
Nonlin. Processes Geophys., 21, 971–985, 2014
www.nonlin-processes-geophys.net/21/971/2014/
doi:10.5194/npg-21-971-2014
© Author(s) 2014. CC Attribution 3.0 License.

Representing model error in ensemble data assimilation

C. Cardinali 1, N. Žagar2, G. Radnoti1, and R. Buizza1

1European Centre for Medium-Range Weather Forecasts, Reading, UK
2University of Ljubljana and Center of Excellence SPACE-SI, Ljubljana, Slovenia

Correspondence to:C. Cardinali (carla.cardinali@ecmwf.int)

Received: 8 July 2013 – Revised: 24 June 2014 – Accepted: 30 June 2014 – Published: 23 September 2014

Abstract. The paper investigates a method to represent
model error in the ensemble data assimilation (EDA) sys-
tem. The ECMWF operational EDA simulates the effect of
both observations and model uncertainties. Observation er-
rors are represented by perturbations with statistics charac-
terized by the observation error covariance matrix whilst the
model uncertainties are represented by stochastic perturba-
tions added to the physical tendencies to simulate the ef-
fect of random errors in the physical parameterizations (ST-
method). In this work an alternative method (XB-method) is
proposed to simulate model uncertainties by adding pertur-
bations to the model background field. In this way the er-
ror represented is not just restricted to model error in the
usual sense but potentially extends to any form of back-
ground error. The perturbations have the same correlation
as the background error covariance matrix and their mag-
nitude is computed from comparing the high-resolution op-
erational innovation variances with the ensemble variances
when the ensemble is obtained by perturbing only the obser-
vations (OBS-method). The XB-method has been designed
to represent the short range model error relevant for the data
assimilation window. Spread diagnostic shows that the XB-
method generates a larger spread than the ST-method that
is operationally used at ECMWF, in particular in the extrat-
ropics. Three-dimensional normal-mode diagnostics indicate
thatXB-EDAspread projects more than the spread from the
other EDAs onto the easterly inertia-gravity modes associ-
ated with equatorial Kelvin waves, tropical dynamics and, in
general, model error sources.

The background error statistics from the above described
EDAs have been employed in the assimilation system.
The assimilation system performance showed that the XB-
method background error statistics increase the observation
influence in the analysis process. The other EDA background
error statistics, when inflated by a global factor, generate

analyses with 30–50 % smaller degree of freedom of signal.
XB-EDAbackground error variances have not been inflated.

The presented EDAs have been used to generate the ini-
tial perturbations of the ECMWF ensemble prediction sys-
tem (EPS) of which theXB-EDA induces the largest EPS
spread, also in the medium range, leading to a more reliable
ensemble. Compared toST-EDA, XB-EDA leads to a small
improvement of the EPS ignorance skill score at day 3 and 7.

1 Introduction

Data assimilation systems combine observations and back-
ground state, usually a short-range forecast of 6 or 12 h. Al-
ternative approaches to a deterministic initial condition sys-
tem based on ensemble methodologies such as the ensemble
Kalman filter or the ensemble variational analysis are nowa-
days widely used in numerical weather prediction (NWP).
They have the advantage of providing information on flow-
dependent background error covariances. Nevertheless, en-
semble data assimilation (EDA) systems are usually imple-
mented in the context of a perfect model and the failure of
representing model error affects for example the computation
of the background error variances, which tends to be under-
estimated. Different strategies have been tested to take model
error into account by rescaling the ensemble of analyses
with constant, isotropic factors (inflation), the multi-model
and multi-physical parameterization approach (Houtekamer
et al., 1996, 2005), the stochastic physical tendency (Buizza
et al., 1999) and the backscatter stochastic kinetic energy
schemes (Shutts, 2005; Berner et al., 2008). Comparison of
different model error representations has been performed by
Houtekamer et al. (2009), which indicates that the inflation
approach has the largest contribution in their model error
simulation.
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Several operational NWP centres such as Météo-France,
UK Met Office and Environment Canada have implemented
an EDA system. Recently, Météo-France has implemented
a six-member EDA where not only the observation uncer-
tainties are represented but also the model uncertainties are
explicitly taken into account. This is done by inflating the
background field with a latitude-level varying factor in the
ensemble (see Raynaud et al., 2009, 2012). Their first opera-
tional EDA configuration (Berre et al., 2007) has been used
in operations since July 2008. Flow-dependent background
error variances for the operational 4D-Var assimilation sys-
tem (Raynaud et al., 2011) were derived within a perfect
model framework and the estimated variances were inflated
“off-line” (i.e. after the ensemble has been completed) by us-
ing a posteriori diagnostics (Desroziers and Ivanov, 2001).
The inflation aims at representing model error contributions.
Multiplicative inflation is in fact a simple and widely used
technique to deal with unknown error sources. Because the
off-line multiplicative inflation that was applied to the vari-
ances was not accounted for in the background perturbation
update, the recently implemented operational EDA configu-
ration includes the multiplicative inflation to enlarge the am-
plitude of forecast perturbations within the ensemble.

The Environment Canada ensemble system is based on a
Kalman filter (Houtekamer and Mitchell, 2005; Houtekamer
et al., 2005) and has been used operationally since January
2005. It provides an ensemble of initial conditions for the
medium-range EPS (ensemble prediction system) and rep-
resents both observations and model sources of uncertain-
ties. In particular the model error component has been exten-
sively investigated. Initially a simplified and reduced ampli-
tude form of the Canadian 3D-Var background error covari-
ance was used to perturb the ensemble of background fields
(Houtekamer et al., 2005). Then, different ways to determine
the covariance for the additive model error component have
been investigated (Hamill and Whitaker, 2005) and model
error perturbations are added to the ensemble analysis rather
than to the background ensemble (Houtekamer and Mitchell,
2005) to account for the data assimilation weakness. More re-
cently, each member has a different model version (Meng and
Zhang, 2007; Fujita et al., 2007) to represent uncertainties in
model representation of physical processes. As already said
above, Houtekamer and Mitchell (2005) concluded that the
addition of isotropic model error perturbations to the ensem-
ble of analyses is found to have the largest impact in terms of
ensemble spread.

An EDA was operationally implemented at ECMWF in
June 2010 (Isaksen et al., 2010). The EDA ensemble con-
sists of ten independent members of lower resolution (with
respect to the high-resolution operational 4D-Var system)
4D-Var data assimilation systems with perturbed observa-
tions and perturbed model tendencies. In particular, the ob-
servation uncertainties are represented by perturbing the ob-
servations and the model uncertainties by adding stochastic
perturbations to the model tendencies during the first 12 h

model evolution using the Stochastically Perturbed Parame-
terization Tendency scheme (SPPT, see Palmer et al., 2009,
for a review).

The ECMWF EDA provides a flow-dependent or daily
model background error covariance matrix that is supposed
to improve the high resolution analysis system by better rep-
resenting the daily dynamical synoptic features (Raynaud et
al., 2008, 2009, 2011; Buehner et al., 2010). Since its imple-
mentation, the EDA has been used together with the singular
vectors to initialize the operational EPS (Molteni et al., 1996;
Buizza et al., 2007) and to improve the simulation of initial
uncertainties (Buizza et al., 2008), one of the fundamental
aspects of the EPS design.

In this paper, a different way of representing model error in
the operational ECMWF EDA is presented and compared to
the standard SPPT method. The model uncertainties are rep-
resented by adding perturbations to the model background
field. The magnitude of the perturbations varies with verti-
cal level and with geographical latitude. They are estimated
from a comparison between the innovation variance of the
high resolution 4D-Var system, i.e. the difference between
observation and background at the observation location, and
the ensemble data assimilation variance (variance taken over
an ensemble of assimilations over a 3-week period) in which
only observation uncertainties are represented. The model er-
ror representation is therefore similar to the one introduced
by Raynaud et al. (2012) at Météo-France that is referred to
as the multiplicative perturbation method. The method de-
scribed here is denoted as an additive perturbation method.
The error represented is not restricted to the model error in
the usual sense, i.e. the error that would be present in the
forecast even if the initial condition were exact, but is related
to any form of error, for example errors in the background co-
variance matrix coming from the operational ECMWF EDA.
The present paper studies the EDA sensitivity to the dif-
ferent model error representations. The proposed method is
compared to the operational one, which uses the stochasti-
cally perturbed parameterization tendency scheme to simu-
late model uncertainties, and to the EDA obtained by rep-
resenting only observation uncertainties. A fourth EDA has
also been designed to just quantify the impact of background
cycling in the EDA where only observations are perturbed.
Observation uncertainties are always equally represented in
all EDAs examined.

Section 2 describes the methodology used to simulate
model uncertainties. Section 3 analyses the spread character-
istics of the investigated EDAs by using a variety of diagnos-
tics and with an evaluation of the background error covari-
ance matrix provided by the EDAs. The EPS performance
sensitivity to the EDAs is also discussed. Conclusions are
drawn in Sect. 4.
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2 Representation of uncertainties

2.1 TheXB-EDA

An ensemble of analyses attempts to generate a representa-
tive sample of possible states of a dynamical system. The
samples are generated by the same assimilation system. From
the optimal solution of the analysis problem,xa = f (xb,y),
two input parameters can be identified: the observation vec-
tor y and the background vectorxb obtained from a short-
range forecast, respectively. An ensemble of analyses can
be generated by perturbing both input vectors. In particu-
lar, the observations uncertainties can be represented by per-
turbing vectory, whilst the model uncertainties (at least the
short-range model error) can be represented by perturbing
the model state vectorxb. The perturbed analysis equation
can be written as

x̃a = f (xb + ζ ,y + η) , (1a)

whereζ andη are perturbations defined as

ζ = f (λ, l,x)B1/2ζ̃

η = R1/2η̃ = σoη̃ (1b)

with f (λ, l,x) being a function of latitude (λ), model level
(l) and model parameters (x). ζ̃ and η̃ are samples of vec-
tors drawn from a multi-dimensional Gaussian distribution
with zero mean and identity covariance matrix. To achieve
that the final perturbationsζ andη have a covariance ma-
trix specified byB andR, respectively, the square root ofB
andR is applied to the sequence of normally distributed vec-
tors ζ̃ andη̃. B andR are the estimated background and ob-
servation error covariance matrices; they are therefore only
approximations of the true covariance matrices. WhenR is
diagonal (i.e. uncorrelated observation errors) a simple mul-
tiplication by the observation error standard deviationσo is
applied (Eq. 1b). Only two sets of observations are perturbed
with spatially correlated patterns. One is the atmospheric mo-
tion vector (AMV) observation (Bormann et al., 2003) and
the other set is the sea-surface temperature field (Vialard et
al., 2005).

The magnitude of the final perturbationζ is determined
by f (λ, l,x) which is estimated by comparing the variance
of the innovation vectord (over 3 weeks) with the ensemble
data assimilation variance, Var(EDA) (estimated over an en-
semble of assimilations over 3-week period), in the case the
ensemble data assimilation is obtained by only perturbing
the observations. The coefficientf (λ, l,x) is meant there-
fore to compensate for the discrepancy between the back-
ground error as obtained from the innovationd on the one
hand, and the a priori background error covariance matrix
B on the other. The innovation vector is the difference be-
tween the observation vectory and the background coun-
terpart of the observation computed by using the nonlinear

observation operator (H(xb)). Under the assumption of un-
biasedness of the errors and de-correlation between the back-
ground and observation errors, the background error vari-
ance, as obtained from the innovation, is Var(d) − σ 2

o . The
scalar functionf (λ, l,x) is hence defined as

f̃ = f (λ, l,x) =

√
Var(d) − σ 2

o − Var(EDA)

Var(d) − σ 2
o

, (1c)

where σ 2
o is the prescribed observation error variance. If

Var(d) − σ 2
o is less or equal to the EDA variance it is im-

posed thatf (λ, l,x) = 0. The perturbation amplitude mod-
ulation hence varies in the interval [0,1]. The innovation
variances have been computed for 10 hPa pressure layers
for atmospheric measurements located between the sur-
face and 50 hPa (wind observations), between surface and
5 hPa (temperature observations), and surface and 300 hPa
when humidity observations are considered. Three latitude
bands, namely Northern Hemisphere (20◦ N, 90◦ N), South-
ern Hemisphere (20◦ S, 90◦ S) and tropics (20◦ S, 20◦ N), and
a 3-week data set have been considered. For theu andv com-
ponent of the wind all conventional observations (radioson-
des, pilots, synops, aircrafts and profilers), AMVs and scat-
terometer observations have been used to compute the inno-
vation variance. For temperature conventional (radiosondes
and aircrafts) and AMSU-A observations, for humidity ra-
diosondes and All-Sky (SSM/I and TMI radiances) observa-
tions and, finally, for surface pressure all land and ocean sta-
tions have been used. The variation off̃ with latitude band,
model level and for model parametersu, T , andq, is shown
in Fig. 1. Figure 1a shows that for theu componentf̃ de-
creases in the troposphere, when pressure increases, down to
zero in the tropics and down to 0.3 in the extratropics (level 1
at 0.01 hPa, identifies the top of the atmosphere). If obser-
vations are unavailable to estimate the innovation variance,
the modulation factorf̃ is kept constant, i.e. from model
level 1–30 for wind, from model level 1–18 for tempera-
ture and model level 1–55 for humidity. Similar results for
the modulation factor are obtained for thev component of
the wind (not shown). In the lower troposphere close to the
surface the modulation factor globally increases on average
up to 0.6. For temperature (Fig. 1b) its magnitude increases
with the increase of pressure on average for the three latitude
bands from 0.3 to 0.5, the tropical modulation factor always
being the smallest.

For humidity (Fig. 1c)f̃ rapidly grows with the atmo-
spheric pressure level up to 0.8 (Southern Hemisphere) to-
wards the surface. Concerning surface pressure, the correc-
tion (1c) (not shown) is globally constant and around 0.4.
During the cycling,f̃ has been re-computed for retuning pur-
poses using Eq. (1c) every 3 days and by using the past 3-day
variance sample. However, the modulation factor has stabi-
lized rather fast after 2 days of cycling.

The background is perturbed at the start of each assimi-
lation window and the innovation vectord = (y − Hxb) is
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Figure 1. Perturbation modulation factor̃f as a function of lat-
itude band (North Hemisphere solid black line, Southern Hemi-
sphere dotted line, and tropics solid grey line) and vertical model
levels (model level 1 is 0.01 hPa and 91 is on average∼ 1000 hPa)
for (a) zonal wind,(b) temperature, and(c) humidity. The modula-
tion factor is estimated over a 3-week period.

computed along the trajectory starting from the perturbed
background to correctly take into account the background
changes (H is the non-linear model and observation oper-
ator) and to produce a balanced perturbed field. Figure 2
schematically represents the realization of the describedXB-
EDA ensemble. From a control (unperturbed) analysis the
two set of perturbations,η for the observations andζ for
the background, are respectively added at the beginning of
the 4D-Var assimilation window to create 10 different initial
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xb + ζ3
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y + η3
xb + ζ3Control

Analysis

Member 1
y + η1
xb + ζ1

Member 1
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xb + ζ1
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y + η10
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12 hr
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y + η10
xb + ζ10

Figure 2. Schematic diagram of theXB-EDArealization.

conditions (members). The two sets of perturbations are re-
computed and added to the observations and the background
field at every analysis cycle.

Theζ perturbation accounts for the short-range model er-
ror sources including the fraction of the analysis error that
is due to the model error. Sources of error are therefore not
only related to physical parameterizations but also to the dy-
namics, the spatial and temporal discretization, the linearized
physical process and the misspecification of the probability
distribution of errors in the observations and the background
model.

2.2 The other EDA

In all EDAs presented here the observation uncertainties are
represented by perturbing the observations whilst the model
uncertainties are produced differently. Table 1 shows all the
EDA configurations investigated. In particularOBS-EDAis
the ensemble analysis where only observation uncertainties
are represented (different observation values generate differ-
ent background fields during the cycling process). The OBS-
OBS ensemble is similar to theOBS-EDAone but the back-
ground fields are not cycled. At every cycle the 10-member
background fields are replaced with the background field
of the control, i.e. unperturbed analysis (Fig. 2). OBS-OBS
is performed to evaluate the impact of the cycling by the
background. The model error representation inST-EDA is
based on the SPPT scheme (Buizza et al., 1999; Palmer et
al., 2009). Since November 2009, the operational EPS uses
SPPT and the stochastic backscatter schemes (SPBS, Shutts,
2005; Berner et al., 2008) to simulate model uncertainties.
The SPBS scheme simulates the inverse energy cascade due
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Table 1.Ensemble data assimilation configurations.

EDA Methodology Inflation

OBS Perturbation added to observations Y
OBS-OBS Perturbation added to observations; members background fields are from Control An. Y
ST Perturbation added to observations; perturbation added to physical parameter tendency Y
XB Perturbation added to observations; perturbation added to background N

to the interaction between the unresolved and the resolved
scales, and aims to compensate for the over-dissipation oc-
curring in numerical models. The SPPT scheme, designed
to simulate random model errors due to physical parame-
terizations, is still assumed to explain the largest source of
model error in the EPS. The operational EDA configuration
does not use the SPBS scheme but only the SPPT. In partic-
ular, SPPT model uncertainty is simulated using the 1-scale
version of the stochastically perturbed parameterization ten-
dency scheme, which perturbs the total parameterized ten-
dency of physical processes. Since the 1-scale version use a
timescale of 6 h, there is no need to cycle the model error
perturbation across different data assimilation cycles. In the
1-scale version of the SPPT, the perturbations to the physical
tendencies are defined to have a spatial correlation length of
500 km and a time correlation of 6 h, as in the original SPPT
scheme (Buizza et al., 1999).

Because of the presumed ensemble analysis underdisper-
sivity (to be confirmed later) a global inflation factor (= 1.4)
has been applied to the background error standard deviation
in theOBS, OBS-OBSandST-EDAs methods to increase the
ensemble spread and to penalize the model background fur-
ther with respect to the observations in the assimilation pro-
cess. The static background covariance matrix has, in fact,
always been inflated in the ECMWF 4DVar assimilation sys-
tem to avoid the excessive weight given to the background
with respect to the observations. Indeed, studies on the ob-
servational influence in the analysis system have shown that
globally and for a given assimilation cycle only 15 % of
the information was provided by the observations while the
remaining 85 % were due to the background (Cardinali et
al., 2004; Cardinali, 2013). Unfortunately, the inflation is a
constant that does not vary with respect to the parameters,
with respect to the geographical location or weather situation
and the resulting ensemble spread is simply globally ampli-
fied.

3 Results

In this section EDAs with different model error represen-
tations are compared and diagnosed. Each EDA includes
10 perturbed and 1 unperturbed 12 h 4D-Var assimilations
(Rabier et al., 2000; Janisková et al., 2002; Tompkins and
Janisková, 2004; Lopez and Moreau, 2005) at the resolution
of TL399L91 (spectral triangular truncation with 399 wave

numbers and linear grid, and on 91 vertical levels) for the
model forecast andTL159L91 for the minimization calcula-
tion, respectively.

The four EDA schemes (Table 1) have been run for the pe-
riod 1 October–15 November 2008, with twice daily 12 h as-
similation cycles using observations from (21:00–09:00] and
(09:00–21:00] UTC.

3.1 EDA spread

In Fig. 3 the averaged spread of the four data assimilation en-
sembles is compared for the zonal wind component. The av-
erage spread has been computed over the period 5 October–
15 November 2008 (the first 5 days of the EDA computation
have not been included in the evaluation to take into account
“spin-up”) from 6 h forecasts according to the expression

Spread(EDA)= E


√√√√√ N∑

i=1
(mi − m̄)2

N − 1

 , (2a)

wheremi is theith ensemble member,N = 10 andm̄ is the
ensemble mean. Expectation stands for averaging over lon-
gitude and over the selected period.

When only observation uncertainties are represented (u

wind componentOBS-EDA, Fig. 3a), the spread is mainly
confined to the upper stratosphere (above model level 20, i.e.
∼ 10 hPa) and to the troposphere (below model level 40, i.e.
∼ 110 hPa) in the tropics. Very little spread is accomplished
poleward of 40◦ N or 40◦ S. To understand how much of the
spread is due to the cycling ofOBS-EDAover successive
assimilation windows, Fig. 3b shows theOBS-OBSspread.
TheOBS-OBSspread is mainly confined to the stratosphere
and with a smaller amount to the tropical troposphere. When
model errors are explicitly represented in the ensemble the
spread increases according to the method applied. Compared
toOBS-EDA, ST-EDApresents 10 % larger spread in the trop-
ics and the mid-latitudes (Fig. 3c). TheXB-EDAensemble
(Fig. 3d) shows the largest and more globally distributed
spread. It amounts to∼ 1 and 4 m s−1 larger thanST-EDA
in the tropics and the stratosphere, respectively. It is also
remarkably different in the high and medium extratropical
troposphere and differences exceed 4–5 m s−1 in the mid-
latitude. Blank areas are values between 0 and 0.5.
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Figure 3. Zonally averaged cross section for the period 5 October
to 15 November 2008 for theu component of the EDA spread.
(a) OBS-EDA, (b) OBS-OBS-EDA, (c) ST-EDAand (d) XB-EDA.
The vertical coordinate is model level. Contours are in m s−1.

Figure 4a shows the difference of spreads in theOBSand
OBS-OBS EDAs and illustrates the impact of cycling over
successive assimilation windows. Figure 4b shows the dif-
ference of spreads inXB andOBS EDAsand illustrates the
impact of the perturbation of the background (first part of
Eq. 1b). Most of the former difference is located in the strato-
sphere and in the tropics while the second extends to a large
part of the troposphere, especially in the Southern Hemi-
sphere. The figures also suggest that the differences are ev-
erywhere positive (blank areas are values between 0 and 0.5).

Figure 5 shows the reduction of globally averaged spread
of theOBS-, OBS-OBS-andST-EDAs relative to theXB-EDA
for each model level and theu component of the wind. The
spread inXB-EDAis a function of the amplitude of the per-
turbation applied to the background field. The spread loss
with respect to the XB ensemble is decreasing with the in-
crease of model level forST- and OBS-EDAwhereas it is
constant for theOBS-OBS EDAs. Close to the surface (i.e.
model level 91) the first two EDAs lose 20 and 40 % spread
and close to the top of the atmosphere 40–50 % on average
at all latitudes, respectively.

In all EDAs the largest spread is located in the stratosphere
where also the largest loss with respect to XB is observed.
Similar results are obtained for the temperature field but the
magnitude of the spread loss is 25 % smaller (not shown).

3.2 Spread case study

An example of spread differences among theOBS-, ST- and
XB-EDAs in physical space is presented for 20–21 October
2008 in Fig. 6. In this period an intense baroclinic devel-
opment took place over the northern West Pacific. In ad-
dition to a mature-stage cyclone moving toward the Gulf
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Figure 4. Zonally averaged cross section from 5 October 2008 to
15 November 2008 for theu component of the EDA spread.(a) Dif-
ference in spreads between theOBS-EDAand theOBS-OBS-EDA
spreads,(b) difference between theXB-EDA and theOBS-EDA
spreads. Vertical coordinate is model level. Contours in m s−1.
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Figure 5. Zonal wind field relative average spread loss ofOBS, ST,
OBS-OBS EDAwith respect toXB EDAat every model level and
for Northern (dashed line) and Southern (solid line) Hemisphere
and tropics (dotted line).

of Alaska, a deep cyclogenesis took place about 4000 km
westward at about 50◦ N, 180◦ W (not shown). All methods
produce spread associated with the two cyclones but differ-
ences exist in the structure and magnitude of the spread. The
comparison of 6 h forecast vorticity spread at 850 hPa valid
on 21 October at 12:00 UTC (Fig. 6) shows that theOBS-
EDA spread associated with the western cyclone is not only
smaller than in the other two EDAs but also located on the
north and northeastern side of the system (Fig. 6a). TheST-
and XB-EDAs both contain spread over a larger area. For
the mature-stage cyclone in the eastern Northern Pacific, the
spread in all three experiments has the typical comma shape
(East Pacific, around 45◦ N–150◦ W) of frontal systems asso-
ciated with baroclinic development. TheST- andXB-EDAs
are the most similar althoughXB-EDA(Fig. 6c) has a larger
maximal amplitude and occupies a larger area. It is worth
noticing thatXB-EDA is the only ensemble showing some
degree of uncertainty in the polar region where only very few
observations are available and consequently the analysis un-
certainties should be larger.
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Figure 6.6 h forecast of vorticity field spread at 850 hPa valid on 21 October 2008 at 12:00 UTC.(a) OBS-EDA, (b) ST-EDAand(c) XB-EDA.

3.3 Modal diagnosis of the ensemble spread

The discussion of the results in the previous sections is
complemented hereafter with the diagnosis of the ensem-
ble spread in terms of normal modes as described in Žagar
et al. (2011). The 10 members of the four ensemble experi-
ments are projected onto a set of three-dimensionally orthog-
onal vectors which are eigensolutions of the Navier–Stokes
equations linearized about an horizontally homogeneous sta-
ble state of rest. This projection allows the attribution of the
ensemble spread according to various horizontal and vertical
scales as well as linearly balanced (quasi-geostrophic) and
unbalanced (inertio-gravity, IG) parts of the flow. In Žagar
et al. (2011), the method was applied to the analysis of the
ensemble spread of the DART-CAM system whereas Žagar
et al. (2013) used the method to study the balance proper-
ties of the ECMWF EDA system. In the ECMWF EDA for
July 2007, it was found that about 50 % of the short-range
forecast-error variance was associated with the IG modes and
that the eastward-propagating IG component was dominant
on all scales. Both results were associated with the majority
of EDA variance being present in the tropics. On the other
hand, the ensemble spread of the DART-CAM ensemble was
characterized by a prevalence of the westward-moving IG
modes which was found to be related to the covariance in-
flation. These studies suggest that the normal mode function
(NMF) expansion is a useful diagnostic of EDA systems.

In the present study, we followed Žagar et al. (2013) to
analyse model levels under 10 hPa (model levels 19–91, to-
talling 73 levels) in order to avoid very large spread in
the mesosphere (see Fig. 3) that projects strongly on the
leading vertical modes and can obscure the interpretation

of the results. For the presented diagnostics, 6 h forecast
starting at 18:00 UTC in the period 18 October–16 Novem-
ber 2008 are used (30 samples) for 10 ensemble mem-
bers. The analysed data on the N64 Gaussian grid are pro-
jected onto 85 zonal wave numbers, 50 vertical modes and
40 meridional modes for each motion type, namely balanced,
eastward inertio-gravity (EIG mode) and westward inertio-
gravity (WIG mode).

In modal space, the ensemble spread based onN ensemble
members is defined as

Sν =

[
1

N − 1

N∑
i=1

gHν

[
χυ,i − χυ

]
·
[
χυ,i − χυ

]∗]1/2

, (2b)

whereχν,i is a non-dimensional complex projection coeffi-
cient for an ensemble memberi while ν is a four-indices
modal index which contains information about the zonal
wave number, the meridional mode, the vertical mode and the
wave type. The overbar stands for averaging overN ensem-

ble members, i.e.χυ is the ensemble mean,χυ =
1
N

N∑
i=1

χυ,i .

Each vertical mode is characterized by a value of “the equiv-
alent depth”H which couples horizontal and vertical mo-
tions. The spread computed by Eq. (2b) applies at a single
6 h forecast range and the results are presented as time aver-
ages over 30 samples. For details of the projection procedure
see Žagar et al. (2011) and references therein. One differ-
ence between the normal-mode diagnostics and other spread
evaluation methods consists in analysing simultaneously the
mass and wind fields making possible the physical interpre-
tation of balance relations.
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Figure 7. Time-averaged ensemble spread in the balanced and
inertio-gravity modes for(a) XB-EDA, (b) ST-EDA, (c) OBS- and
(d) OBS-OBS EDA. Black curves correspond to the spread associ-
ated with balanced modes (ROT), grey curves to spread due to east-
erly propagating inertia-gravity (EIG) modes whereas dotted curves
represent spread due to westerly propagating inertia-gravity modes
(WIG).

Spectra of the balanced, EIG and WIG energy spread as
a function of the zonal wave number are shown in Fig. 7. In
agreement with what has been presented so far, the ensemble
spread in theXB-EDAdominates over theST-EDAandOBS-
EDAat all scales and for all three motion types. TheST-EDA
spread is closer to theOBS-EDAspread than to theXB-EDA
spread. In all experiments, the EIG spread dominates over
WIG at largest horizontal scales and inXB-EDAit is greater
than the WIG spread on all scales due to the equatorial Kelvin
modes (not shown). TheXB-, ST- and OBS-EDAs have a
smaller percentage of their spread in the largest scale with re-
spect toOBS-OBS-EDA. Below zonal wave number 10, there
is around 30 % of the total spread for all experiments, vary-
ing from 28 % forST-EDAto 34 % forOBS-OBS-EDA(not
shown).

On average, the total spread inXB-EDA is between 1.7
and 1.6 times greater than theOBS-EDAspread. TheST-
EDA spread is around 1.25 times of theOBS-EDAspread.
Both XB- andST-EDAadd relatively more spread in the IG
part than in the balanced part with respect toOBS-EDA.
Instead, the experiment without cycling (OBS-OBS-EDA)
counts only for 40 % of the spread ofOBS-EDAfor all modes
(not shown).
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Figure 8. Ratios of the balanced (ROT), EIG, WIG and IG
(EIG + WIG) spread to the total spread in each zonal wave num-
ber for(a) XB-EDA, (b) ST-EDA, (c) OBS-EDAand(d) OBS-OBS-
EDA. The ratios are multiplied by 100. Black curves correspond
to balanced modes (ROT), grey to easterly propagating inertia-
gravity modes (EIG), dotted to westerly propagating inertia-gravity
(WIG) while dashed curves correspond to all inertia-gravity modes
(IG = EIG + WIG).

When the spread is summed up across all scales, the per-
centages of ROT, EIG and WIG spread in the four experi-
ments are 43, 28, 29 % forOBS-OBS-EDA, 41, 29, 30 % for
OBS-EDA, 39, 30, 31 % forST-EDA, and 40, 31, 29 % for
XB-EDA, respectively. Overall, theXB-EDA is the only ex-
periment with total EIG spread greater than the WIG spread.
As can be seen in Fig. 8, which presents ratios between the
balanced, EIG and WIG spread with the total spread as a
function of the zonal scale, this applies for every zonal wave
number. The dominance of the EIG spread in theXB-EDAis
most likely associated with the larger tropical spread in this
experiment (see also Fig. 3) and it is also in agreement with
Žagar et al. (2013), who presented the same conclusion for
the 3 and 12 h forecast-error variances in an earlier model cy-
cle. As discussed there, easterly propagating tropical modes
represent the most important variability and largest forecast
error source in the tropics.

Contrary toXB-EDA, theOBS-OBS-EDAandST-EDAex-
periments contain more WIG spread than EIG spread for
zonal wave numbers greater than 6 and 11, respectively
(Fig. 8). If the spread in each experiment is normalized by
OBS-EDA, it is found thatXB-EDAis characterized by an in-
creased EIG spread on all scales with respect toOBS-EDA
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while ST-EDAincreases more the WIG spread than the EIG
spread with respect toOBS-EDA(not shown). This result
may be a consequence of the variance inflation as found in
Žagar et al. (2011) for an ensemble Kalman filter system
DART/CAM.

Figure 8 also shows that in all experiments the IG spread is
dominant over the balanced spread for the zonal wave num-
bers greater than 10. At the shortest analysed scales, the IG
spread makes about 70 % of the total spread. Although dif-
ferences in the EIG and WIG spread may seem small when
expressed in percentages, they illustrate a sensitive balance
affected either dynamically (larger growth of forecast errors
in tropical easterly modes) or artificially (variance inflation)
with potentially major impacts on subsequent forecasts.

3.4 Using EDAs to define background error covariance
matrices for assimilation

Background error statistics, the staticB covariance matrix,
computed from theOBS-, ST- and XB-EDAs are provided
to the assimilation system and three TL399L91TL255 res-
olution analyses are computed for the period 5 October–
15 November 2008. Because at the time these experiments
were performed, the operational configuration was still us-
ing the staticB matrix, the use of a “flow dependent”B ma-
trix was not possible. Description of the computation of the
staticB matrix from an ensemble analysis can be found in
Fisher (2003); see also Derber and Bouttier, 1999, for co-
variance modelling. The background error covariance ma-
trix is modelled using coordinate transformations and spher-
ical wavelet techniques (Fisher, 2003). In addition, a non-
linear, analytical balance is included in the covariance model
(Fisher, 2003). TheOBS, ST andXB analyses use, respec-
tively, OBS-, ST- andXB-EDAsestimatedB matrices. Diag-
nostics have been performed to assess the background error
covariance impact on the assimilation system. The analysis
experiments have the same name of the EDA experiments
but bold fonts are used instead.

The first diagnostic presented is based on the observation
influence (OI) (Cardinali et al., 2004; Cardinali, 2013) which
quantifies the observational leverage in the analysis. The
mean OI is the degree of freedom for signal, DFS, or total
observation influence (Tukey, 1972; Velleman and Welsch,
1981; Wahba et al., 1995; Purser and Huang, 1993) divided
by the total number of observationN :

OI =
DFS

N
=

tr(HTLK)T

N
. (2c)

HTL is the linear observation operator andK is the gain
matrix. OI and DFS depend on the assigned accuracy of
the observations and background as well as the model itself
which is a space and time propagator. The DFS quantifies the
number of statistically independent directions constrained by
each observation. Differences in the OI or DFS in the three
assimilation experiments reflect differences in theB matri-
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Figure 9. Global average observation influence (OI) for the differ-
ent observation types assimilated in the XB (black line), ST (dark
grey line), OBS (light grey line) 4DVar analyses. AMSU-A and
AMSU-B are microwave radiances, AIRS and IASI and HIRS in-
frared radiances, SSMI microwave imager radiance, GPS-RO satel-
lite GPS radio occultation, OZONE retrieval, SCAT retrieved wind
information from microwave scatterometer, atmospheric motion
vector (AMV) from geostationary cloud imagery and vertical pro-
filer consists of wind from radiosonde, pilot, aircraft and wind pro-
filer observations.

ces. The OI is proved to be bounded between 0 and 1; 0 in-
fluence indicates that an observation has not had influence on
the estimate but only the background counted whilst OI = 1
means that an entire degree of freedom has been devoted to
fit that observation point. The OI can be gathered e.g. by ob-
servation type; in Fig. 9 the OI inOBS, ST andXB analyses
is shown for different satellite and conventional observation
types. Results indicate thatXB shows the largest OI.

In particular, the largest OI increase is noticed for wind
reporting observations (0.3OBS, 0.5ST and 0.7XB), GPS-
RO (0.2OBS, 0.3ST and 0.7XB), AMSU-B radiances
(0.2OBS, 0.3ST and 0.4XB) and All-Sky SSMI radiances
(0.1OBS, 0.2ST and 0.3XB). The OI diagnostic indicates
that when model errors are under-represented in the ensem-
ble analysis, the background error statistics are also under-
estimated and the observations have smaller leverage in the
assimilation procedure.XB analysis provides better observa-
tions fit (not shown) in agreement with the higher OI.XB
DFS is 50 % larger thanOBS and 30 % larger thanST DFS.

A measure of the consistency of the assimilation sys-
tem is provided by the diagnostics on the background-error
statistics computed in observation space (Talagrand, 2002;
Desroziers et al., 2005). If theK gain matrix is consistent
with the “true” covariances for background and observation
errors, the innovationd and the analysis errors should be de-
correlated from a statistical point of view. It can be simply
shown (Desroziers et al., 2005) that the covariance between
the analysis increment in observation space (Hxa−Hxb) and
the innovation vector (d), quantities archived during the as-
similation procedure, should satisfy

HTLBH T
TL ≈ E

[
(HTLxa− HTLxb)d

T
]
. (2d)
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The assigned background error variances,HTLBH T
TL (in ob-

servation space), are also archived; therefore the difference
between the assigned and estimated background variances
can be computed and averaged over the period of interest. In
the context of linear estimation theory, a consistent unbiased
analysis should result in no difference between the estimated
and assigned background error variance. The following vari-
ance consistency check (VCC):

VCC =

(
HTLBH T

TL

)
estimated−

(
HTLBH T

TL

)
assigned(

HTLBH T
TL

)
estimated

(2e)

measures the difference between the background error vari-
ances estimated from the analysis residuals (Desroziers et
al., 2005) and the background error variances assigned from
the ensemble analysis normalized with respect to the esti-
mated ones.

The VCC computed for the period 5 October–15 Novem-
ber 2008 forOBS, ST and XB analyses shows small but
non-zero values. Figure 10 shows the VCC for AMSU-A and
AMSU-B, HIRS, SSMI, SCAT, vertical profilers and AMV:
XB VCC is smaller thanOBS and smaller than or similar to
ST.

3.5 EDA-only based ensemble prediction system (EPS)
forecasts

Buizza et al. (2008) proposed to use EDA-based perturba-
tions in the ECMWF operational ensemble prediction system
(EPS), and in June 2010 EDA-based perturbations have been
introduced in the EPS to improve the simulation of initial
uncertainties (Isaksen et al., 2010). The replacement in the
EPS of the evolved singular vectors with EDA-based pertur-
bations improved substantially the EPS spread over the trop-
ics, with a detectable impact in the early forecast range also
over the extratropics. A positive impact was also detected on
the EPS skill.

The three EDAs discussed in this work can be used to as-
sess the sensitivity of EPS forecasts to the EDA configura-
tions. Two types of ensembles were run: the first type in-
cluded EDA-only perturbations, and the second type also in-
cluded singular vectors (this is the configuration of the oper-
ational EPS). Since the impact of the EDA is more evident in
the EDA-only type, attention will be focused mainly on them.
EDA-only EPSs have been run with the perturbations defined
using theOBS-, ST and XB-EDAs. All three EPS configu-
rations included 50 perturbed and 1 unperturbed members,
with variable resolution TL399L62 between forecast day 0
and 10, and TL255L62 between forecast day 10 and 15 (in
uncoupled mode). All forecasts have been run with both the
SPPT and the SPBS stochastic scheme as in the operational
EPS (in other words, even theOBS-EPSthat starts from the
OBS-EDA-based perturbations that did not use any stochas-
tic model, included stochastic perturbations in each of the 50
perturbed members). Forecasts have been run for 18 cases,
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Figure 10.VCC for AMSU-A and AMSU-B, HIRS, SSMI, SCAT,
vertical profilers and AMV from XB (black line), ST (dark grey
line), OBS (light grey line) analyses.

with initial conditions from 12 October to 14 November 2008
every other day (with 12:00 UTC as initial time).

In all ensemble configurations, following the methodology
used in the ECMWF EPS operational at the time when the
experiments were conducted (for more details, see Isaksen
et al. (2010) and references therein), the EDA-based compo-
nent of the 50 EPS initial perturbations have been constructed
by (a) defining 10 EDA-based perturbations by computing
the difference between each of the 10 EDA perturbed mem-
bers and the unperturbed (control) member and by (b) adding
and subtracting these EDA-based perturbations from the un-
perturbed analysis, defined by the ECMWF operational high-
resolution 4D-Var system. Since this procedure provides only
20 perturbations, EPS members 21–40 have the same initial
EDA-based perturbations as members 1–20, and EPS mem-
bers 41–50 have the same as members 1–10. The fact that
up to three EPS members can use the same EDA-based per-
turbations is not a problem in the ensembles run with initial
perturbations generated using both EDA-based perturbations
and singular vectors (as is the case for the operational EPS),
since 25 different SV-based initial perturbations are also used
to generate the 50 positive and negative SV-based perturba-
tions. For the EDA-only ensembles, the EPS members start-
ing with the same EDA-based perturbation diverge, albeit
in a slower way than the ensembles initialized by blending
EDA- and SV-based perturbations, since each EPS member
is integrated with different model error perturbations gener-
ated by the stochastic physic schemes.

The performance of an EPS is usually measured by a range
of metrics that compare, in a statistical sense, the forecast
probability distribution function with the verification (either
the analysis, or observations). Skill metrics that are routinely
used include the ranked probability score and skill score, the
Brier score (Brier, 1950), the area under a relative operat-
ing characteristic and the ignorance skill score (Roulston and
Smith, 2002). The reader is referred to Wilks (1995) for a
general overview, and e.g. to Palmer et al. (2007) for a re-
view of metrics used to assess the skill of the ECMWF EPS.
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Figure 11. Averaged spread measured by the standard deviation (solid lines) and error of the ensemble mean (lines with symbols) of the
EPS run with EDA-only perturbations generated fromOBS-EDA(light grey), ST-EDA(dark grey) andXB-EDA (black). Results refer to
the zonal wind component at 850 hPa over the(a) Northern Hemisphere (20–80◦ N), (b) Southern Hemisphere (20–80◦ S) and(c) tropics
(20◦ S–20◦ N). The average has been computed considering 18 cases, each with 51-member EPS forecast with initial condition from 12 to
14 November 2008, every other day (12:00 UTC only).

In this work, attention has been focused on three as-
pects: firstly the ensemble reliability, i.e. the consistency
between forecast probabilities and observed frequencies of
occurrence, measured by the agreement between ensem-
ble spread and ensemble-mean error; secondly the error of
the ensemble-mean forecast; and thirdly the skill of prob-
abilistic forecasts measured by the continuous rank prob-
ability skill score (CRPSS) and the ignorance score. Con-
sidering the first aspect, in a reliable ensemble, on average
the spread of the system measured by the standard devia-
tion should be equal to the average error of the ensemble
mean. This property follows from the fact that in such a sys-
tem, one ensemble member can be considered as the verifi-
cation (Buizza et al., 2005; Palmer et al., 2006). Figure 11
shows the EPS spread (measured by the standard deviation)
and the root-mean-square error of the ensemble mean fore-
cast for the zonal wind at 850 hPa (verified against the opera-
tional high resolution analysis), computed over the Northern
Hemisphere (20–80◦ N, Fig. 10a), over the Southern Hemi-
sphere (20–80◦ S, Fig. 10b) and over the tropics (20◦ S–
20◦ N, Fig. 10c).

Figure 11 shows that for all configurations the ensem-
bles are underdispersive, especially over the tropics, indi-
cating that EDA-only perturbations, if used as generated by
the EDA and not re-scaled, are not sufficient to produce re-
liable ensemble forecasts. Among the EDA configurations,
the XB-EPShas the largest spread, with differences evident
up to about forecast day 10. Considering the error of the en-
semble mean, Fig. 11 shows that the ensemble mean fore-
casts are very similar, almost undistinguishable for most of
the forecast times, with theXB-EPSshowing the smallest er-
ror for the forecast times when the spread is closer to the
ensemble-mean root-mean-square error level (e.g. between
forecast day 5 and 8 over the SH and between forecast day 5
and 10 over the tropics).

Considering the skill of probabilistic forecasts, all the met-
rics mentioned above have been considered, and since results
are all consistent, only CRPSS and ignorance skill scores
will be shown. The CRPSS is the equivalent of the mean
squared error for single forecasts, and give a measure of the
average distance between the forecast and observed distribu-
tions; the corresponding skill score, the CRPSSs have been
computed using a climatological probabilistic forecast as ref-
erence (thus a perfect probabilistic forecast would score 1,
and a forecast as skillful as climatology 0). The ignorance
skill score is a logarithmic score defined using informa-
tion theory (Roulston and Smith, 2002), based on the infor-
mation deficit (or ignorance) in the forecast. According to
Benedetti (2010), for probabilistic forecast systems the ig-
norance score and skill scores are more fundamental scores
than the Brier score and skill scores, given that these latter
are second-order approximations of the former. A clear ad-
vantage of these two scores compared to the Brier score and
skill score, or the area under a relative operating character-
istic, is that both the CRPSS and the ignorance skill score
consider the whole forecast probability distribution function
of forecast states, and not simply some specific event (e.g.
the probability of a variable exceeding a certain threshold).
Thus, they provide a more complete assessment than these
latter two (Wilks, 1995).

Figure 12a shows that in terms of CRPSS, the three EPSs
have a similar performance. The same conclusions can be
drawn from the ignorance skill score (Fig. 12b). However, it
is worth noting that the small but consistent improvement at
day 2 and 3 and day 6 as shown in Fig. 12a and b is observed
for all parameters at different levels. Similar conclusions
could be drawn by considering different performance metrics
for these variables, e.g. the Brier skill score or the area un-
der the relative operating characteristic for the probabilistic
prediction of dichotomous events such as “wind anomalies
above or below the climatological standard deviation” (not
shown).
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Figure 12. Average CRPSS(a) and ignorance score(b) of EPS
run with EDA-only perturbations generated fromOBS-EDA(light
grey), ST-EDA(dark grey) andXB-EDA (black) for temperature
at 850 hPa over the Southern Hemisphere. The average has been
computed considering 18 cases, 51-member EPS forecast with ini-
tial condition from 12 to 14 November 2008, every other day
(12:00 UTC only).

Concluding, these results based on EDA-only ensembles
indicate that the use of theXB-EDAin the EPS would lead to
a slightly better match between spread and error, i.e. a bet-
ter reliability, and to similar forecast skill as the use of the
ST- and OBS-EDAs The EPS experiments based on EDA-
based perturbations and singular vector perturbation indi-
cate smaller spread differences, detectable only up to fore-
cast day 5 instead of day 10, and practically no differences in
skill (not shown).

4 Conclusions

In this paper, the representation of model error in the
ECMWF 4DVar Ensemble Data Assimilation (EDA) system
by additively perturbing the background field is shown. The
method follows the idea used in the Meteorological Service
of Canada (MSC) ensemble Kalman filter (Houtekamer et
al., 2005) and in the ARPEGE 4D-Var system (Raynaud et
al., 2012) to account for model uncertainties in the EDA by
perturbing the model background field. In the MSC ensem-
ble Kalman filter the perturbation magnitude is globally con-
stant (but the representation of other errors is also consid-
ered) whilst at Météo-France the perturbation, as a function
of latitude band and model level, is multiplied to the back-
ground field (multiplicative approach). Here, the additive ap-
proach is presented.

The idea behind it is that a large fraction of model error is
represented by the short-range forecast error. Thus perturb-
ing the 12 h model forecast would include error sources intro-
duced by dynamics, spatial and temporal discretization and,
in the case of assimilation, linearized physical processes and
the misspecification of the probability distribution of errors

in the observations and the numerical background model.
The proposed methodology, contrary to the stochastically
perturbed parameterization tendency scheme, does not re-
quire routine diagnostic and tuning.

Ensembles of data assimilation with different representa-
tions of model error have been compared. In particular, two
more EDAs are examined, all with the same methodology
to represent the observation uncertainties but different tech-
niques to account for model uncertainties. One model error
representation technique is based on the assumption that ran-
dom model errors due to the physical process parameteri-
zations are the main model error source (ST-EDA). In the
ST-EDA, stochastic perturbations are added to the physical
model tendency at each model time step. The other ensem-
ble considered (OBS-EDA) only includes an observation er-
ror representation, which implicitly modifies the background
fields in the assimilation cycling process. In the additive XB-
method, the magnitude of the perturbation is calculated by
comparing the variance of the innovation vector of the high
resolution analysis system with the ensemble data assimila-
tion variance in which the ensemble data assimilation is pro-
duced by only perturbing the observations. The perturbation
is a function of latitude band, vertical model level and the
model parameter.

Results have shown that the EDA generated using XB-
method accounts for the largest spread, followed by theST-
EDA with stochastically perturbed parameterization tenden-
cies and theOBS-EDAwith observation-only perturbations.
The increase of spread depends on the location: the strato-
sphere accounts for the largest increase of spread. In the
tropics, the increase occurs mainly in the mid-troposphere,
while in the extratropics spread enhancement is detected at
all model levels and in the Southern Hemisphere in partic-
ular. The largest difference compared to other EDA config-
urations is found in the extratropics where all but theXB-
EDAare not able to produce significant spread. However, the
spread structure is quite similar among the different meth-
ods confirming that a large part of the model error sources
are affecting the short-range forecast. Comparison with re-
spect to the uncycled ensemble analysis (OBS-OBS EDA)
shows that the background perturbation adds spread from
high to low levels in the troposphere and into the extrat-
ropics in both Northern and Southern hemispheres. Normal-
mode diagnostics compare the percentage of balanced and
unbalanced spread in the four ensemblesXB-, ST-, OBS-
OBS- andOBS-EDA. It was found that various experiments
contain around 40 % of their spread in the balanced modes
with ST-EDAbeing the least balanced. BothST- and XB-
EDA add both balanced and IG spread homogeneously at all
scales when compared withOBS-EDA. An interesting dif-
ference betweenXB- and ST-EDAis found in the distribu-
tion of the added easterly IG spread relative to the west-
erly IG spread.XB-EDAadds more EIG spread on all scales
whereas theST-EDAincreases the WIG more than the EIG
spread when compared withOBS-EDA. Overall,XB-EDAis
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the only experiment which contains more spread in the east-
erly propagating IG modes than in the westerly IG compo-
nent. It is believed that this is due to the tropical flow proper-
ties which are strongly influenced by the easterly propagating
Kelvin waves. Although more investigation is needed to con-
firm this interpretation, the increase of spread in the westerly
IG mode for the ST is likely to be related to the inflation
of the model background error variances (as was found by
Žagar et al., 2011, for the DART-CAM ensemble). In fact,
it should be kept in mind thatOBS- andST-EDAs include a
global inflation factor of the background error variances that
penalizes the model background further with respect to the
observations. The inflation is a spatial and temporal constant
that does not depend on synoptic weather developments but
only intends to introduce larger ensemble spread.

The covariance matrices produced by the three ensemble
analyses have been provided to a higher resolution data as-
similation system. The diagnostic performed on the three re-
sulting analyses show that the largest observation influence
(OI) is obtained from the assimilation system withXB-EDA
background statistics. This is due to the larger background
error variances. When the analysis residual diagnostic is ap-
plied to investigate the consistency of the assimilation sys-
tems considered, systematical smaller differences are found
with XB showing closer agreement between the assigned and
estimated background error variances.

Finally, the three EDAs have been used in ensemble pre-
diction mode. Since June 2010, EDA-based perturbations
have been used with singular vectors to simulate initial un-
certainties in the ECMWF EPS (Buizza et al., 2008; Isak-
sen et al., 2010). Results have indicated that the use of the
XB-EDA in the EPS would lead to the largest spread, with
differences evident up to about forecast day 10 and with the
smallest error for forecast times from day 5 to 8 over South-
ern Hemisphere and from day 5 to 10 over the tropics when
the spread is closer to the ensemble mean root-mean-square
error. In terms of EPS forecast skill, very small but consis-
tent improvements up to day 7 have been detected when, in
particular, the ignorance score is used.

In conclusion, the XB-method discussed in this work is
shown to be a valuable alternative of the method used in the
current ECMWF EDA to simulate model uncertainty in the
ensemble analysis. It accounts for different sources of error
coming from the dynamics, the parameterizations, the lin-
earization and interpolation schemes and it is easier to tune
and maintain. The tuning of the perturbation is performed au-
tomatically every 3 days from a 3-day sample of the high res-
olution operational innovations. A possible extension of the
work presented would be to combine the background pertur-
bation method with the stochastic physical tendency pertur-
bation method or other methodologies that are considered to
simulate longer range random model error sources. The es-
timation of the background perturbations magnitude should,
in this case, be achieved by comparing the innovations of the
high resolution analysis system with the EDA in which not

only the observations are perturbed but also e.g. stochastic
perturbations are added to the physical model tendency, that
is, theST-EDA.

The Supplement related to this article is available online
at doi:10.5194/npg-21-971-2014-supplement.
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