc, z > 0. (20)

The vertical wavenumber in the upper layer is n2, determined

to first order by choosing the same wavenumber k and fre-

quency σ for the two layers:

σ =
kN1√
k2+ n2

1

=
kN2√
k2+ n2

2

. (21)

The linear interfacial conditions result in a relationship be-

tween the amplitudes of the incident, reflected, and transmit-

ted wave packets at the interface:

R =RI, (22)

T = T I, (23)

on z= 0, where

R= n1− n2

n1+ n2

, (24)

T = 2n1

n1+ n2

, (25)

which are the reflection and transmission coefficients, re-

spectively. These are the same coefficients that govern the

reflection of light waves (see for example the text of Born

and Wolf (1959) for a general discussion).

4 The mean flow

Separate all dynamic fields into a ξ -averaged mean and a

fluctuating part:

(u,w,p,b)=
(
α2u+αû, w+αŵ, α2p+αp̂, α2b+αb̂

)
, (26)

where the bar indicates mean and the circumflex indicates the

fluctuating part, composed of all wave components. The ξ

average will also be indicated with < ·>. Only the horizon-

tal mean flow u is needed for the final amplitude equations.

The mean quantities were shown in Grimshaw and McHugh

(2013) to be O(α2), as indicated above.

A discussion of the general equations governing the wave-

induced mean flow is given by Andrews and McIntyre

(1978a, b) and Grimshaw (1979). In some cases an explicit

expression for the mean may be found, as in Dosser and

Sutherland (2011). Following Sutherland (2006), Grimshaw

and McHugh (2013) found that, for the present configuration

and accurate to second order in α,

u=
N2

cp

< χ2 >,

w = 0,

where χ is the vertical displacement. While the averaging in

Grimshaw and McHugh (2013) is an x average and therefore

somewhat different, it is readily shown that the above expres-

sion is valid here with the ξ average. The equation governing

the evolution of χ is

Dχ

Dt
= w.

However, the linear version −cpχξ ≈w is adequate and al-

lows evaluation of u using Eqs. (19) and (20). Finally, the

mean flow in the lower layer is

u= um+

(
uie

i2n1z+ u∗i e
−i2n1z

)
, z < 0, (27)

where

um =
2

cp

N2
1

σ 2

(
II ∗+RR∗

)
, (28)

ui =
2

cp

N2
1

σ 2
I ∗R. (29)

There are two parts to this mean flow. One part is um, which

is identical to the mean flow that would be obtained if the

incident and reflected wave packets are acting individually,

and the mean flows are merely added. The second part is the

term containing ui, which is caused by the interference be-

tween the incident and reflected waves.

In the upper layer,

u=
2

cp

N2
2

σ 2
T T ∗, z > 0. (30)

5 The interaction equations

The leading order contributions to the primary harmonic in

Eqs. (1)–(4) will arise from linear terms and from interac-

tions between the wave perturbations and the mean flow, as in

Tabaei and Akylas (2007). Hence the leading-order primary-

harmonic terms in Eqs. (1)–(4) are

−cpûξ + εût1 + ε
2ût2 +α

2uûξ +α
2uzŵ =−

1

ρ0

p̂ξ , (31)
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−cpŵξ + εŵt1 + ε
2ŵt2 +α

2uŵξ

=−
1

ρ0

(
p̂z+ εp̂z1

+ ε2p̂z2

)
− b̂, (32)

ûξ + ŵz+ εŵz1
ε2ŵz2

= 0 (33)

− cpb̂ξ + εb̂t1 + ε
2b̂t2 +α

2ub̂ξ −N
2ŵ = 0. (34)

Note that the quadratic combinations of wave quantities are

exactly zero at this order and hence do not appear. Formally

eliminating û, b̂, and p̂ from among these equations while

dropping terms higher than quadratic in the small parameters

results in(
−cp

∂

∂ξ
+ ε

∂

∂t1
+ ε2 ∂

∂t2

)2

[
∂2

∂ξ2
+

(
∂

∂z
+ ε

∂

∂z1

+ ε2 ∂

∂z2

)2
]
ŵ

−α2cp

∂2

∂ξ2

[
u

(
ŵξξ + ŵzz+

N2

c2
p

ŵ

)
− uzzŵ

]
= 0. (35)

Using Eqs. (19) and (20) in Eq. (35) and expanding shows

that the linear terms combine to zero, as expected. Since the

nonlinear terms only appear at second order, then the first-

order terms result in(
∂

∂t1
− cg

∂

∂z1

)
I = 0, (36)

and the same expression acting on R and T . The second-

order expression is

It2 + cgIz2
− i

1

2
c′gIz1z1

−
α2

ε2
2σ
[(
k2
+ n2

1

)
kumI +

(
k2
− n2

1

)
ku∗i R

]
= 0,

z < 0, (37)

where cg is the vertical group velocity,

cg = σ
n1

k2+ n2
1

, z < 0, (38)

and c′g is a derivative of the group velocity:

c′g =
∂cg

∂n1

= σ
k2
− 2n2

1(
k2+ n2

1

)2 , z < 0. (39)

Now use the expressions for the mean flow, Eqs. (27)

and (30), and revert to original variables t and z to obtain

the final amplitude equation for the incident waves:

It + cgIz− i
1

2
c′gIzz

+ iα2 2

σ

[(
k2
+ n2

1

)(
|I |2+ |R|2

)
+

(
k2
− n2

1

)
|R|2

]
I

= 0,z < 0. (40)

Note that I =O(1), since α was inserted into the above ex-

pressions. Alternatively, the boundary conditions that create

the wave packet could have I =O(α), and then α would not

be explicitly present in Eq. (40).

A similar development for the reflected and transmitted

waves leads to

Rt − cgRz− i
1

2
c′gRzz

+ iα2 2

σ

[(
k2
+ n2

1

)(
|I |2+ |R|2

)
+

(
k2
− n2

1

)
|I |2

]
R = 0,z < 0, (41)

Tt + cgTz− i
1

2
c′gTzz+ iα

2 2

σ

(
k2
+ n2

2

)
|T |2T = 0,

z > 0, (42)

where

cg = σ
n2

k2+ n2
2

, z > 0, (43)

and

c′g =
∂cg

∂n2

= σ
k2
− 2n2

2(
k2+ n2

2

)2 , z > 0. (44)

The interfacial conditions must be treated in the same

manner. The nonlinear terms in both the kinematic Eq. (9)

and dynamic Eq. (14) conditions have quadratic and cubic

terms that will contribute at second order. The cubic terms

have a contribution due to the fact that the second-harmonic

velocities at the interface are not zero (unlike the constant N

case mentioned above). These second harmonics are treated

in McHugh (2009). To account for these, separate the veloc-

ity components into a mean velocity, primary harmonic, and

secondary harmonic. Hence instead of Eq. (26),

u= α2u+αû(1)+α2û(2)+ ·· ·, (45)

and similar expressions for the other variables.

Keeping only cubic terms, the kinematic interfacial condi-

tion is

ηt + uηx + uzηηx ≈ w+wzη+
1

2
wzzη

2, (46)

on z= 0, where velocities from either layer are used. Now

insert Eq. (45) and use Eq. (15), keep only contributions to
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the primary harmonic, and drop higher-order terms as they

appear to achieve

− cpη̂
(1)
ξ + εη̂

(1)
t1
+ ε2η̂

(1)
t2

+α2
(
uη̂

(1)
ξ + û

(1)η̂
(2)
ξ + û

(2)η̂
(1)
ξ + û

(1)
z η̂

(1)η̂
(1)
ξ

)
≈ w(1)+α2

(
η̂(1)ŵ(2)z + η̂

(2)ŵ(1)z +
1

2
ŵ(1)z η̂(1)2

)
. (47)

The dynamic condition is[
ut + (uu)x + (uw)z+ ηxwt + ηuzt + ηxb−N

2ηηx

]+
−

≈ 0 (48)

on z= 0. As above, use Eqs. (45) and (15), keep only contri-

butions to the primary harmonic, and drop higher-order terms

as they appear to achieve

[
−cpû

(1)
ξ + εû

(1)
t1
+ ε2û

(1)
t2

+α2
(
−cp

[
η̂(1)û

(2)
ξz + η̂

(2)û
(1)
ξz + η̂

(1)
ξ ŵ

(2)
ξ + η̂

(2)
ξ ŵ

(1)
ξ

]
+

[
2û(1)û(2)

]
ξ
+

[
û(1)ŵ(2)+ û(2)ŵ(1)

]
z
+ η̂

(1)
ξ b̂(2)+ η̂

(2)
ξ b̂(1)

−
1

2
cpη̂

(1)2û
(1)
ξ + η̂

(1)
[
û(1)2

]
ξz
+ η̂(1)

[
û(1)ŵ(1)

]
zz

+η̂(1)η̂
(1)
ξ

[
−cpŵ

(1)
ξz + b̂

(1)
z

]
+ η̂

(1)
ξ

[
û(1)ŵ(1)

]
ξ
+ η̂

(1)
ξ

[
ŵ(1)2

]
z

−N2
[
η̂(1)η̂

(2)
ξ + η̂

(2)η̂
(1)
ξ

])]+
−

≈ 0 (49)

on z= 0. Insert Eqs. (19) and (20) along with associated

expressions for the horizontal component of velocity into

Eqs. (47) and (49) and simplify to achieve a relationship be-

tween the reflected and transmitted wave amplitudes – R and

T – and the incident wave amplitude I at the interface:

R+ ε
i

σ
Rt1 =

[
n1− n2

n1+ n2

][
I + ε

i

σ
It1

]
+O

(
α2
)
, (50)

T + ε
i

σ
Tt1 =

[
2n1

n1+ n2

][
I + ε

i

σ
It1

]
+O

(
α2
)
. (51)

The Schrodinger equation for the incident waves written

in terms of slow variables, Eq. (37), has all terms of the

same order (since α2/ε2
=O(1)). Hence dispersion and non-

linearity are in balance, and all higher-order terms are ne-

glected. It would seem that the matching form of the inter-

facial conditions written in terms of slow variables should

also retain only terms that are in balance, and any terms con-

taining a small parameter should be neglected. The result is

that Eqs. (50) and (51) are replaced with their linear forms,

Eqs. (22) and (23):

R =RI, (52)

T = T I, (53)

on z= 0.

However, the results given below show that the vertical in-

tegral of u is only approximately conserved when the wave

packet transits the interface, indicating that momentum is

only approximately conserved during this time. This inte-

gral is very accurately conserved before the packet reaches

the interface; hence the error can only be reduced with al-

ternative interfacial conditions. Such an alternative interfa-

cial condition requires the nonlinear terms shown above. Un-

fortunately these nonlinear interfacial terms have great com-

plexity and hence are not included here. The linear interfacial

conditions that are employed here are sufficiently accurate

for the present results.

Note that these linear conditions imply continuity of veloc-

ity of the wave components. Importantly the total velocity is

not necessarily equal at the interface as the mean flow may

not be continuous.

6 Results

6.1 Preliminaries

The amplitude Eqs. (40), (41), and (42) are solved here nu-

merically. Spatial derivatives are evaluated with second-order

central differences. Temporal integration is achieved with

the fourth-order Adams–Bashforth method, resulting in ex-

plicit algebraic equations (see Ames (1977) for a general

discussion). The boundary point at the end of the domain

is treated with the second-order upwind scheme. This one-

sided method allows waves to exit the region without re-

flections (the reflected waves have already been treated in

the derivation of the amplitude equations). Single-layer cases

discussed below employ a total resolution of 1600 grid points

while two-layer cases use 800 grid points in each layer,

which was found to be adequate for all parameter values. The

depth of each layer for two-layer cases was set to 4/3 of the

packet length, which also sets the grid spacing. Several cases

were treated with double this resolution to confirm conver-

gence. The time step was set to avoid numerical instability,

generally being in the range 0.0001<1t < 0.001.

All variables are rescaled with the horizontal wavenum-

ber k and the buoyancy frequency in the lower layer N1. The

buoyancy frequency ratio for two-layer cases is chosen to

have the value N2/N1= 2, matching approximately Earth’s

tropopause. The results then depend on three parameters: ε,

α, and n1/k.

A wave envelope is created at the bottom boundary by im-

posing the value of the real part of I to be the raised cosine

function:

kI

N1

=
1

2

[
1− cos

(
2πεcgt

)]
, (54)

t ∈ [0, 1/ε cg]. Other wave packet shapes, such as a Gaussian

shape, have been considered and produce the same general

results.
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Figure 1. Transmission coefficient T and absolute value of the re-

flection coefficient |R| as n1/k increases.

The value of α is set to α= 0.1. Larger values of α mean

stronger nonlinear effects, with consequences that depend on

the value of n1/k. The value of ε is set to ε= 0.025. The

parameter ε measures how slowly the wave parameters are

changing, and its value controls the dispersion. The definition

of ε is the inverse of the packet length, and the above raised

cosine shape has the obvious choice of overall length. Suther-

land (2006) and Tabaei and Akylas (2007) used a Gaussian

packet shape, e−z
2/2σ 2

, and defined the packet length to be

1/σ . Comparing these two packet shapes, if they have the

same full width at half maximum (FWHM), then the overall

length of the raised cosine is 4
√

2 ln2 times the value of 1/σ

for the Gaussian profile. This means that ε= 0.025 used here

is approximately the same as the value ε= 0.1 in Sutherland

(2006) and Tabaei and Akylas (2007). The derivation of the

nonlinear Schrodinger equations implies a balance between

nonlinearity and dispersion, suggesting that α≈ ε. However

the simulations show that with ε= 0.1 and a raised cosine

shape, dispersion dominates and nonlinearity is unimportant.

Thus the choice of the value for ε is made here to achieve an

approximate balance in the results.

The behavior of the waves with increasing n1/k is com-

plicated and depends partly on the value of the reflection

and transmission coefficients R and T given by Eqs. (24)

and (25) (see Fig. 1). For very small values of n1/k, R ap-

proaches unity while T approaches zero, indicating that the

waves are nearly perfectly reflected. As n1/k increases, R
approaches the value 1/3 while T approaches 2/3. Hence for

large values of n1/k, the reflection and transmission coeffi-

cients are approximately constant. Perfect transmission never

occurs for any value of n1/k.

The behavior with increasing n1/k also depends greatly

on the strength of the mean flow. The results show that the

mean flow given in Eqs. (27) and (30) increases strongly with
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Figure 2. Behavior of the coefficients of the dispersion and nonlin-

ear terms in the amplitude equations as n1/k increases.

n1/k, as measured approximately by the factor
2N2

1

cpσ 2 . This

increase is primarily due to the direction of the group velocity

becoming more horizontal as n1/k increases. Rescale this

coefficient with k/N1, resulting in a quantity that is defined

as U :

U =
k

N1

(
2N2

1

cpσ 2

)
= 2

(
k2
+ n2

1

k2

)3/2

. (55)

Profiles of the mean flow velocity appearing in the figures are

normalized by U .

The coefficient of the nonlinear term and the dispersion

term in the amplitude equation governing the incident waves

Eq. (40) are plotted in Fig. 2. The coefficient value for the

nonlinear term can be seen to increase strongly with n1/k, as

a direct result of the mean flow dependence on n1/k. Hence

stronger nonlinear effects are expected as n1/k increases.

The dispersion coefficient is negative for small values of

n1/k and changes sign at n1/k= 1/
√

2. As discussed by

Sutherland (2001), the waves experience a modulational in-

stability in the region where this coefficient is negative. As a

result of this instability, a wave packet will initially become

more focused and grow in amplitude. This dispersion coeffi-

cient is positive for n1/k > 1/
√

2 and reaches a maximum at

n1/k=
√

2. When the coefficient is positive, the wave packet

defocuses.

6.2 Properties of the amplitude equations

Some insight is revealed by separating the wave amplitude

into a magnitude and phase,

I = |I |eiφ,
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where φ is the phase of the incident waves. Using this in

Eq. (40) and separating real and imaginary parts results in

|I |t + cg|I |z+
1

2
c′g
[
|I |φzz+ 2|I |zφz

]
= 0, (56)

φt + cgφz+
1

2
c′g

[
|I |zz

|I |
−φ2

z

]
+α2 1

2

[(
k2
+ n2

1

)(
|I |2+ |R|2

)
+

(
k2
− n2

1

)
|I |2

]
= 0. (57)

Similar equations can be obtained for the other wave pack-

ets. Equation (56) governs the evolution of the magnitude of

the incident wave |I |. The influence of the reflected wave R

does not directly appear in Eq. (56). Hence when incident

and reflected waves overlap, the reflected wave only affects

the incident wave packet shape as a result of the evolution

of φ in the dispersion term. For cases where the dispersive

effect is zero or negligible, then Eq. (56) becomes

|I |t + cg|I |z = 0, (58)

indicating that the wave packet propagates with the group

velocity cg but without any evolution in the packet shape,

and unaffected by the reflected wave even when overlapping.

Multiply Eq. (56) by |I | and rearrange to obtain(
∂

∂t
+ cg

∂

∂z

)
|I |2+ c′g

∂

∂z

(
|I |2φz

)
= 0.

For time periods before the incident wave packet reaches the

interface, this may be integrated to produce

∂

∂t

∫
|I |2dz= 0, (59)

where boundary terms are zero since |I | is zero outside the

wave packet. Equation (59) shows that the spatial integral of

|I |2 is conserved in a layer of constant N , despite the influ-

ence of dispersion and nonlinearity. Once the incident wave

packet reaches the interface, the incident wave packet begins

to decrease in area as the reflected and transmitted waves are

created. The combination of Eq. (56), which shows that |I |

is not influenced by nonlinear effects, and Eq. (59), which

shows that the area of the wave packet is limited, suggest that

the incident wave packet shape will decrease monotonically

during this time.

Equation (57) governs the incident wave phase, and does

explicitly containR. The effect of the dispersion term is com-

plicated and will be determined with numerical results. How-

ever the nonlinear term in Eq. (57) is positive, and in the ab-

sence of dispersion,(
∂

∂t
+ cg

∂

∂z

)
φ < 0.

Hence the nonlinear effect causes the phase to decrease

monotonically.

0 1 2
kA
N1

−50

0

50

k
z

−3.14 0.00 3.14

φ

−50

0

50

0 1 2 3 4
k

N1U
ū
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Figure 3. Vertical profiles of the wave magnitudes A (left panel),

phases φ (center panel), and mean flow (right panel) at three times

in two layers. The parameter values are n1/k= 1/
√

2, N2/N1= 2,

ε= 0.025, and α= 0.1. The dashed profiles are the magnitude and

phase for the downward-moving wave packet (the reflected wave),

and the solid profiles are the upward-moving waves (incident and

transmitted waves).

6.3 A dispersion-free case

For the numerical results, first consider n1/k= 1/
√

2. This

special value of n1/k has a zero value for the coefficient of

the dispersion term. Sutherland (2006) discussed this case for
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a single layer with constantN and included a third-derivative

dispersive term that appears at the next order, suggesting that

wave dispersion is still important for this parameter value;

however it is not captured with the above amplitude equa-

tions. While the results shown below for n1/k= 1/
√

2 are

lacking dispersion, this parameter value is still included here

to emphasize that the interfacial dynamics occur even with-

out dispersion.

Figure 3 shows vertical profiles of wave amplitude and

mean flow at three times for n1/k= 1/
√

2. Note that a time

value of zero here corresponds to the incident wave packet

centered at the origin, which is also the mean position of

the interface, as indicated with a dashed line. The Brunt–

Väisälä frequency ratio is N2/N1= 2. Each time value in

Fig. 3 shows three panels, which contain (from left to right

in each subfigure) a vertical profile of the wave magnitude,

the wave phase, and the wave-induced mean flow. The wave

packet moves vertically without any significant change in

shape before reaching the interface, as predicted by Eq. (58).

The dashed profiles are the magnitude and phase for the

downward-moving wave packet (the reflected wave), and the

solid profiles are the upward-moving waves (incident and

transmitted waves). Note that there is only a single profile for

the mean flow in the lower layer (e.g., no dashed profile) as

it is due to the combination of incident and reflected waves.

Figure 3b has all three wave packets present simultane-

ously. The mean flow at this stage shows the striking discon-

tinuity at the interface. The reason for this discontinuity is

that in the lower layer the mean flow is driven by both in-

cident and reflected wave. Since they both have a horizontal

component of group velocity that is positive, then the mean

flow they generate is positive, despite having a vertical group

velocity that has opposite sign. In contrast, the upper layer

only has the transmitted wave driving a mean flow and is

therefore always weaker at the interface.

The mean flow in Fig. 3b also shows oscillations that are

not present before the packet reaches the interface. These os-

cillations are due to the interference mean given by Eqs. (27)

and (29). The interference mean only occurs under the mean

position of the interface, and only when the incident wave

and reflected wave are overlapping. Thus the oscillations in

u above the interface are due to the nonlinear coupling of the

three wave packets.

6.4 Dispersive evolution

The coefficient of the dispersion term is negative when

n1/k < 1/
√

2. The evolution of the wave packet for such a

case is shown in Fig. 4 for a single layer with constant N

and n1/k= 0.4. This same single-layer case was previously

treated by Sutherland (2001, 2006) and Tabaei and Akylas

(2007). Figure 4a shows that the wave amplitude and the

associated mean flow are initially focusing energy toward

the center of the wave packet. Figure 4b and c show that at

later times the peak in wave amplitude has decreased and
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Figure 4. Vertical profiles of the wave magnitudes A (left panel),

phases φ (center panel), and mean flow (right panel) at three times

in a single layer of constant N with n1/k= 0.4, ε= 0.025, and

α= 0.1.

the wave packet has spread significantly. Even longer times

would show the focusing effect reappearing. This behavior is

due to the modulational instability as discussed by Suther-

land (2001). Figure 5a provides filled contours of vertical

velocity for the same time value as Fig. 4a, demonstrating

the same general pattern as was found by Sutherland (2006).
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Figure 5. Contours of vertical velocity in a single layer of constant

N with n1/k= 0.4, ε= 0.025, and α= 0.1.

Figure 5b shows the pattern at a later time after the wave

amplitude has reached its peak and is decreasing.

The two-layer case with n1/k= 0.4 is shown in Fig. 6.

Figure 6a is before the incident wave packet has interacted

significantly with the interface, and again the results are the

same as the constant N case (Fig. 4a). In Fig. 6b the wave

packet is straddling the interface. The mean flow (right panel)

again shows the oscillations under the interface that is the in-

terference part of the mean flow ui, although these oscilla-

tions are somewhat difficult to see due to the different scale

on the abscissa. Also evident in Fig. 6b are matching oscil-

lations in I (solid line for both magnitude and phase). These

oscillations would not exist without dispersion, as I obeys

Eq. (58) without dispersion. Note that these oscillations in I

were not present with n1/k= 1/
√

2 in Fig. 3b.

Figure 6c shows the results at a later time after the re-

flected and transmitted wave packets are mostly created. The

magnitude of I (solid line, left panel) still shows signifi-
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Figure 6. Vertical profiles of the wave magnitudes A (left panel),

phases φ (center panel), and mean flow (right panel) at three times

in two layers. The parameter values are n1/k= 0.4, N2/N1= 2,

ε= 0.025, and α= 0.1. The line conventions are the same as Fig. 3.

cant oscillations, while the magnitude of R (dashed line, left

panel) does not. The mean flow also has matching oscilla-

tions. The incident waves I can only move upwards here;

hence these oscillations in I are part of the tail of the incident

wave packet. Dispersion has caused the incident wave packet

to spread, which continues to interact with the downward-

moving reflected wave packet. For this choice of parame-
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Figure 7. Vertical profiles of the wave magnitude in two layers for

a sequence of times. Each profile is shifted by a value of 1.5 for dis-

play. The parameter values are n1/k= 0.4, N2/N1= 2, ε= 0.025,

and α= 0.1. The line conventions are the same as Fig. 3.
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Figure 8. Vertical profiles of the mean flow in two layers for a se-

quence of times. Each profile is shifted by a value of 1.5 for display.

The parameter values are n1/k= 0.4, N2/N1= 2, ε= 0.025, and

α= 0.1.

ters (ε= 0.025, α= 0.1), the incident wave amplitude I had

reached its maximum before interacting with the interface

and is decreasing while the packet is spreading. This feature

of the wave packet dynamics seems to enhance the interac-

tion between the reflected waves and the tail of the incident

packet.

Figures 7 and 8 show a close-up view of the wave am-

plitudes and mean flow near the interface. Figure 7 shows

clearly the formation of these smaller-scale oscillations in I

and seems to suggest that they are moving downward. How-

ever they are not moving downward but are becoming ener-

gized by the downward-moving reflected wave R.

Figure 9 shows filled contours of vertical velocity, corre-

sponding to the constant N case in Fig. 5b. The wave pat-

tern under the interface in Fig. 9 (the interface is at the ordi-

nate center) with incident and reflected waves overlapping is

nearly that of a standing wave.

Figures 10 and 11 show results for a case when the coef-

ficient of dispersion is positive, n1/k= 1. Figure 10 is the

Figure 9. Contours of vertical velocity at τ ≈ 0 in two layers.

The parameter values are n1/k= 0.4, N2/N1= 2, ε= 0.025, and

α= 0.1.

single-layer case with constant N while Fig. 11 is the corre-

sponding two-layer configuration withN2/N1= 2. Figure 10

shows that as the wave packet ascends in a single layer,

the packet shape tends to spread. The two-layer results in

Fig. 11b show that the mean flow is again discontinuous as

the wave packet interacts with the interface, and that the in-

terference mean is again present. Oscillations in I appear and

spread downward, as before. However the dispersion effect

is strong here and the transmitted and reflected wave packets

are much reduced in strength as a result.

The amplitude and phase obey Eqs. (56) and (57). One of

the nonlinear terms in Eq. (57) is directly attributed to the

interference mean flow and has the rescaled coefficient

1−
n2

1

k2
. (60)

If n1/k= 1, then this coefficient is zero, and hence this non-

linear term does not contribute to the evolution of φ, making

n1/k= 1 a special case. The influence of the interference part

of the mean flow is still felt but indirectly through the other

nonlinear terms in Eqs. (56) and (57).

Figures 12 and 13 again show a close-up view of a se-

quence of profiles of the wave magnitude and correspond-

ing mean flow as the packet transits the interface. Figure 13

shows the development of the discontinuity in the mean flow

as well as the appearance of the interference mean flow. An-

other feature evident in Fig. 13 is that the oscillations in the

mean flow under the interface are decreasing in length as

time increases. The form of Eq. (27) suggests that the os-

cillation length should be simply 2π/2 n1, which it is when

these oscillations first appear. However the nonlinear combi-

nation of I and R alters this length. The effect is present for

previous cases but is not as prominent.
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Figure 10. Vertical profiles of the wave magnitude (left panel),

phase (center panel), and mean flow (right panel) at three times in a

single layer of constant N with n1/k= 1, ε= 0.025, and α= 0.1.

Figure 14 shows results for the two-layer case with

n1/k=
√

2. This value of n1/k corresponds to the maximum

value of the dispersion coefficient in the amplitude equations

for the lower layer. With such strong dispersion, the wave

packet spreads considerably by the time the packet reaches

the interface. The numerical results indicate that with such

strong dispersion, increasing the value of α weakens the in-

terference mean and the tendency for these oscillations in the

mean flow to shorten.

6.5 Mean flow comparisons

The overall mean-flow strength is shown in Figs. 15–17 for

three examples. Each of these figures show a time evolution

of the maximum of the wave packet amplitude. In Fig. 15,

n1/k= 1/
√

2 and the dispersion is zero in the lower layer.

For this case the maximum value of the wave amplitude is

constant until the waves interact with the interface. While the

packet is near the interface, the mean flow is enhanced due to

the combination of the incident and reflected waves, and also

the interference mean. Figure 15 shows that the mean flow

is enhanced by a factor of approximately 1.75 at the peak.

Figure 16 has n1/k= 0.4 and shows that the maximum value

is nearly four times the value of the mean flow early in the

simulation. Also evident here is the oscillation in the tail of

the incident wave packet.

Figure 17 has n1/k=
√

2 where the dispersion coefficient

is positive and maximum. Here the wave packet is defocus-

ing, resulting in a decrease in the maximum value as the wave

packet ascends. The increase in mean at the interface is not

strong enough to overcome this decrease, and hence the max-

imum value of mean flow is at the beginning of the simu-

lation. Overall, Figs. 15–17 indicate that smaller values of

n1/k are more likely to have an enhanced jet-like mean flow

under the interface.

Also in Figs. 15–17 is a dashed line showing the velocity

difference at the interface and a thick solid line showing the

interference mean maximum. In Figs. 15 and 17, these two

quantities have approximately the same magnitude. How-

ever the velocity difference is not caused by the interference

mean; rather they are both caused by the overlapping of the

incident and reflected wave packets and hence have approx-

imately the same strength. Note the velocity difference for

n1/k= 0.4 in Fig. 16 is substantially stronger than the inter-

ference mean in Fig. 15.

Figure 18 shows a time history of the vertical integral of

u for two cases: n1/k= 0.4 and n1/k=
√

2. Once the wave

packet is formed, this integral should be constant. Before the

packet has interacted with the interface, Fig 18 shows such

a constant value for n1/k = 0.4. With n1/k=
√

2, there is

a relatively small decrease in strength of the mean flow, ap-

proximately 15 %. With n1/k= 0.4 there is briefly a 25 %

error approximately. While this seems large, the maximum

value of u in Fig. 16 has reached nearly four times the origi-

nal value, and by comparison this error in the integral of u is

deemed acceptable.

6.6 The rigid lid case

If the interface is replaced with a rigid lid, then the waves

are completely reflected but otherwise behave in the same

manner as above. The interfacial boundary conditions are re-
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Figure 11. Vertical profiles of the wave magnitudes A (left panel),

phases φ (center panel), and mean flow (right panel) at three times

in two layers. The parameter values are n1/k= 1, N2/N1= 2,

ε= 0.025, and α= 0.1. The line conventions are the same as Fig. 3.

placed with

w = 0 (61)

on z= 0, resulting in

R =−I (62)
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Figure 12. Vertical profiles of the wave magnitude in two layers for

a sequence of times. Each profile is shifted by a value of 1.5 for

display. The parameter values are n1/k= 1, N2/N1= 2, ε= 0.025,

and α= 0.1.
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Figure 13. Vertical profiles of the mean flow in two layers for a se-

quence of times. Each profile is shifted by a value of 1.5 for dis-

play. The parameter values are n1/k= 1, N2/N1= 2, ε= 0.025,

and α= 0.1. The line conventions are the same as Fig. 3.

on z= 0. The incident and reflected wave amplitudes are still

governed by Eqs. (40) and (41), while the mean flow is still

determined with Eq. (27).

An example case with n1/k= 1/
√

2 is shown in Fig. 19

with vertical profiles of wave magnitude and phase and the

mean flow at three time steps, as before. Notice in Fig. 19 that

the wave magnitude and mean flow profiles for the upward-

moving packet (N1 t ≈−65) match the corresponding pro-

files for the downward-moving packet (N1 t ≈+65). The

only difference other than the direction of propagation is the

phase, which is more oscillatory. The mean flow forN1 τ ≈ 0

is much stronger than the above case with an interface as a

result of the much stronger reflected wave. The maximum

of the mean flow is now approximately three times the mean

flow of the incident wave packet, compared to a factor of 1.75

in the case with the interface. The interference mean flow is

still clearly present with the rigid lid.

www.nonlin-processes-geophys.net/22/259/2015/ Nonlin. Processes Geophys., 22, 259–274, 2015



272 J. P. McHugh: Incidence and reflection of internal waves

0 1 2
kA
N1

−50

0

50

k
z

−3.14 0.00 3.14

φ

−50

0

50

0 1 2 3 4
k

N1U
ū
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Figure 14. Vertical profiles of the wave magnitude A (left panel),

phase φ (center panel), and mean flow (right panel) at three times

in two layers. The parameter values are n1/k=
√

2, N2/N1= 2,

ε= 0.025, and α= 0.1. The line conventions are the same as Fig. 3.
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Figure 15. Time history of the maximum of the mean flow. The

dashed line is the velocity jump at the interface while the thick solid

line that is the maximum the interference mean ui. The parameter

values are n1/k= 1/
√

2, N2/N1= 2, ε= 0.025, and α= 0.1.
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ū
m
a
x

Figure 16. Time history of the maximum of the mean flow. The

dashed line is the velocity jump at the interface while the thick solid

line that is the maximum the interference mean ui. The parameter

values are n1/k= 0.4, N2/N1= 2, ε= 0.025, and α= 0.1.
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Figure 17. Time history of the maximum of the mean flow. The

dashed line is the velocity jump at the interface while the thick solid

line that is the maximum the interference mean ui. The parameter

values are n1/k=
√

2, N2/N1= 2, ε= 0.025, and α= 0.1.

7 Conclusions

Atmospheric observations indicate that the tropopause al-

titude is more likely to experience turbulence and large

amplitude waves than other altitudes. The abrupt change

in the buoyancy frequency suggests that such observations

are related to the dynamics of internal waves near the

tropopause. Previous numerical simulations conclude that in-

ternal waves will create a wave-induced jet-like mean flow

in the tropopause vicinity that is likely responsible for at

least some of the observations. An idealized low-dimensional

model of such waves is treated here. The model consists of

three coupled nonlinear Schrodinger equations along with

linear interfacial conditions.
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Figure 18. Temporal evolution of the vertical integral of the mean

velocity for n1/k= 0.4 and n1/k=
√

2.

Numerical solutions with weak dispersion (n1/k= 1/
√

2)

show that the wave-induced mean flow is greatest near and

under the interface, similar to previous full numerical simu-

lations by McHugh (2008). Furthermore, this mean flow is

discontinuous at the interface and would be a region with en-

hanced shear in a viscous flow. The previous full numerical

results did not allow the velocity to be discontinuous at the

interface, and this could have impacted the final results in

that study.

However, the results here also show that dispersion may

dominate the motion and can act to greatly enhance the jet-

like flow or weaken it, depending on the value of n1/k. With

n1/k < 1/
√

2, the jet-like mean flows are strengthened and

they can happen at any altitude, not necessarily near the in-

terface. With n1/k > 1/
√

2, dispersion tends to smooth the

localized effects near the interface.

The mean flow found here also has the oscillatory inter-

ference component. The results show that these mean-flow

oscillations are transferred to the wave envelopes and can

become exaggerated in the tail of the incident wave packet

when n1/k < 1/
√

2. Furthermore, the vertical wavelength of

the oscillation decreases during the period where incident

and reflected waves overlap. These are nonlinear features of

the waves that do not occur in linear theory. Note that this

feature of the mean flow indicates that the waves create a

structure that is wider horizontally than the incident waves

but shorter in the vertical. Hence there is a cascade of energy

to “flatter” structures.

The observations of McHugh et al. (2008a) showed layers

at the tropopause region with large values of vertical veloc-

ity. The terrain was dominated by a single large peak (Mauna

Kea), and thus these structures were likely caused by moun-

tain waves. There are many similarities between those exper-

imental results and the present model results; most notably,

the mean flow oscillations in the model are similar to the

layer structure in the experiments. However, differences are

also significant; for example, the experiments show large ver-
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Figure 19. Vertical profiles of the wave magnitude (left panel),

phase (center panel), and mean flow (right panel) at three time val-

ues with a rigid lid, with n1/k= 1/
√

2, ε= 0.025, and α= 0.1. The

line conventions are the same as Fig. 3.

tical velocity whereas the model finds large horizontal veloc-

ity. A detailed comparison is difficult since the experiments

treated mountain waves, a much more complex wave system.

Hence it is tempting but premature to connect the mean flow

oscillations found here to the structures observed in McHugh

et al. (2008a).
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