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Abstract. Motivated by important geophysical applications

we consider a dynamic model of the magma-plug system

previously derived by Iverson et al. (2006) under the influ-

ence of stochastic forcing. Due to strong nonlinearity of the

friction force for a solid plug along its margins, the initial de-

terministic system exhibits impulsive oscillations. Two types

of dynamic behavior of the system under the influence of the

parametric stochastic forcing have been found: random tra-

jectories are scattered on both sides of the deterministic cycle

or grouped on its internal side only. It is shown that disper-

sions are highly inhomogeneous along cycles in the presence

of noises. The effects of noise-induced shifts, pressure sta-

bilization and localization of random trajectories have been

revealed by increasing the noise intensity. The plug velocity,

pressure and displacement are highly dependent of noise in-

tensity as well. These new stochastic phenomena are related

to the nonlinear peculiarities of the deterministic phase por-

trait. It is demonstrated that the repetitive stick–slip motions

of the magma-plug system in the case of stochastic forcing

can be connected with drumbeat earthquakes.

1 Introduction

It is well-known that the behavior of volcanic systems is

enormously complex so that a lot of nonlinear feedbacks lead

to multiple states even during a single eruption (Tanaka et al.,

2014). Without better modeling forecasts of these dynamic

processes, the highly important questions of where, when and

how volcanic eruptions occur will remain substantially em-

pirical. Nowadays, an elaboration of the adequate mathemat-

ical models for volcanic dynamics is a challenging problem

(Melnik and Sparks, 1999; Barmin et al., 2002; Nakanishi

and Koyaguchi, 2008; Costa et al., 2012).

Many uncertainties in physical parameters of volcanic dy-

namics (Woo, 2000) lead to a conclusion that like the cli-

mate systems (see, among others, Saltzman, 2002; Alexan-

drov et al., 2014), volcanoes, representing stochastic and

chaotic systems, need to be described in terms of proba-

bilities (Sparks, 2003; Bebbington and Marzocchi, 2011).

Stochastic approaches and mathematical formalisms can be

found in Gardiner (2009).

It is well-known, that an interplay between nonlinear-

ity and noise can generate various probabilistic phenom-

ena such as noise-induced transitions (Horsthemke and

Lefever, 1984), stochastic resonance (McDonnell et al.,

2008; Pikovsky and Kurths, 1997; Arathi, 2013), and noise-

induced chaos (Lai and Tél, 2011; Bashkirtseva et al., 2012).

Stochastic effects in nonlinear models are the subjects of

intensive investigations in various research domains (Hors-

themke and Lefever, 1984; Lindner et al., 2004; Bashkirtseva

et al., 2013; Alexandrov et al., 2013).

Some of the silicic volcanoes analyzed in detail over the

last few decades represent complex periodic systems (Den-

linger and Hoblitt, 1999; Michaut et al., 2013). The dome-

building eruption of Mount St. Helen (MSH) during 2004

and 2005 has represented a near-equilibrium cyclic system

with the solid plug uplift caused by magma ascent from be-

low with a nearly steady rate of roughly 1–2 m3 s−1. This

eruption was accompanied by drumbeat earthquakes that re-

curred every 1–2 min with magnitudes <2 and focal depth

<1 km (Iverson et al., 2006; Moore et al., 2008; Matoza and

Chouet, 2010). A stick–slip mechanism explains a cyclic be-

havior of such earthquakes as a consequence of stick–slip

motion of a plug pushed by compressible magma (Denlinger

and Hoblitt, 1999). A new dynamic approach based on this

mechanism (connecting the MSH behavior with a damped

oscillator) was suggested by Iverson et al. (2006). We use this
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Figure 1. A scheme of the plug dynamics.

model to demonstrate unusual dynamic behavior of similar

volcanic systems under the influence of parametric noises.

In order to explain interactions between solid-state extru-

sion and persistent drumbeat earthquakes at MSH, Iverson et

al. (2006) developed a model based on recurrent stick–slip

motions of the solid plug along its margins with the friction

force F (Fig. 1). Let us briefly discuss the main principles

of this dynamic model. The magma influx comes to the base

of an eruptive conduit from below with a nearly steady rate

Q. A solid dacite plug of solidified magma blocks the con-

duit from above so that its lower boundary is mobile due to

the effects of pressure and basal accretion with mass rate ρB

from below (ρ and B stand for the magma bulk density and

the volumetric rate of magma crystallization). The total plug

mass m changes with time because the difference in mass

rates ρB and ρrE as m=m0+ κt (here ρr is the plug bulk

density, E is the volumetric rate of surface erosion, m0 is the

initial plug mass, t is the process time, and κ = ρB − ρrE

is assumed constant). The horizontal cross-sectional area A,

the magma compressibility α1 and the conduit wall compli-

ance α2 are estimated by Iverson et al. (2006). The dynamic

process of plug extrusion is controlled by the plug weightmg

and the friction force F dependent of the plug velocity u (g

is the acceleration due to gravity) whereas the conduit vol-

ume V is governed by the law of mass conservation. A three-

parametric differential model connecting independent vari-

ables u, p and V (p is the pressure) was derived by Iverson

et al. (2006). Below we use this model to demonstrate some

new special aspects of nonlinear dynamics of volcanic sys-

tems under the influence of stochastic noises.

Figure 1. A scheme of the plug dynamics.
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Figure 2. (a) Projection of the phase portrait of the deterministic system, p (Pa) vs. u (ms−1). (b) illustrates an

enlargement near unstable equilibrium (open circle). The dashed red line is a pseudo-separatrix. Physical pa-

rameters of the system under consideration are (Iverson et al., 2006): B =Q= 2m3 s−1, m0 = 3.6× 1010 kg,

A= 30 000 m2, p0 = 12 936× 103 Pa, α1 = 10−7 Pa−1, α2 = 10−9 Pa−1, F0 = 3528× 107 kg m s−2, uref =

0.1Q/A= 66 667× 102 ms−1, V0 = 6.32× 105 m3, c= 1.7× 10−4, g = 9.8m s−2, ρ0 = ρr = 2000 kg m−3,

κ= 0.
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Figure 2. (a) projection of the phase portrait of the determinis-

tic system, p (Pa) vs. u (ms−1). (b) illustrates an enlargement

near unstable equilibrium (open circle). The dashed red line is

a pseudo-separatrix. Physical parameters of the system under con-

sideration are (Iverson et al., 2006) B =Q= 2 m3s−1,m0 = 3.6×

1010 kg, A = 30 000 m2, p0 = 12 936× 103 Pa, α1 = 10−7 Pa−1,

α2 = 10−9 Pa−1, F0 = 3528 × 107 kgms−2, uref = 0.1Q/A =

6.67× 10−6 ms−1, V0 = 6.32× 105 m3, c = 1.7× 10−4, g = 9.8

ms−2, ρ0 = ρr = 2000 kgm−3, and κ = 0.

2 The model and its deterministic behavior

The following system of reduced governing equations based

on the laws of conservation of the solid plug linear momen-

tum, solid plug mass and conduit fluid mass was derived and

discussed in detail by Iverson et al. (2006). These equations

can be written in the form of

du

dt
=−g+

1

m0+ κt
(pA− κu−F), (1)

dp

dt
=−

1

(α1+α2)V
(Au+RB −Q), (2)

dV

dt
=

α1

α1+α2

(Au+RB −Q)+Q−B, (3)

where R = 1−ρ/ρr = 1− (ρ0/ρr)exp[α1(p−p0)] is found

from the isothermal equation of state (Iverson et al., 2006).

Here, p0 and ρ0 represent the static equilibrium pressure and

magma density. The key aspects of MSH friction force mea-

sured in experiments (Moore et al., 2008) can be described
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Figure 3. Time series of the cycle shown in Fig. 2: u (ms−1), p (Pa) ans V (m3) as functions of time t (s).
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Figure 4. (a) illustrates a projection of the phase portrait p (Pa) vs. u (m s−1) of the deterministic system. (b)

shows u (ms−1) as a function of t (s). These dependencies are plotted for different values V0: V0 = 105 m3

(blue), V0 = 6.32× 105 m3 (red), and V0 = 106 m3 (green).
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Figure 3. Time series of the cycle shown in Fig. 2: u (ms−1), p (Pa) and V (m3) as functions of time t (s).

by a function (Iverson et al., 2006):

F(u)= sgn(u)f0(u), f0(u)= F0

(
1− csinh−1

|u/uref|

)
, (4)

where sgn(u) is the sign of u, F0 is the friction force at static

equilibrium, c� 1 is a rate-weakening parameter and uref is

a reference value of u (Iverson et al., 2006). Equation (4)

includes the main physical aspects of the process: the fric-

tion force at u= 0 abruptly changes its sign due to the fact

that the gravity force, which shifts the plug in downward di-

rection, is opposite to the friction force. However, an abrupt

behavior of Eq. (4) is not a good physical approximation of

the friction force. Therefore, let us model this force by the

close continuous function:

F(u)= sgn(u)f1(u), (5)

where

f1(u)=

{
f0(u), |u| ≥ uref

F0|
u
uref
|, 0< |u|< uref

.

In present paper we focus on the autonomous case,

when κ = 0. The model (Eqs. 1–3) demonstrates the stick–

slip oscillations (see Figs. 2 and 3). An important point

is that this system has only one unstable equilibrium

(u,p,V ) for any V0, where u =
Q

A
=

2

3
×10−4 ms−1, p =

p0= 12 936× 103 Pa, and V = V0. This equilibrium is plot-

ted by an open circle in Fig. 2.

In Fig. 2, u and p projections of phase trajectories of

the system (Eqs. 1–3) for the fixed initial value V0 = 6.32×

105 m3 are plotted by the thin black lines. These trajectories

tend to the closed curve (thick black line) of the cycle. Time

series of this cycle are presented in Fig. 3. A vertical left part

of this cycle in Fig. 2 corresponds to the slow movement,

and the other arc part of the cycle reflects fast movement.

The slow dynamics become to fast at the corner point C in

the case of movement in a clockwise direction along the thick

black curve. The stability of this cycle is highly nonuniform:

the vertical part is extremely stable, but the arc curve pos-

sesses a neutral stability.

Essential details of the phase portrait are shown in Fig. 2b

by an enlarged fragment of Fig. 2a. As one can see, there ex-

ists a pseudo-separatrix (dashed red line) which divides two

types of dynamics. If the initial state lies to the left of this

red curve, then the trajectory quickly verges towards the ver-

tical part of the cycle (arrows pointing to the left). If the ini-

tial state lies to the right of this pseudo-separatrix, then the

phase trajectory goes away from the cycle (arrows pointing to

the right), and only after a long excursion, the trajectory ap-

proaches to the vertical part of the cycle. Physically it means

that small deviations in u at sufficiently large p may rede-

ploy the dynamic system through its pseudo-separatrix. This

feature of the deterministic phase portrait playing an impor-

tant role in understanding of stochastic phenomena will be

discussed below.

Note, that this cycle is not a limit cycle in the classical

mathematical sense. Indeed, for different values of V0, the
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Figure 3. Time series of the cycle shown in Fig. 2: u (m s−1), p (Pa) ans V (m3) as functions of time t (s).
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Figure 4. (a) illustrates a projection of the phase portrait p (Pa) vs. u (ms−1) of the deterministic system. (b)

shows u (m s−1) as a function of t (s). These dependencies are plotted for different values V0: V0 = 105 m3

(blue), V0 = 6.32× 105 m3 (red), and V0 = 106 m3 (green).
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Figure 4. (a) illustrates a projection of the phase portrait p (Pa) vs. u

(m s−1) of the deterministic system. (b) shows u (ms−1) as a func-

tion of t (s). These dependencies are plotted for different values V0:

V0 = 105 m3 (blue), V0 = 6.32× 105 m3 (red), and V0 = 106 m3

(green).

nonlinear system (Eqs. 1–3) exhibits different closed curves.

The cycles and time series for various values of V0 are com-

pared in Fig. 4. Note that an increase of V0 implies an in-

crease of both amplitude and period of oscillations.

3 The role of stochastic forcing

In order to study possible deviations of the friction force from

expression (Eq. 5) let us consider the parametric random dis-

turbances. Such disturbances simulate the influence of differ-

ent physical processes and phenomena leading to variations

in the friction force behavior (e.g., the effects of frictional

melting, and temperature-dependent friction).

At first we analyze the following F noise: F0→ F0(1+

εξ(t)), where ξ(t) is a standard Gaussian white noise

with parameters 〈ξ(t)〉 = 0, 〈ξ(t)ξ(τ )〉 = δ(t − τ), and ε is

a noise intensity. The corresponding stochastic system in-

cludes Eqs. (2) and (3) whereas Eq. (1) should be replaced

by

du

dt
=−g+

1

m0

[pA−F(u)] −
ε

m0

F(u)ξ(t). (6)

Note that under stochastic disturbances, random trajectories

leave the deterministic cycle and form a bundle of stochastic

trajectories.

If the noise intensity is small enough, such bundle has

a small dispersion and is localized near the deterministic cy-

cle (green lines in Fig. 5a). As the noise intensity increases,

along with the natural increase of dispersion, the follow-

ing unexpected phenomenon is observed: the bundle’s right

side of stochastic trajectories is shifted inside the determin-

istic cycle (blue and red lines in Fig. 5a). Some details of

the corresponding probabilistic distributions are presented in

Figs. 5a, b. The probability density functions of u coordi-

nates of intersection points of the random trajectories with

the line p = 1.2935× 107 Pa are plotted for three values of

the F -noise intensity in Fig. 5b whereas the probability den-

sity functions of time intervals between successive intersec-

tions are shown in Fig. 5c. As one can see, with increasing

noise, both the amplitude and period of stochastic oscilla-

tions decrease.

This stochastic phenomenon can be explained by the phase

portrait peculiarities of an initial deterministic system (see

Fig. 2b) near the upper part of vertical fragment of the cycle.

In the deterministic case, the phase trajectory slowly moves

along the vertical part of the cycle up to point C. At point

C, this trajectory abruptly changes the direction, and begins

to move along the arc part quickly. Under the stochastic dis-

turbances, random trajectories deviate from this vertical part

of the deterministic cycle. As a result of this deviation, the

random trajectory can cross the red pseudo-separatrix, and

then it falls within the region of large arc-form excursions.

In this case, the random trajectory turns right before point

C. The more noise, the earlier this turn. Such stochastic de-

formation of the random flow results in a decrease of u- and

p-oscillation amplitudes and of the period.

Under the further increase of noise intensity, random states

of the system (Eqs. 2, 3, 6) are localized and leave the interior

of the deterministic cycle. This noise-induced shift is demon-

strated in Fig. 6. Here, an essential decrease of the dispersion

of the p coordinate is observed. In other words, p stabilizes

near its certain value with increase in the noise intensity.

The dynamics of plug displacement is shown in Fig. 7. If

the noise intensity is large enough so that the system leaves

its cycle, the plug displacement increases with noise. If the

system is within its cycle, the displacement is also within

the corresponding deterministic stepwise curve (black line in

Fig. 7).

In order to study an influence of possible changes in

magma influx, let us consider a role ofQ noise:Q→Q(1+

δξ(t)), where ξ(t) is a Gaussian white noise, and δ is a Q-

noise intensity. In this case, a nonlinear dynamic system con-

sists of Eq. (1) as well as of the following stochastic equa-
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Figure 5. Stochastic cycles for ε = 10−6 (green), ε = 10−5 (blue), and ε = 5× 10−5 (red): (a) random trajectories p (Pa) vs. u (ms−1),

(b) probability density functions of u coordinates (ms−1), and (c) probability density functions of the period T (s).
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Figure 6. Random trajectories p (Pa) vs. u (ms−1) for ε = 10−4

(blue), ε = 5× 10−4 (red), ε = 7× 10−4 (brown), and ε = 10−3

(green). The open circle designates the point of unstable equilib-

rium.

tions:

dp

dt
=−

1

V (α1+α2)
[Au−Qeα1(p−p0)]

+
δ

V (α1+α2)
Qeα1(p−p0)ξ(t), (7)
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Figure 7. Displacement d (m) as a function of time t (s) under the

influence of F noise: deterministic case (black), ε = 10−4 (blue),

ε = 5× 10−4 (red), and ε = 10−3 (green).

dV

dt
=

α1

α1+α2

[Au−Qeα1(p−p0)]

−
δα1

α1+α2

Qeα1(p−p0)ξ(t). (8)
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Figure 8. Stochastic cycles p (Pa) vs. u (ms−1) for δ = 0.1 (a),

δ = 0.5 (b), and δ = 2 (c).

For weak noise, stochastic trajectories are localized near

the deterministic cycle (Fig. 8a). As noise intensity in-

creases, the dispersion of random trajectories increases as

well (Figs. 8b, c). It can be seen that the dispersion is ex-

tremely nonuniform along the cycle. For the vertical part,

a dispersion is small even for large noise, and the random

trajectories do not differ from the deterministic cycle. Along

the arc part, the dispersion of the random trajectories in-

creases. The probability density functions of u coordinates

of intersection points of the random trajectories with the line
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Figure 9. Influence of Q-noise for δ = 0.5 (blue), and δ = 2 (red): (a) probability density functions of u coor-

dinates (ms−1), (b) probability density functions of the period T (s).
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Figure 9. Influence of Q noise for δ = 0.5 (blue), and δ = 2 (red):

(a) probability density functions of u coordinates (ms−1), (b) prob-

ability density functions of the period T (s).

p = 1.2935× 107 Pa are plotted for three values of the Q-

noise intensity in Fig. 9a. Panel b of this figure shows the

probability density functions of time intervals between suc-

cessive intersections. As one can see, the dispersions grow

and the mean values are practically unchangeable with in-

creasing noise.

As one can see, the volcanic model under consideration

demonstrates quite different qualitative and quantitative re-

sponses to the random perturbations of different parameters.

The system is extremely sensitive to F noise so that even a

weak F noise implies a crucial deformation of the oscilla-

tory behavior. An increase of F noise leads to a decrease of

the period and amplitude of oscillations. Note that the sys-

tem is also sensitive toQ noise so that a large noise intensity

implies a dispersion increase of the arc part of stochastic os-

cillations.

4 Conclusions

The phase portrait of a deterministic system contains a point

of unstable equilibrium and a pseudo-separatrix, which sub-

divides the system into different dynamic areas (point C and

dashed red line in Fig. 2). In addition, if point (u,p) of the

phase plane lies below this pseudo-separatrix (Fig. 2b), the

system quickly reaches its equilibrium state (thick vertical

line in Fig. 2). If, however, the phase point (u,p) is above

this pseudo-separatrix, the system tends to its equilibrium

Nonlin. Processes Geophys., 22, 197–204, 2015 www.nonlin-processes-geophys.net/22/197/2015/
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state in course of a long time interval. An important point

of the deterministic behavior is that a certain constant value

of the plug velocity u establishes at different pressures p in

the state of equilibrium (thick vertical line in Fig. 2b). This

equilibrium state also persists at different conduit volumes V0

(Fig. 4). A time of system transition to its equilibrium state

(vertical line in Fig. 4a) therewith increases with increasing

V0. In addition, more broad conduits might have a rather big

variation in u and p than more narrow ones during the de-

terministic process of the volcanic plug evolution. By this is

meant that a time required to attain the equilibrium state in-

creases by increasing the conduit’s cross-sectional area.

In order to analyze the role of variations of two main pa-

rameters of the plug motion (friction force F and magma

influx Q), two types of noises have been introduced in the

model equations: F noise and Q noise. It was shown that

these noises lead to different evolutionary types of the dy-

namic system. Let us summarize the main aspects of this be-

havior. In the first place, random trajectories are scattered ei-

ther on both sides of the deterministic cycle (Q noise) or on

its internal side (F noise). Dispersions corresponding to ran-

dom trajectories of both noises upon that grow by increasing

the noise intensities. As this takes place, one can see that both

dispersions are highly inhomogeneous along cycles (Figs. 5,

8). Note that these dispersions are small enough in the verti-

cal parts of corresponding cycles for F and Q noises.

An important point is that an increase in dispersion occurs

in the vicinity of the pseudo-separatrix under the influence

of F noise. This is due to the fact that phase trajectories in-

tersect the pseudo-separatrix and the phase points undergo

transitions across it under the action of F noise. Let us es-

pecially emphasize that F -noise-phase trajectories leave the

corresponding deterministic cycle and form a stochastic bun-

dle shifted into the cycle’s interior. As this takes place, the

bundle’s dispersion increases while the period and amplitude

of oscillations decrease by increasing the F -noise intensity

(Fig. 5). By this is meant that the presence of F noise re-

duces possible variations in the plug velocity u and pres-

sure p and decreases a time required to attain the equilibrium

state (thick vertical line in Fig. 5a). It is significant that the

effect of pressure stabilization near a certain value (depen-

dent of the noise intensity) occurs with a rise in the F -noise

intensity. The random trajectories therewith leave the corre-

sponding cycle and are localized in the vicinity of this value

(Fig. 6). A dynamic behavior of the plug displacement is de-

pendent of whether the dynamic system is within or beyond

its phase cycle. In the former case, the plug displacement os-

cillates within the bounds of the corresponding deterministic

stepwise curve (Fig. 7). In the latter case, when the noise in-

tensity is sufficiently large, the plug displacement increases

drastically.

It is known that the eruption of Mount St. Helens was ac-

companied by rather regular repetitive long-period (or drum-

beat) earthquakes over a long time. Moreover, such drum-

beat events were more random from time to time. In addition,

subevents in the form of randomly occurring series of smaller

seismic events (produced by a separate random process) have

been imposed upon these long-period events (Matoza and

Chouet, 2010). The present study demonstrates that repetitive

stick–slip motions of the plug representing stochastic oscilla-

tions can be connected with these drumbeat earthquakes. The

calculated period between drumbeats (see Figs. 5 and 9) is in

agreement with experimental data (30–300 s, Iverson et al.,

2006). The physical reason is that such earthquakes observed

at shallow depths (<1 km at MSH) can be caused by the

stick–slip motions of the magma-plug system under the influ-

ence of noises where the driving force acting on a compliant

crustal body is large enough (the force drop responsible for

this kind of seismicity can be estimated from our calculations

as1F =1pA∼ 6×107 kgms−2, where1p ∼ 2×103 Pa).
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