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Abstract. Long’s equation describes steady-state two-

dimensional stratified flow over terrain. Its numerical so-

lutions under various approximations were investigated by

many authors. Special attention was paid to the properties of

the gravity waves that are predicted to be generated as a re-

sult. In this paper we derive a time-dependent generalization

of this equation and investigate analytically its solutions un-

der some simplifications. These results might be useful in the

experimental analysis of gravity waves over topography and

their impact on atmospheric modeling.

1 Introduction

Long’s equation (Long, 1953, 1954, 1955, 1959) models the

flow of inviscid stratified fluid in two dimensions over ter-

rain. When the base state of the flow (that is, the unper-

turbed flow field far upstream) is without shear the solutions

of this equation are in the form of steady lee waves. Solu-

tions of this equation in various settings and approximations

were studied by many authors (Drazin, 1961; Drazin and

Moore, 1967; Durran, 1992; Lily and Klemp, 1979; Peltier

and Clark, 1983; Smith, 1980, 1989; Yih, 1967). The most

common approximation in these studies was to set the Brunt–

Väisälä frequency to a constant or a step function over the

computational domain. Moreover, the values of the parame-

ters β and µ which appear in this equation were set to zero.

In this (singular) limit of the equation the nonlinear terms

and one of the leading second-order derivatives in the equa-

tion drop out and the equation reduces to that of a linear

harmonic oscillator over two-dimensional domain. Careful

studies (Lily and Klemp, 1979) showed that these approxi-

mations are justified unless wave breaking is present in the

solution (Peltier and Clark, 1983; Miglietta and Rotunno,

2014).

Long’s equation provides also the theoretical framework

for the analysis of experimental data (Fritts and Alexander,

2003; Shutts et al., 1988; Vernin et al., 2007; Jumper et al.,

2004) under the assumption of shearless base flow. (An as-

sumption which, in general, is not supported by the data.)

An extensive list of references appears in Fritts and Alexan-

der (2003), Baines (1995), Nappo (2012) and Yhi (1980).

An analytic approach to the study of this equation and its

solutions was initiated recently by the current author (Humi,

2004). We showed that for a base flow without shear and un-

der rather mild restrictions the nonlinear terms in the equa-

tion can be simplified. We also identified the “slow vari-

able” that controls the nonlinear oscillations in this equation

and using phase averaging approximation derived a formula

for the attenuation of the stream function perturbation with

height. This result is generically related to the presence of the

nonlinear terms in Long’s equation. We explored also differ-

ent formulations of this equation (Humi, 2007, 2009) and the

effect of shear on the solutions of this equation (Humi 2006,

2010).

One of the major obstacles to the application of Long’s

equation in realistic applications is due to the fact that it

is restricted to the description of steady states of the flow.

It is therefore our objective in this paper to derive a time-

dependent generalization of this equation and study the prop-

erties of its solutions. The resulting system contains two

equations for the time evolution of the density and the stream

function. While the equation for the stream function is rather

complicated it can be simplified in two instances. The first

corresponds to the classical (steady state) Long’s equation

while the second is time dependent and new (as far as we

know). In this paper we explore the properties of the flow in

this second case, which might find some applications in the

analysis of experimental data about gravity waves (Vernin et

al., 2007; Jumper et al., 2004; Nappo, 2012), and its applica-
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tion to atmospheric modeling (Richter et al., 2010; Geller et

al., 2013).

The plan of the paper is as follows: in Sect. 2 we derive the

time-dependent Long’s equation. In Sect. 3 we consider the

time evolution and proper boundary conditions on shearless

flow over topography. We end with the summary and conclu-

sion in Sect. 4.

2 Derivation of the time-dependent Long’s equation

In the paper we consider the flow in two dimensions (x, z)

of an inviscid, stratified and weakly compressible fluid that

is modeled by the following equations:

ux +wz = 0, (1)

ρt + uρx +wρz = 0, (2)

ρ (ut + uux +wuz)=−px, (3)

ρ (wt + uwx +wwz)=−pz− ρg, (4)

where subscripts indicate differentiation with respect to the

indicated variable, u= (u, w) is the fluid velocity, ρ is its

density, p is the pressure and g is the acceleration of gravity.

One possible interpretation of Eq. (1), is that the fluid is

incompressible while Eq. (2) is an advection equation for a

scalar (viz. ρ) by the flow. However, since we consider, in the

following, derivatives of the density we refer to this formula-

tion as representing a “weakly compressible fluid”.

We can nondimensionalize these equations by introducing

x =
x

L
, z=

N0

U0

z, u=
u

U0

, w =
LN0

U2
0

w,

ρ̄ =
ρ

ρ0

, p =
N0

gU0ρ0

p, (5)

where L, U0, and ρ0 represent respectively characteristic

length, velocity, and density. N0 is the characteristic Brunt–

Väisälä frequency:

N2
0 =−

g

ρ

dρ

dz
, (6)

where ρ is the ambient density profile of the atmosphere. In

the following we let N0 to be a constant.

In these new variables Eqs. (1)–(4) take the following form

(for brevity we drop the bars):

ux +wz = 0, (7)

ρt + uρx +wρz = 0, (8)

βρ (ut + uux +wuz)=−pz, (9)

βρ (wt + uwx +wwz)=−µ
−2 (pz+ ρ), (10)

where

β =
N0U0

g
, (11)

µ=
U0

N0L
. (12)

β is the Boussinesq parameter (Shutts et al., 1988; Baines,

1995) which controls stratification effects (assuming U0 6= 0)

and µ is the long wave parameter which controls dispersive

effects (or the deviation from the hydrostatic approximation).

In the limitµ= 0 the hydrostatic approximation is fully satis-

fied (Baines, 1995; Nappo, 2012). It should be observed that

these two parameters β and µ encapsulate the atmospheric

conditions which impact the creation of gravity waves over

terrain although one of them (µ) can be suppressed by addi-

tional scaling.

In view of Eq. (7) we can introduce a stream function ψ

so that

u= ψz, w =−ψx . (13)

Using this stream function we can rewrite Eq. (8) as

ρt + J {ρ,ψ} = 0, (14)

where for any two (smooth) functions f , g,

J {f,g} =
∂f

∂x

∂g

∂z
−
∂f

∂z

∂g

∂x
. (15)

Using ψ the momentum equation Eq.( 9), Eq. (10) be-

comes

βρ (ψzt +ψzψzx −ψxψzz)=−px, (16)

βµ2ρ (−ψxt −ψzψxx +ψxψxz)=−pz− ρ. (17)

We can suppress µ from the system (Eqs. 14, 16, 17) if we

introduce the following normalized independent variables:

t =
t

µ
, x =

x

µ
, z= z, µ 6= 0. (18)

Equations (14) and (16) remain unchanged and Eq. (17) be-

comes

βρ (−ψxt −ψzψxx +ψxψxz)=−pz− ρ, (19)

where we dropped the bars on t , x, and z. However, we ob-

serve that in these coordinates ψz= u and ψx =−µw.

Thus, after all these transformations the system of equa-

tions governing the flow is Eqs. (14), (16) and (19).

To eliminate p from Eqs. (16) and (18) we differentiate

these equations with respect to z and x respectively and sub-

tract. This leads to

βρz (ψzt +ψzψzx −ψxψzz)

+βρ (ψzzt +ψzψzzx −ψxψzzz)

−βρx (−ψxt −ψzψxx +ψxψxz)

−βρ (−ψxxt −ψzψxxx +ψxψxxz)= ρx . (20)

The sum of the second and fourth terms in this equation can

be rewritten as

βρ
[
∇

2ψt + J
{
∇

2ψ,ψ
}]
. (21)
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(However, observe that when µ 6= 1, ∇2ψ does not repre-

sent the flow vorticity due to the transformation Eq. (18) and

therefore the sum of the two terms in Eq. (21) is not zero in

general.)

To reduce the first and third terms in Eq. (20) we use

Eq. (14). We obtain

β
[
ρz (ψzt +ψzψzx −ψxψzz)

]
−β

[
ρx (−ψxt −ψzψxx)+ψxψxz

]
= β

[
ρzψzt + ρzψzψzx − (ρt + ρxψz)ψzz

+ρxψxt + (ψxρz− ρt )ψxx − ρxψxψxz
]

= β

{
ρzψzt + ρxψxt − ρt∇

2ψ +
1

2

J
{
(ψx)

2
+ (ψz)

2,ρ
}}
. (22)

Combining the results of Eqs. (21) and (22), Eq. (20) be-

comes

ρ
[(
∇

2ψ
)
t
+ J

{
∇

2ψ,ψ
}]
+ ρzψzt + ρxψxt

+

[
−ρt∇

2ψ +
1

2
J
{
(ψx)

2
+ (ψz)

2,ρ
}]
=
J {ρ,z}

β
. (23)

Thus, we have reduced the original four equations (Eqs. 1–4)

to two equations (Eqs. 14 and 23). This system of equations

can be considered as the generalization of Long’s equation to

time-dependent flows.

While Eq. (23) is rather complicated in general it can be

simplified further in some special cases. The first is when

one considers the steady state of the flow. (This simplifies

also Eq. 14.) This restriction leads to Long’s equation (Long,

1953, 1954, 1955, 1959; Baines, 1995; Yhi, 1980). Further-

more, if the density derivatives associated with the momen-

tum terms are neglected Eq. (23) reduces to the 2-D Boussi-

nesq equation (Tabaei et al.,2005). Another case happens

when ∇2ψ = 0; i.e., ψ is harmonic. (Note, however, that this

does not imply that the physical vorticity ∇ × u is zero due

to the transformation Eq. (18) unless µ= 1.) Equation (23)

becomes

ρzψzt + ρxψxt +
1

2
J
{
(ψx)

2
+ (ψz)

2,ρ
}
=
J {ρ,z}

β
. (24)

Observe that the derivatives of ρ with respect to time are not

present in this equation and this is consistent with Eq. (1).

However, if ∇2ψ = 0 we can define v1=ψz and

v2=−ψx . These definitions use the stretched coordinates of

Eq. (18) and then

(v1)z− (v2)x = 0.

This implies that there exists a function η so that

ηx = v1, ηz = v2.

That is,

ηx = ψz, ηz =−ψx .

Physically, these relations imply that ηx = u and ηz=µw.

Replacing ψ by η in Eq. (24) yields

J

{
ηt +

1

2

[
(ηx)

2
+ (ηz)

2
]
+
z

β
,ρ

}
= 0. (25)

Hence,

ηt +
1

2

[
(ηx)

2
+ (ηz)

2
]
+
z

β
= R(ρ), (26)

where R(ρ) is a parameter function that can be determined

from the asymptotic conditions on the flow. This equation is

formally similar to the Bernoulli equation with η playing the

role of the velocity potential. When µ= 1 and the term z
β

is

interpreted as potential energy, η represents potential flow.

To summarize, the equations of the flow in this case are

ρt + ηxρx + ηzρz = 0 (27)

(which replaces Eq. 14), and Eq. (26).

2.1 Other reductions of Eq. (23)

The reduction of Eq. (23) was carried out above under the

assumption ∇2ψ = 0. However, it can be generalized to case

∇
2ψ = a, where a is a constant. To this end we define

v1 = ψz, v2 =−ψx + ax.

Therefore,

(v1)z− (v2)x = 0,

which implies that there exists a function η so that

ηx = v1, ηz = v2.

Hence,

ηx = ψz, ηz =−ψx + ax. (28)

Using these relations to substitute η for ψ in Eq. (23) leads

to

ρzηxt − ρx(ηz− ax)t

+

[
−aρt +

1

2
J
{
(ηz− ax)

2
+ (ηx)

2,ρ
}]

=
J {ρ,z}

β
. (29)

Therefore,

J {ηt ,ρ}− aρt +
1

2
J
{
(ηz − ax)

2
+ (ηx )

2,ρ
}
=
J {ρ,z}

β
. (30)

Hence,

−aρt + J

{
ηt +

1

2

[
(ηz− ax)

2
+ (ηx)

2
]
+
z

β
,ρ

}
= 0. (31)

Using Eq. (14) we have
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−aJ {ψ,ρ}+ J

{
ηt +

1

2

[
(ηz − ax)

2
+ (ηx )

2
]
+
z

β
,ρ

}
= 0. (32)

It follows then that

−aψ + ηt +
1

2

[
(ηz− ax)

2
+ (ηx)

2
]
+
z

β
= R(ρ). (33)

We can eliminate ψ from this equation by differentiating

with respect to z and use Eq. (28):

−aηx +

[
ηt +

1

2

[
(ηz− ax)

2
+ (ηx)

2
]]
z

=−
1

β
+R(ρ)z. (34)

3 Time evolution of stratified flow

In this section we shall consider the time evolution of a

stratified shearless base flow, viz. a flow which satisfies as

t→−∞,

limx→−∞ρ
0(t,x,z)=

H − z

H
, limx→−∞u= 1, limx→−∞v = 0; (35)

i.e., the far upstream flow is independent of time and satisfies

asymptotically u= 1, v= 0, and ρ0 is stratified with height

(H is a height at which ρ0
≈ 0). The conditions on u and

v imply that asymptotically η0
= x. We note that this is the

standard setup that has been used to analyze experimental

observations of gravity waves (Jumper et al., 2004; Vernin

et al., 2007; Shutts et al., 1988). The solutions of Eqs. (26)

and (27) which we discuss below represent therefore gravity

waves which are generated by low lying topography.

In these limits Eq. (27) is satisfied. Substituting these lim-

iting values in Eq. (26) we obtain that

R(ρ)=
z

β
+

1

2
=
H(1− ρ)

β
+

1

2
. (36)

However, it is obvious that different profiles of the base flow

will yield a different R(ρ).

We now consider perturbations from the (shearless) base

flow described by Eq. (35) due to shape of the topography,

viz.

η = η0
+ εφ, ρ = ρ0

+ εζ. (37)

From Eqs. (26) and (27) we obtain to first-order in ε the fol-

lowing equations for φ and ζ :

∂φ

∂t
+
∂φ

∂x
+
Hζ

β
= 0, (38)

∂ζ

∂t
+
∂ζ

∂x
−

1

H

∂φ

∂z
= 0. (39)

To find the general form of the solution of these equations

we use Eq. (38) to express ζ in terms of φ and substitute in

Eq. (39). This yields the following equation for φ:
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t=8*pi

Figure 1. A cross section of the perturbation in ρ at z= 2.

∂2φ

∂t2
+ 2

∂2φ

∂t∂x
+
∂2φ

∂x2
+

1

β

∂φ

∂z
= 0. (40)

It is possible to find “elementary solutions” to this equation

by separation of variables if we let

φ = p(t,x)F (z),

where c is an arbitrary positive constant so that φ represents

a perturbation moving forward in time. This leads to

∂2p

∂t2
+ 2

∂2p
∂t∂x
+
∂2p

∂x2

p
=−

1

β

F(z)′

F(z)
=−ω2, (41)

where ω2 is the separation of variables constant. Primes de-

note differentiation with respect to the appropriate variable.

Solving Eq. (41) we obtain the following elementary solu-

tion for φ:

φω = Cω exp
[
βω2z

]
[G(x− t)cosωt +K(x− t)sinωt], (42)

whereG(x− t),K(x− t) are arbitrary smooth functions and

Cω is a constant.

The corresponding solution for ζ can be obtained by sub-

stituting this result in Eq. (38):

ζ = Cω
βω

H
exp

[
βω2z

]
[G(x− t)cosωt −K(x− t)sinωt] . (43)

Hence, the general solution for φ can be written as

φ =

∞∫
0

exp
[
βω2z

]
[Gω(x− t)cosωt +Kω(x− t)sinωt]dω (44)

with a similar expression for ζ .
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Figure 2. A cross section of the perturbation in ρ at x= 20.

3.1 Boundary conditions

We consider a flow in an unbounded domain over topogra-

phy with shape f (x) and maximum height h and impose

the following boundary conditions on ρ and ψ in the limits

x=−∞ and t =−∞:

ψ(−∞,−∞,z)= z, ρ(−∞,−∞,z)= ρ0(z). (45)

(This implies that in these limits η= x.)

At the topography we impose the following boundary con-

dition on ρ at t = 0:

ρ(0,x,εf (x))= ρ0(εf (x))=
H − εf (x)

H
(46)

but

ρ(0,x,εf (x))≈ ρ0(0,x,0)+ εζ(0,x,z).

Hence, at the topography

ζ(0,x,εf (x))=−
f (x)

H
. (47)

To derive the corresponding boundary condition for η

we first consider the appropriate boundary condition on the

stream function ψ along the topography. To this end we

assume that the topography is a line on which the stream

function is constant and this constant can be chosen to be

zero. For the base flow described in Eq. (45), ψ0= z and

ψ =ψ0+ ε ψ1 where ψ1 is the perturbation due to to the to-

pography. Hence, along the topography

0= ψ0+ εψ1 = z+ εψ1(0,x,εf (x))

= εf (x)+ εψ1(0,x,εf (x)). (48)

Therefore, along the topography we let ψ1(0, x,

ε f (x))=−f (x). We now observe that by definition

ψx = ηz. But ψx = ε ψ
1
x =−ε f

′(x), (where primes denote

differentiation with respect to x) and η=−x+ ε φ. There-

fore, we infer that the boundary condition on η along the

topography is

φz(0,x,εf (x))=−f
′(x) (49)

(which is consistent with Eq. 39).

As to the boundary condition on η(t , ∞, z), we observe

that the system of Eq. (26) and Eq. (27) contains no dissi-

pation terms and therefore only radiation boundary condi-

tions can be imposed in this limit. (Physically, this means

that the horizontal group velocity is positive and energy is

radiated outward.) Similarly, at z=∞ it is customary to im-

pose (following Peltier and Clark, 1983) radiation boundary

conditions. However, in view of Eqs. (42) and (43) it is ob-

vious that the perturbation described by these equations is

propagating forward in time and this condition is satisfied. A

formal verification of this constraint is possible by express-

ing F , G, and K in these equations using Fourier transform

representation.

For low lying topography (viz ε� 1) it is customary to

replace the boundary conditions Eqs. (46) and (47) by

ζ(0,x,0)=−
f (x)

H
, φz(0,x,0)=−f

′(x). (50)

Example: if f (x) is given by a “witch of Agnesi” curve,

then

f (x)=
a2(

a2+ x2
) , f ′(x)=− 2a2x(

x2+ a2
)2 . (51)

Let the initial perturbation in ρ be

ζ(0,x,z)= eβλ
2z,

where λ is a constant. From Eq. (50) we infer that the general

expression for ζ is given by Eq. (43) with ω= λ. Hence, at

t = 0 we must have

G(x)=−
f (x)

βλ
.

Similarly, the boundary condition on φ yields

K(x)=−
f ′(x)

βλ2
.

Figures 1 and 2 exhibit cross sections of the perturbation at

z= 2 and x= 20 at different times with Cω= 0.1, a= 2, and

λ= 1.
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4 Summary and conclusions

Steady-state solutions of Long’s equation model the verti-

cal structure of plane parallel gravity waves. These solu-

tions are useful, for example, in the parameterizations of

unresolved gravity wave drag where the WKBJ (Wentzel–

Kramers–Brillouin–Jeffreys) approximation is invoked to de-

scribe the time-dependent amplitude spectrum of a packet of

gravity waves propagating in a slowly varying background.

The present paper presents an alternative analytical

approach to solve (under several restrictions) this and similar

time-dependent problems without having to invoke the

WKBJ approximation. The analytical insights derived from

this approach might be used to complement and verify the

numerical results obtained from the WKBJ method.
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