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Abstract. The ensemble transform Kalman filter (ETKF) as-
similation scheme has recently seen rapid development and
wide application. As a specific implementation of the ensem-
ble Kalman filter (EnKF), the ETKF is computationally more
efficient than the conventional EnKF. However, the current
implementation of the ETKF still has some limitations when
the observation operator is strongly nonlinear. One problem
in the minimization of a nonlinear objective function similar
to 4D-Var is that the nonlinear operator and its tangent-linear
operator have to be calculated iteratively if the Hessian is
not preconditioned or if the Hessian has to be calculated sev-
eral times. This may be computationally expensive. Another
problem is that it uses the tangent-linear approximation of the
observation operator to estimate the multiplicative inflation
factor of the forecast errors, which may not be sufficiently
accurate.

This study attempts to solve these problems. First, we ap-
ply the second-order Taylor approximation to the nonlin-
ear observation operator in which the operator, its tangent-
linear operator and Hessian are calculated only once. The
related computational cost is also discussed. Second, we
propose a scheme to estimate the inflation factor when the
observation operator is strongly nonlinear. Experimentation
with the Lorenz 96 model shows that using the second-
order Taylor approximation of the nonlinear observation op-
erator leads to a reduction in the analysis error compared
with the traditional linear approximation method. Further-
more, the proposed inflation scheme leads to a reduction

in the analysis error compared with the procedure using the
traditional inflation scheme.

1 Introduction

The spatial and temporal distribution of observations is con-
tinuously changing with the improvement in numerical mod-
els and observation techniques. Sounding data, remote sens-
ing observations, satellite radiance data and other indirect
information bring both opportunities and challenges in data
assimilation. How to assimilate these indirect observations
is an important research topic in data assimilation (Re-
ichle, 2008).

The observation operators for indirect observations are of-
ten nonlinear. For example, radiative transfer codes (e.g., RT-
TOV, CRTM, Saunders et al., 1999; Han et al., 2006) can
be treated as observation operators by mapping air temper-
ature and moisture to the microwave radio brightness tem-
perature (McNally, 2009). Because the relationship of these
observations with modeled variables may be strongly nonlin-
ear (Liou, 2002) and the observation errors may be spatially
correlated (Miyoshi et al., 2013), data assimilation schemes
have to be appropriately designed to address such indirect
observations.

Most data assimilation methods are fundamentally based
on linear theory, but have different responses to departures
from linearity (Lawson and Hansen, 2004). Conceptually,
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variational data assimilation schemes (VAR; e.g., Parrish and
Derber, 1992; Courtier et al., 1994; Lorenc, 2003) can assim-
ilate data with nonlinear observation operators and spatially
correlated observation errors. However, a drawback of VAR
is that it has to calculate the adjoint of a dynamical model,
which is not an easy task in practice. Moreover, VAR does
not give a direct estimate of the background error covari-
ance matrix, which is crucial for the performance of any data
assimilation scheme. In general ensemble data assimilation,
the maximum likelihood ensemble filter (MLEF) minimizes
a cost function that depends on a general nonlinear observa-
tion operator to estimate the state vector, which is equivalent
to maximizing the likelihood of the posterior probability dis-
tribution (Zupanski, 2005). The particle filter uses a set of
weighted random samples (particles) to approximate the pos-
terior probability distribution that may depend on a nonlinear
observation operator (van Leeuwen, 2009).

The ensemble Kalman filter (EnKF) scheme has a strategy
to optimize forecast error statistics without using the adjoint
of the dynamical model (e.g., Evensen, 1994a, b; Burgers et
al., 1998; Anderson and Anderson, 1999; Wang and Bishop,
2003; Wu et al., 2013). It is also conceptually applicable to
data assimilation with nonlinear observation operators. How-
ever, it has been demonstrated that when the observation op-
erator is strongly nonlinear, using the linear approximation of
the observation operator to derive the error covariance evo-
lution equation can result in an oversimplified closure and
dubious performance of the EnKF (e.g., Miller et al., 1994;
Evensen, 1997; Yang et al., 2012).

The ensemble transform Kalman filter (ETKF) was first
introduced in atmospheric assimilation by Bishop and
Toth (1999) and Bishop et al. (2001). Wang and Bishop
(2003) transformed the forecast perturbations into analysis
perturbations by multiplying a transformation matrix. They
also proposed an efficient way to construct the transform ma-
trix through eigenvector decomposition of a matrix of the en-
semble size. Hunt et al. (2007) extended the ETKF method to
deal with a general nonlinear observation operator using the
cost function. In addition to the reduction of computational
cost compared with EnKF, another advantage of the ETKF
proposed by Hunt et al. (2007) is that it can assimilate obser-
vations with strongly nonlinear observation operators (Chen
et al., 2009) and with spatially correlated observation errors
(Stewart et al., 2013).

However, there are still problems associated with the
ETKF when the observation operator is strongly nonlinear.
First, the current ETKF is based on the minimization of a cost
function similar to that in VAR for nonlinear observation op-
erators (Hunt et al., 2007). First, the direct calculation for the
minima requires iterative evaluation of the nonlinear opera-
tors and their tangent-linear operators. Using linear approx-
imation of the nonlinear observation operators (e.g., Hunt et
al., 2007) can effectively reduce the computational burden,
but at the cost of increasing analysis error. Second, tangent-
linear approximation of the observation operator is used for

the forecast error inflation in the ETKF (e.g., Li et al., 2009).
If the observation operators are strongly nonlinear, the in-
flation factors and hence the forecast error covariance ma-
trices may be estimated erroneously, leading to an eventual
increase in the analysis error.

In this study, we propose two alternative approaches to im-
proving assimilation quality when the observation operator
is strongly nonlinear. First, in an effort to reduce computa-
tional cost without significantly reducing estimation quality,
we use the second-order Taylor expansion of the observation
operator to estimate both the inflation factors and the ana-
lysis states. Second, for the case where the inflation factor is
constant in space, we propose a new forecast error inflation
method for general nonlinear observation operators without
using tangent-linear approximation. It is worthwhile pointing
out that the proposed methodology implicitly assumes the
use of incremental minimization with outer and inner loops.
There may be other efficient methods available in mathemat-
ical optimization and control theory.

The potential use of the second-order information has been
noted by some authors. For example, Hunt et al. (2007) noted
that the second-order derivatives of the objective function
might be used to estimate the covariance of analysis weight,
which is an important step in ETKF with a nonlinear observa-
tion operator. Moreover, Le Dimet et al. (2002) and Daescu
and Navon (2007) noted that the second-order information
in nonlinear variational data assimilation is important to the
issue of solution uniqueness.

In the conventional ETKF scheme, linear approximation
of nonlinear observation operators is used for the purpose
of reducing the computational cost compared with conven-
tional methods of searching for the minima of nonlinear cost
functions (Hunt et al., 2007). This study also aims to inves-
tigate the changes in analysis errors when a nonlinear obser-
vation operator is substituted by its first-order and second-
order Taylor approximations. However, we focus on the for-
mulation of the forecast error inflation method in the case
of a nonlinear observation operator, and on the improved
accuracy with second-order versus first-order approximation
or linear approximation. Further studies on the performance
of the proposed schemes in practical data assimilations are
needed, and should be performed in the future.

The rest of the paper is organized as follows. Our modified
ETKF schemes are described in Sect. 2. The assimilation re-
sults in a Lorenz 96 model with a nonlinear observation sys-
tem are presented in Sect. 3. The discussions are given in
Sect. 4, and the conclusions are in Sect. 5.

2 Methodology

2.1 ETKF with forecast error inflation

Hunt et al. (2007) gave a comprehensive description of
the ETKF with a nonlinear observation operator without

Nonlin. Processes Geophys., 21, 955–970, 2014 www.nonlin-processes-geophys.net/21/955/2014/



G. Wu et al.: Improving the ETKF using second-order information 957

procedures for forecast error inflation. In this section, we pro-
pose an inflation scheme for general nonlinear observation
operators.

Using the notations of Ide et al. (1997), a nonlinear
discrete-time forecast and observation system can be written
as

xt
i = Mi−1

(
xa

i−1

)
+ ηi, (1)

yo
i = Hi

(
xt

i

)
+ εi, (2)

where i is the time step index;xt
i =

{
xt

1,i,x
t
2,i, . . . ,x

t
n,i

}T

is the n-dimensional true state vector;xa
i−1 ={

xa
1,i−1,x

a
2,i−1, . . . ,x

a
n,i−1

}T

is the n-dimensional analysis

state vector that is an estimate ofxt
i−1; Mi is the nonlinear

forecast operator;yo
i =

{
yo

1,i,y
o
2,i, . . . ,y

o
pi ,i

}T

is the pi-

dimensional observation vector;Hi =
{
h1,i,h2,i . . . ,hpi ,i

}T
is the nonlinear observation operator, wherehk,i is an
n-dimensional multivariate function; andηi andεi are the
forecast and observation error vectors that are assumed to
be statistically independent of each other, time uncorrelated,
and to have mean zero and covariance matricesPi andRi ,
respectively. The detailed procedure of the ETKF with a
nonlinear observation operator (Hunt et al., 2007) with the
proposed inflation scheme is as follows.

Step 1. Calculate thej th perturbed forecast state at timei

as

xf
i,j = Mi−1

(
xa

i−1,j

)
, (3)

wherexa
i−1,j is thej th perturbed analysis state at timei −1.

Then, the mean forecast state is defined as

xf
i =

1

m

m∑
j=1

xf
i,j , (4)

wherem is the total number of ensemble members.
Step 2. Assume the forecast errors to be in the form

√
λi

(
xf

i,j − xf
i

)
, j = 1,2, . . . ,m, where the inflation fac-

tor λi can be estimated by minimizing the objective function

Li(λ) = Tr
[(

d id
T
i −Ci(λ)−I

)(
d id

T
i −Ci(λ)−I

)T ]
. (5)

Here,I is thepi × pi identity matrix,

d i = R−1/2
i

(
yo

i − Hi

(
xf

i

))
(6)

is the innovation vector normalized by the square root of
the observation error covariance matrix (Wang and Bishop,

2003), and

Ci(λ) ≡
1

m − 1

m∑
j=1

[
R−1/2

i

(
Hi

(
xf

i +
√

λ
(
xf

i,j − xf
i

))
−Hi

(
xf

i

))(
Hi

(
xf

i +
√

λ
(
xf

i,j − xf
i

))
−Hi

(
xf

i

))T

R−1/2
i

]
. (7)

(See Appendix A for details.)
Step 3. Calculate the analysis state as

xa
i = xf

i +

√
λ̂iXf

iw
a
i , (8)

where

Xf
i =

(
xf

i,1 − xf
i,x

f
i,2 − xf

i, . . . ,x
f
i,m − xf

i

)
(9)

andwa
i is estimated by minimizing the objective function

Ji(w) =
1

2
(m − 1)wT w +

1

2

[
yo

i − Hi

(
xf

i +

√
λ̂iXf

iw
)]T

R−1
i

[
yo

i − Hi

(
xf

i +

√
λ̂iXf

iw
)]

. (10)

Step 4. Calculate a perturbed analysis state as

xa
i,j = xa

i +

√
λ̂iXf

iW
a
i,j , (11)

where Wa
i,j is the j th column of the matrix Wa

i =

√
m − 1

(
J̈i|wa

i

)−1/2
and J̈i|wa

i
is the second-order deriva-

tive of Ji(w) at wa
i (see Appendix B for details). Lastly, set

i = i + 1 and return to Step 1 for the next iteration.
To estimate the inflation factor, Li et al. (2009) proposed

a scheme that requires the tangent-linear operator of the ob-
servation operator (see Sect. 2.2.1 for the definition). In an
effort to reduce the computational cost of searching for the
minima of the objective function (Eq.10), Hunt et al. (2007)
suggested the following linear approximation:

Hi

(
xf

i +

√
λ̂iXf

iw
)

≈ Hi

(
xf

i

)
+ Yf

iw, (12)

where

Yf
i =

{
Hi

(√
λ̂i

(
xf

i,1 − xf
i

)
+ xf

i

)
− Hi

(
xf

i

)
,

Hi

(√
λ̂i

(
xf

i,2 − xf
i

)
+ xf

i

)
− Hi

(
xf

i

)
, . . . ,

Hi

(√
λ̂i

(
xf

i,m − xf
i

)
+ xf

i

)
− Hi

(
xf

i

)}
. (13)

In this study, this traditional ETKF approach is validated
against other approaches.
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2.2 Simplified estimation methods in special cases

To compute the variational minimization in Eq. (10) op-
erationally, one can directly compute the explicit solution
of the minima and iterate the process as in the 4D-Var
outer loop (Lorenc, 2003; Liu et al., 2008). However, do-
ing so still requires repeatedly calculating the nonlinear func-

tion Hi

(
xf

i +

√
λ̂iXf

iw

)
and its tangent-linear operator (see

Sect. 2.2.1 for the definition), which depend onw andxf
i .

In this subsection, we propose an alternative procedure when
the observation operatorHi can be approximated by its Tay-
lor expansions.

2.2.1 First-order Taylor approximation for Hi

The first-order Taylor approximation forHi at the forecast
state vectorxf

i is defined as

Hi

(
xt

i

)
≈ Hi

(
xf

i

)
+ Ḣi|xf

i

(
xt

i − xf
i

)
, (14)

where

Ḣi|xf
i
=


∂h1,i

∂x1,i
· · ·

∂h1,i

∂xn,i

...
. . .

...
∂hpi ,i
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· · ·

∂hpi ,i

∂xn,i


∣∣∣∣∣∣∣∣
xi=xf

i

(15)

is the first-order derivative ofHi evaluated at the forecast
statexf

i (tangent-linear operator). Then,λi can be estimated
by minimizing the quadratic function

L1,i(λ) = Tr
[(

d id
T
i − λR−1/2

i Ḣi|xf
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T
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The analytic solution is

λ̂i =

Tr
[
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T
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i
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where
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1
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Xf
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(
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. (18)

Similarly, wa
i can be estimated by minimizing the multivari-

ate quadratic function
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1
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and the analytic solution is
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(See Appendix C for details.)

2.2.2 Second-order Taylor approximation forHi

The second-order Taylor approximation forHi at xf
i is de-

fined as

Hi(x
t
i) ≈ Hi

(
xf

i

)
+ Ḣi|xf

i

(
xt

i − xf
i

)
+

1

2

((
xt

i − xf
i

)T

⊗ Ḧ
i|x

f
i
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(
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i − xf
i

))
, (21)

whereḢi|xf
i
is the tangent-linear operator defined in Eq. (15),

and Ḧi|xf
i
≡

{
Ḧ1,i|xf

i
, . . . , Ḧpi ,i|x

f
i

}T

is the second-order

derivative ofHi atxf
i , which is api-dimensional vector with

thekth element meaning the following Hessian matrix:

Ḧk,i|xf
i
≡


∂2hk,i

∂x1,i∂x1,i
· · ·

∂2hk,i

∂x1,i∂xn,i

.

.

.
. . .

.

.

.
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· · ·
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
∣∣∣∣∣∣∣∣
xi=xf

i

k = 1, . . . ,pi . (22)

Here,⊗ is the outer product operator; i.e., for two arbitrary
n-dimensional vectorsx andy,

xT
⊗ Ḧi|xf

i
⊗ y =

{
xT H1,i|xf

i
y, . . . ,xT Ḧpi ,i|x

f
i
y
}T

, (23)

is api-dimensional vector. Then,λi can be estimated by min-
imizing the polynomial objective function ofλ1/2

L2,i(λ) = Tr
[(

d id
T
i − λR−1/2

i Ḣi|xf
i
P̂iḢ

T

i|xf
i
R−1/2

i

− λ3/2C1,i − λ3/2CT
1,i − λ2C2,i − I

)
(
d id

T
i − λR−1/2

i Ḣi|xf
i
P̂iḢ

T

i|xf
i
R−1/2

i − λ3/2C1,i

− λ3/2CT
1,i − λ2C2,i − I

)T ]
, (24)

where

C1,i =
1

2(m − 1)

m∑
j=1[

R−1/2
i Ḣi|xf

i

√
λi

(
xf

i,j − xf
i

)((
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i,j − xf
i

)T
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i

⊗

(
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i

))T
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i

]
(25)
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and

C2,i =
1

4(m − 1)

m∑
j=1

[
R−1/2

i

((
xf

i,j − xf
i

)T

⊗ Ḧi|xf
i

⊗

(
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i,j − xf
i

))((
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i,j − xf
i

)T

⊗ Ḧi|xf
i

⊗

(
xf

i,j − xf
i

))T

R−1/2
i

]
(26)

are twom × m matrices.
Moreover,wa

i can be estimated by minimizing the multi-
variate polynomial objective function

J2,i(w) ≈
1

2
(m−1)wT w+

1

2

[
yo

i −Hi

(
xf

i

)
−

√
λ̂iḢi|xf

i
Xf
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−
λ̂i

2

((
Xf

iw
)T

⊗ Ḧi|xf
i
⊗

(
Xf

iw
))]T

R−1
i[

yo
i − Hi

(
xf

i

)
−

√
λ̂iḢi|xf

i
Xf

iw −
λ̂i

2

((
Xf

iw
)T

⊗ Ḧi|xf
i
⊗

(
Xf

iw
))]

(27)

(see Appendix D for details).

2.3 Validation statistics

In the following experiments, the “true” statext
i is known by

experimental design, and is non-dimensional. In this case, we
can use the root mean square error of the analysis state (A-
RMSE) to evaluate the accuracy of the assimilation results.
The A-RMSE at theith step is defined as

A-RMSE=

√
1

n

∥∥xa
i − xt

i

∥∥2
, (28)

where‖·‖ denotes the Euclidean norm, andn is the dimen-
sion of the state vector. A smaller A-RMSE indicates a better
performance of the assimilation scheme.

Following Anderson (2007) and Liang et al. (2012), the
root mean square error of the forecast state (F-RMSE) and
the spread of the forecast state (F-Spread) at theith step are
defined as

F-RMSE=

√
1

n

∥∥xf
i − xt

i

∥∥2
(29)

and

F-Spread=

√√√√ 1

n(m − 1)

m∑
j=1

∥∥∥xf
i,j − xf

i

∥∥∥2
. (30)

Roughly speaking, ifxf
i,j andxt

i are identically distributed

with a mean value ofxf
i , then F-RMSE and F-Spread should

be consistent with each other. This is more likely the case
if the model error is small. In general, the F-RMSE can be
decomposed into an F-Spread component and a model error

component, so it is larger than F-Spread (see Appendix B of
Wu et al., 2013, for a detailed proof). Besides model error,
the nonlinearities and the sampling error may also affect the
consistency between F-RMSE and F-Spread, as is discussed
later in this paper.

3 Experiments with the Lorenz 96 model

In Sect. 2.1, we outlined the general ETKF assimilation
scheme with second-order least squares (SLS) error covari-
ance matrix inflation. In Sect. 2.2, we proposed simplified
estimation methods for two special cases whereHi either is
tangent linear (Sect. 2.2.1) or can be approximated by the
second-order Taylor expansion (Sect. 2.2.2). In this section,
we apply these assimilation schemes to the Lorenz 96 model
(Lorenz, 1996) with model errors and a nonlinear observa-
tion system, because it is a nonlinear dynamical system with
properties relevant to realistic forecast problems.

3.1 Description of the dynamic and observation system

The Lorenz 96 model (Lorenz, 1996) is a strongly nonlinear
dynamical system with quadratic nonlinearity governed by
the equation

dXk

dt
= (Xk+1 − Xk−2)Xk−1 − Xk + F, (31)

wherek = 1,2, . . . ,K (K = 40, so there are 40 variables).
We apply the cyclic boundary conditionsX−1 = XK−1,
X0 = XK , andXK+1 = X1. The dynamics of Eq. (31) are
“atmosphere-like” in that the three terms on the right-hand
side consist of a nonlinear advection-like term, a damping
term and an external forcing term, respectively. These terms
can be thought of as a given atmospheric quantity (e.g., zonal
wind speed) distributed on a latitude circle.

We solve Eq. (31) using the fourth-order Runge–Kutta
time integration scheme (Butcher, 2003), with a time step
of 0.05 non-dimensional units to derive the true state. This
is equivalent to about 6 h in real time, assuming that the
characteristic timescale of the dissipation in the atmosphere
is 5 days (Lorenz, 1996). In our assimilation schemes, we
set F = 8 so that the leading Lyapunov exponent implies
an error-doubling time of approximately 8 time steps (i.e.,
0.4 non-dimensional time units), and the fractal dimension
of the attractor is 27.1 (Lorenz and Emanuel, 1998). The
initial condition is chosen to beXk = F when k 6= 20 and
X20 = 1.001F .

Because the microwave brightness temperature is an expo-
nential function of soil temperature, we use the exponential
observation function to mimic the radiative transfer model in
this study. Suppose the synthetic observation generated at the
kth model grid point is

yo
k,i = xt

k,i exp
{
αxt

k,i

}
+ εk,i, (32)
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wherek = 1, . . . ,pi , andεi =
{
ε1,i,ε2,i, . . . ,εpi ,i

}T is the
observation error vector with mean zero and covariance ma-
trix Ri . Here,α is a parameter controlling the nonlinearity of
the observation operator, andα = 0 corresponds to the lin-
ear case. All 40 model variables are observed in our exper-
iments. Suppose the observation errors are spatially corre-
lated. The leading-diagonal elements ofRi areσ 2

o = 1, and
the off-diagonal elements at site pair (j , k) are

Ri (j,k) = σ 2
o · 0.5min(|j−k|,40−|j−k|). (33)

With the exponential observation function and spatially cor-
related observation errors, the proposed scheme may poten-
tially be applied to assimilate remote sensing observations
and radiance data.

We added model errors to the Lorenz 96 model because
they are inevitable in real dynamic systems. The model is a
forced dissipative model with a parameterF that controls the
strength of the forcing (Eq.31). It behaves quite differently
with different values ofF , and it produces chaotic systems
with integer values ofF larger than 3. Thus, we used various
values ofF to simulate a wide range of model errors while
retainingF = 8 when generating the “true” state. These ob-
servations were then assimilated withF = 4,5, . . . ,12. We
simulated observations every 4 time steps for 100 000 steps
to ensure robust results (Sakov and Oke, 2008; Oke et al.,
2009). The ensemble size is 30.

3.2 Assimilation results

In this section, we examine the following five data assimi-
lation methods corresponding to five different treatments of
nonlinearity in inflation factor estimation and optimization:

ETKF: traditional ETKF in linear approximation
(Eq.12) and optimization (Eq.10).

TT: tangent-linear approximation in both inflation
(Eq.17) and optimization (Eq.20).

TN: tangent-linear approximation in inflation (Eq.17)
and nonlinearity in optimization (Eq.10).

SS: second-order approximation in both inflation
(Eq.24) and optimization (Eq.27).

NN: nonlinearity in both inflation (Eq.5) and optimiza-
tion (Eq.10).

The corresponding time-mean A-RMSEs of these as-
similation schemes withα = 0.1 andF = 4,5, . . . ,12, over
100 000 time steps, are plotted in Fig. 1a. First, the figure
clearly shows that for each estimation method, the A-RMSE
increases asF becomes increasingly distant from the true
value of 8.

Moreover, method NN has a smaller A-RMSE uniformly
over all values ofF than method TN, indicating that the pro-
posed nonlinear inflation estimation (Eq.5) performs bet-
ter than the tangent-linear inflation scheme (Eq.17). On

Figure 1. (a) Time-mean values of the A-RMSE as a function of
forcingF for different assimilation methods in the Lorenz 96 model
and the observation operator (Eq.32) with parameterα = 0.1.
(b) Time-mean values of the A-RMSE as a function of parameter
α for different assimilation methods in the Lorenz 96 model with
F = 12. ETKF: traditional ETKF in linear approximation (Eq.12)
and optimization (Eq.10) (cyan line); TT: tangent-linear approx-
imation in both inflation (Eq.17) and optimization (Eq.20) (red
line); TN: tangent-linear approximation in inflation (Eq.17) and
nonlinearity in optimization (Eq.10) (green line); SS: second-order
Taylor approximation in both inflation (Eq.24) and optimization
(Eq. 27) (blue line); NN: nonlinearity in both inflation (Eq.5) and
optimization (Eq.10) (black line). The ensemble size is 30.

the other hand, the A-RMSEs of methods SS and TN are
close, and smaller than that of method TT, suggesting that the
second-order Taylor approximation method is comparable to
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the partial nonlinear method and is better than the first-order
Taylor approximation method. Lastly, the traditional ETKF
method has the largest A-RMSE, which implies that although
the linear approximation is computationally more efficient, it
may introduce a larger analysis error.

For the Lorenz 96 model with a large error (F = 12), the
time-mean A-RMSEs and F-RMSEs of the five methods are
given in Table 1, as well as the time-mean values of the ob-
jective functions. The function represents the second-order
distance from the squared innovation statistic (d id

T
i ) to its

expectation. Generally speaking, for a more accurate assim-
ilation scheme, the realization ofd id

T
i should be closer to

its expectation, and therefore the value of the objective func-
tion should be smaller. It can be seen that the full nonlinear
method (NN) has both the smallest A-RMSE and F-RMSE,
while the traditional linear approximation method (ETKF)
has the largest RMSEs. The second-order Taylor approxima-
tion method (SS) performs similarly to the partial nonlinear
method (TN), but better than the first-order Taylor approxi-
mation method (TT). In the majority of the cases, a smaller
error corresponds to a smaller value of the objective func-
tion L. The ratios of F-RMSEs to A-RMSEs are also listed
in Table 1, which can be considered a measurement of the
improvement gained at the analysis step. All the ratios are
larger than 1, which indicates that the analysis state is bet-
ter than the forecast state. Among all methods, the ratio is
largest for the TN method, which indicates the largest error
reduction at the analysis step.

To illustrate the variation in A-RMSE with respect to
the parameterα, the corresponding time-mean A-RMSEs
of different assimilation schemes withF = 12 and α =

0,0.02,0.04,0.06,0.08,0.1 are plotted in Fig. 1b. It shows
that all the schemes have the same A-RMSE withα = 0 (i.e.,
the observation operator is linear), indicating that there is no
difference between them. For each scheme, the A-RMSE in-
creases as the parameterα increases from 0 to 0.1. The mag-
nitude relation of all schemes is basically consistent with that
in Fig. 1a. The larger the parameterα is, the bigger the dif-
ference that the different schemes have.

To investigate the consistency between F-RMSE and F-
Spread, we present the time-mean values of the five meth-
ods for casesF = 12 andF = 8 in Tables 2 and 3, respec-
tively, as well as the ratios of F-RMSE to F-Spread. It is easy
to see that in all cases, the F-RMSEs are larger than the F-
Spreads, and therefore, all the ratios are greater than 1. How-
ever, the ratio of the full nonlinear method (NN) is the small-
est, while the ratio of the linear approximation method is the
largest. The ratio of the second-order approximation method
(SS) is comparable to that of the partial nonlinear method
(TN), but smaller than that of the first-order approxima-
tion method (TT). This suggests that the ensemble-perturbed
predictions are the most (least) reasonable for method NN
(ETKF). Moreover, the ratios withF = 8 are much closer
to 1 than those withF = 12, because the model error with
F = 12 is much larger than that withF = 8 (see Sect. 2.3).

Table 1.The time-mean values of A-RMSE and F-RMSE, the ratio
of F-RMSE to A-RMSE, and the objective function (second-order
distance from the squared innovation statistic to its expectation)
in the five ETKF methods for the Lorenz 96 model, with forcing
parameterF = 12 and parameter of observation operatorα = 0.1.
ETKF: traditional ETKF in linear approximation (Eq.12) and op-
timization (Eq.10); TT: tangent-linear approximation in both in-
flation (Eq.17) and optimization (Eq.20); TN: tangent-linear ap-
proximation in inflation (Eq.17) and nonlinearity in optimization
(Eq. 10); SS: second-order Taylor approximation in both inflation
(Eq. 24) and optimization (Eq.27); NN: nonlinearity in both infla-
tion (Eq.5) and optimization (Eq.10).

Scheme ETKF TT TN SS NN

A-RMSE 2.74 2.50 2.25 2.29 2.08
F-RMSE 3.20 3.00 2.77 2.66 2.52
F-RMSE/
A-RMSE 1.17 1.20 1.23 1.16 1.21
L 49 700 074 17 078 480 8 768 825 9 177 962 8 458 902

Table 2. The time-mean values of F-RMSE and F-Spread, and the
ratio of F-RMSE to F-Spread in the four ETKF schemes for the
Lorenz 96 model, with forcing parameterF = 12 and parameter of
observation operatorα = 0.1.

Scheme ETKF TT TN SS NN

F-RMSE 3.20 3.00 2.77 2.66 2.52
F-Spread 1.06 1.45 1.46 1.48 1.45
F-RMSE/F-Spread 3.02 2.07 1.90 1.80 1.74

Table 3.Similar to Table 2, but withF = 8.

Scheme ETKF TT TN SS NN

F-RMSE 0.30 0.29 0.26 0.27 0.23
F-Spread 0.20 0.22 0.21 0.22 0.21
F-RMSE/F-Spread 1.50 1.32 1.24 1.18 1.09

3.3 Impacts of Taylor approximations

In Sect. 3.2, we see that the A-RMSEs derived from the five
ETKF assimilation schemes are close whenF is close to the
true value of 8, but are different whenF departs from 8. This
effect may depend on how well the Taylor expansions ap-
proximate the nonlinear observation operatorHi .

For example, the Taylor expansion of thekth component of
observation operatorHi(x) = x exp{αx} (Eq. 32) with α =

0.1 around the forecast statexf
k,i is

xt
k,i exp

{
0.1xt

k,i

}
= xf

k,i exp
{
0.1xf

k,i

}
+

(
1+ 0.1xf

k,i

)
exp

{
0.1xf

k,i

}(
xt

k,i − xf
k,i

)
+

(
0.2+ 0.01xf

k,i

)
exp

{
0.1xf

k,i

}(
xt

k,i − xf
k,i

)2
+ . . . . (34)
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To verify how well the Taylor expansions approximate the
nonlinear observation operatorHi , we calculate the ratios of

the Taylor expansion residuals overxt
k,i exp

{
0.1xt

k,i

}
. If a

ratio falls outside the interval [−0.1, 0.1], then the corre-
sponding residual cannot be regarded as being of a higher
order infinitesimal, and hence cannot be ignored. There-
fore, a larger proportion of ratios falling outside the inter-
val [−0.1, 0.1] indicates a worse Taylor expansion, and vice
versa.

The proportions of the ratios that fall outside the inter-
val [−0.1, 0.1] are plotted in Fig. 2, which shows that when
F = 8, the proportions are 0.0169 and 0.0006 for the first-
order and second-order Taylor expansions, respectively. This
result indicates that at almost all times and locations, both the
first-order and second-order Taylor expansions are good ap-

proximations ofxt
k,i exp

{
0.1xt

k,i

}
. However, whenF = 12,

at approximately 47 % (19 %) of the times and locations,

xt
k,i exp

{
0.1xt

k,i

}
cannot be approximated adequately by its

first-order or second-order Taylor expansion. Therefore, the
A-RMSEs derived by the five ETKF schemes are quite dif-
ferent. This example also indicates that the success of the
Taylor approximation method depends on both the smooth-
ness ofHi and the range of forecast states. It seems that for
the same strongly nonlinear observation operator, the larger
the model error, the less the success of the Taylor approxi-
mation.

4 Discussions

4.1 Inflation

It is widely recognized that the initial estimates of ensemble
forecast errors should be inflated to improve assimilated re-
sults. To date, however, all of the existing adaptive inflation
schemes in ETKF are based on the assumption that the obser-
vation operator is linear or tangent linear (e.g., Li et al., 2009;
Miyoshi, 2011). In this study, a method to estimate the mul-
tiplicative inflation factors is proposed for general nonlinear
observation operators.

Historically, in systems such as the Met Office ETKF
(Flowerdew and Bowler, 2011), the need for inflation arises
primarily due to spurious correlations that cause the raw ana-
lysis ensemble to be severely underspread even when the
background ensemble is well spread. In this case, therefore,
inflation must be applied to the analysis ensemble to respond
correctly to the actual analysis uncertainty in the nonlin-
ear forecast step. Inflation of the background ensemble may
be more appropriate when the inflation primarily represents
forecast model error, although stochastic physics or additive
inflation may also be appropriate in this case (Hamill and
Whitaker, 2005; Wu et al., 2013).

Our choice to inflate the background ensemble is crucial to
the ability to find a direct nonlinear solution for Eqs. (5)–(7),

Figure 2. The proportions of residual ratios of the first-order (solid
line) and second-order (dotted line) Taylor expansions over the non-

linear observation operatorxt
k,i

exp
{
0.1xt

k,i

}
that fall outside the

interval [−0.1, 0.1], as a function of forcingF .

because of the way the inflation factor appears in these equa-
tions. The objective function for estimating the multiplica-
tive inflation factors is the second-order distance between
the expectations of the squared innovation and its realization,
which also makes the rms spread equal to the rms error (e.g.,
Palmer et al., 2006; Wang and Bishop, 2003; Flowerdew and
Bowler, 2011).

The proposed nonlinear method is tested using the
Lorenz 96 model with nonlinear observation systems
(Sect. 3.2). The resulting A-RMSEs are clearly smaller than
those of the first-order Taylor approximation in the estima-
tion of the inflation factor. This indicates that the proposed
full nonlinear inflation method is better than the first-order
Taylor approximation inflation method in the case of non-
linear observation operators (i.e., method NN is better than
method TN). In addition, the F-RMSE and F-Spread of the
proposed nonlinear method are more consistent than those
of the first-order Taylor approximation method. The second-
order approximation method for estimating inflation factors
while using the nonlinear optimization scheme is also inves-
tigated. The corresponding A-RMSE is 2.20 for the forcing
parameterF = 12 and the parameter of observation operator
α = 0.1, and is larger than that of method TN and smaller
than that of method NN.

The proposed inflation methods work well in the cases
where observation errors are spatially correlated. Some data
assimilation schemes assume the observation error covari-
ance matrix to be diagonal for simplicity and ease of compu-
tation (e.g., Anderson, 2007, 2009). However, because satel-
lite observations often contain significantly correlated errors,
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the observation error covariance matrix has nonzero off-
diagonal entries (Miyoshi et al., 2013). The inflation method
proposed in this study can be applied to assimilate such ob-
servations.

In many practical experiments, the inflation factor is con-
stant in time, and is chosen by trial and error to give the
assimilation with the most favorable statistics (e.g., An-
derson and Anderson, 1999). To test the fixed-tuned infla-
tion method, supposexa

i (λ) andxf
i(λ) are the analysis sate

and the forecast state using the time-invariant inflation fac-

tor λ. Then, the statistics
N∑

i=1

√
1
pi

∥∥yo
i − Hi

(
xa

i (λ)
)∥∥2 and

N∑
i=1

√
1
pi

∥∥yo
i − Hi

(
xf

i(λ)
)∥∥2

are minimized to tune theλ,

respectively. When Eq. (10) is minimized to estimate the
weights of perturbed analysis states, the corresponding A-
RMSEs of the two fixed-tuned methods are estimated as 2.97
and 2.85, respectively, which are larger than that of method
SS (2.29). The ratios of F-RMSE to F-Spread are estimated
as 3.14 and 3.45, respectively, which are also larger than the
1.80 of method SS (see Table 1). All these facts indicate that
the empirical estimation method for the inflation factor is not
as good as method SS.

4.2 Second-order Taylor approximation

In Sect. 3.2, we showed that the ETKF scheme equipped with
our proposed nonlinear inflation method leads to the small-
est A-RMSE in all ETKF schemes analyzed in this study.
However, this ETKF scheme requires repeated calculation of

the nonlinear observation functionsHi

(
xf

i+
√

λ
(
xf

i,j − xf
i

))
andHi

(
xf

i +

√
λ̂iXf

iw
)

when minimizing the objective func-

tions Li(λ) andJi(w). To reduce the computational cost, a
commonly used approach is to substituteHi by its tangent-
linear operator (i.e., first-order Taylor expansion). However,
this approach comes at the cost of losing estimation quality,
as we have shown in this study.

As an effort to strike a balance between the estimation
quality and computational cost, the nonlinear observation op-
eratorHi in the objective functionsLi(λ) andJi(w) is sub-
stituted by its second-order Taylor expansion. This is because
(1) the second-order Taylor expansion is a better approxima-
tion of Hi than its tangent-linear operator; (2) with second-
order Taylor expansion, the inflation factorλ and the weight
vectorw are concentrated out ofHi , so the objective func-
tions (Eqs.24and27) become polynomials, for which a min-
imum is easier to derive; (3) the second-order derivative of
Hi is required to estimate ensemble analysis states (Eq.11)
in the ETKF scheme, so its computation is not an additional
task.

The accuracy of the ETKF scheme with the second-order
Taylor approximation is examined in Sect. 3.2. The results
suggest that the scheme is more accurate than the ETKF

scheme based on the first-order Taylor approximation, and
is comparable with the scheme based on nonlinear optimiza-
tion and tangent-linear multiplicative inflation. However, it is
less accurate than the nonlinear optimization and the nonlin-
ear inflation estimation ETKF scheme proposed in this study.
On the other hand, both schemes have similar F-RMSE over
F-Spread ratios.

Despite the advantage that the objective functions (Eqs.24
and 27) are easier to minimize, the computational cost of
the ETKF with the second-order Taylor approximation may

increase from computing
(
Xf

iw
)T

Ḧi|xf
i ,k

Xf
iw. Because the

most typical nonlinear observation operator in numerical
weather prediction is the radiative transfer model (RTTOV),
the related computational issue is discussed and is docu-
mented in Appendix E. In fact, unlike forecast operators, the
observation operators are usually localized, and therefore,

the computation of
(
Xf

iw
)T

Ḧi|xf
i ,k

Xf
iw is still feasible. For

the observation operators that are not localized, the compu-
tation of the second-order term may be complex.

In addition, there are other ways to address this prob-
lem. For example, in the deterministic variational framework,
Met Office re-linearizes the observation operator every 10
iterations (Rawlins et al., 2007), and ECMWF uses a non-
linear outer loop. Both approaches retain the efficiency of
a tangent-linear approximation in the inner loop, while al-
lowing for nonlinearity at a higher level. To understand the
efficacy of the ETKF scheme with second-order Taylor ap-
proximation better, a more careful comparison with alterna-
tive assimilation schemes is necessary. We plan to face this
challenge in the near future.

4.3 Caveats

This study assumes the inflation factor to be constant in
space, but this is apparently not the case in many practi-
cal applications – specifically when observations are sparse.
Applying the same inflation value to all state variables may
overinflate the forecast errors of the state variables without
observations (Hamill and Whitaker, 2005; Anderson, 2009;
Miyoshi et al., 2010; Miyoshi and Kunii, 2012). If the fore-
cast model has a large error, a multiplicative inflation may
not be effective enough to improve the assimilation results. In
this case, the additive inflation and the localization technique
may be applied to improve the assimilation quality further
(Wu et al., 2013).

This study also assumes that the analysis increment can be
expressed as a linear combination of ensemble forecast errors
(Eq.8). This assumption is true if the observation operator is
tangent linear, but the nonlinear observation operator can af-
fect the combination of possible increments that produce the
optimal analysis (Yang et al., 2012). However, our examples
demonstrate that the proposed ETKF methods can still work
well when the observation operators are not tangent linear.
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For general nonlinear or even non-smooth radiative trans-
fer operators (Steward et al., 2012), the utility of higher-order
elements in a Taylor expansion may be questionable. Also,
the development of the second-order term may be time con-
suming and difficult in the case of complex observation op-
erators, especially when the observation operators cannot be
localized.

Last but not least, the results concluded in this study are
related to the Lorenz 96 experiment, and may not be regarded
as general rules. However, they can serve as counterexamples
to validate some ideas.

5 Conclusions

In this study, a new approach to inflating the ensemble fore-
cast errors is proposed for the ETKF with a nonlinear ob-
servation operator. For an idealized model, it is shown that
the proposed inflation approach can reduce analysis error
compared with the tangent-linear multiplicative inflation, de-
spite it being computationally more expensive. An ETKF
scheme with the second-order Taylor approximation is also
proposed. In terms of analysis error, the scheme is better
than the first-order Taylor approximation ETKF scheme and
the traditional ETKF scheme, especially when the model er-
ror is larger. However, it is comparable to the scheme based
on nonlinear optimization and tangent-linear multiplicative
inflation. The proposed ETKF scheme with nonlinear opti-
mization and nonlinear inflation was found to be the best
among all schemes presented in this study. Finally, the pro-
posed method is computationally feasible for assimilating
satellite observations with radiative transfer models as the
nonlinear observation operators (see Appendix E), which are
broadly used in atmospheric, ocean and land data assimila-
tions.

In the future studies, we plan to investigate further the
computational efficiency of the proposed ETKF schemes and
to validate them using more sophisticated dynamic models
and observation systems.
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Appendix A: Derivation of Eq. (6)

The estimation of the inflation factorsλ is based on the inno-
vation statistic normalized by the square root of the observa-
tion error covariance matrix

d i = R−1/2
i

(
yo

i − Hi

(
xf

i

))
= R−1/2

i

(
yo

i − Hi

(
xt

i

))
+ R−1/2

i

(
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(
xt
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)
− Hi

(
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i

))
, (A1)

whereyo
i , xf

i andxt
i are the observation, forecast and true

state vectors at theith time step, respectively, andHi is the
observation operator. The mean value ofd id

T
i is

E
(
d id

T
i

)
= E

[(
R−1/2

i

(
yo

i − Hi

(
xt

i

))
+ R−1/2

i

(
Hi(x

t
i)−Hi(x

f
i)
))(

R−1/2
i

(
yo

i −Hi(x
t
i)
)

+ R−1/2
i

(
Hi(x

t
i) − Hi(x

f
i)
))T ]

, (A2)

whereE is the expectation operator. Especially if the obser-
vation operator is a linear matrix (Hi), Eq. (A2) can be sim-
plified to

E
(
d id

T
i

)
= R−1/2

i HiP̂iHT
i R−1/2

i + I , (A3)

whereI is thepi × pi identity matrix. Then, the covariance
matrix of the random vectord i can be expressed as a second-
order regression equation (Wang and Leblanc, 2008):
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where 4 is a zero-mean error matrix. The expectation in
Eq. (A4) has the decomposition
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Assuming the forecast and observation errors are statisti-
cally independent, we have
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From Eq. (2), yo
i − Hi(x

t
i) is the observation error at the

ith time step, and hence,
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In a perfect system, truth would be statistically indistin-
guishable from one of the ensemble forecast states, but in
a real system, this is not guaranteed. Hence, we use an
inflation factor to adjust the ensemble forecast statesxf

i,j

to xf
i +

√
λ
(
xf

i,j − xf
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)
, j = 1, . . . ,m. Because the ensemble

forecast states may be regarded as sample points ofxt
i (An-

derson, 2007), we have
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Substituting Eqs. (A5)–(A9) into Eq. (A4), we have

d id
T
i = Ci(λ) + I + 4. (A10)

It follows that the second-order moment statistic of error4

can be expressed as

Tr
[
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]
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i −Ci(λ)−I

)(
d id

T
i −Ci(λ) − I

)T
]

≡ Li(λ). (A11)
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Appendix B: Derivation of J̇i|w and J̈i|w

The first-order derivative of the objective functionJi(w)

(Eq.10) is

J̇i(w) = (m − 1)w −

√
λ̂i

(
Xf

i

)T

Ḣ
T

i|xf
i+

√
λ̂iXf

iw
R−1

i[
yo

i − Hi

(
xf

i +

√
λ̂iXf

iw

)]
, (B1)

where

Ḣ
i|xf

i+

√
λ̂iXf

iw
=


∂h1,i

∂x1,i
· · ·

∂h1,i

∂xn,i

...
. . .

...
∂hpi ,i

∂x1,i
· · ·

∂hpi ,i

∂xn,i


∣∣∣∣∣∣∣∣
xi=xf

i+

√
λ̂iXf

iw

(B2)

is the first-order derivative ofHi evaluated atxf
i +

√
λ̂iXf

iw.
Then, the second-order derivative ofJi(w) is

J̈i(w) = (m − 1)I + λ̂i

(
Xf

i

)T

Ḣ
T

i|xf
i+

√
λ̂iXf

iw

R−1
i Ḣ

i|xf
i+

√
λ̂iXf

iw
Xf

i − λ̂iA, (B3)

whereA is anm × m matrix with the (k, l) entry(
(xf

i,k − xf
i)

T
⊗ Ḧi|xf

i+Xf
iw

⊗

(
xf

i,l − xf
i

))T

R−1
i

[
yo

i − Hi

(
xf

i +

√
λ̂iXf

iw

)]
. (B4)

The notation “⊗” denotes an outer product operator of the
block matrix defined in Eq. (23).̈H

i|xf
i+

√
λ̂iXf

iw
is the second-

order derivative ofHi atxf
i +

√
λ̂iXf

iw, that is,

Ḧ
i|xf

i+

√
λ̂iXf

iw
≡


Ḧ

1,i|xf
i+

√
λ̂iXf

iw

...

Ḧ
pi ,i|x

f
i+

√
λ̂iXf

iw

 ,

Ḧ
k,i|xf

i+

√
λ̂iXf

iw
≡


∂2hk,i

∂x1,i ∂x1,i
· · ·

∂2hk,i
∂x1,i ∂xn,i

.

.

.
. . .

.

.

.

∂2hk,i
∂xn,i ∂x1,i

· · ·
∂2hk,i

∂xn,i ∂xn,i



∣∣∣∣∣∣∣∣
xi=xf

i+

√
λ̂iXf

iw

,

k = 1, . . . ,pi . (B5)

Appendix C: Details of the first-order approximation
method in Sect. 2.2.1

SupposeHi can be approximated by its first-order Taylor ex-
pansion atxf

i ,

Hi

(
xf

i +
√

λ
(
xf

i,j − xf
i

))
≈ Hi

(
xf

i

)
+ Ḣi|xf

i

√
λ
(
xf

i,j − xf
i

)
. (C1)

The termCi(λ) in Eq. (6) can be simplified to

Ci(λ) ≡
1

m − 1

m∑
j=1

[
R−1/2

i

(
Hi

(
xf

i +
√

λ
(
xf

i,j − xf
i

))
− Hi

(
xf

i

))(
Hi

(
xf

i +
√

λ
(
xf

i,j − xf
i

))
− Hi

(
xf

i

))T

R−1/2
i

]
=

1

m − 1

m∑
j=1

[
R−1/2

i

(
Ḣi|xf

i

√
λ
(
xf

i,j − xf
i

))
(
Ḣi|xf

i

√
λ
(
xf

i,j − xf
i

))T

R−1/2
i

]
= λR−1/2

i Ḣi|xf
i

1

m − 1

m∑
j=1[(

xf
i,j − xf

i

)(
xf

i,j − xf
i

)T ]
Ḣ

T

i|xf
i
R−1/2

i

= λR−1/2
i Ḣi|xf

i
P̂iḢ

T

i|xf
i
R−1/2

i .

It follows that the objective functionLi(λ) of Eq. (5) can be
simplified to

L1,i(λ) = Tr
[(

d id
T
i − λR−1/2

i Ḣi|xf
i
P̂iḢ

T

i|xf
i
R−1/2

i − I
)

(
d id

T
i − λR−1/2

i Ḣi|xf
i
P̂iḢ

T

i|xf
i
R−1/2

i − I
)T ]

. (C2)

BecauseL1,i(λ) is a quadratic function ofλ with positive
quadratic coefficients, the inflation factor can be easily ex-
pressed as

λ̂i =

Tr
[
R−1/2

i Ḣi|xf
i
P̂iḢ

T

i|xf
i
R−1/2

i

(
d id

T
i − I

)T ]
Tr
[
R−1/2

i Ḣi|xf
i
P̂iḢ

T

i|xf
i
R−1

i Ḣi|xf
i
P̂iḢ

T

i|xf
i
R−1/2

i

] . (C3)

Similarly,

Hi

(
xf

i +

√
λ̂iXf

iw

)
≈ Hi

(
xf

i

)
+

√
λ̂iḢi|xf

i
Xf

iw. (C4)

Substituting Eq. (C3) into Eq. (8), we can simplify the objec-
tive functionJi(w) to

J1,i(w) =
1

2
(m − 1)wT w

+
1

2

[
yo

i − Hi

(
xf

i

)
−

√
λ̂iḢi|xf

i
Xf

iw

]T

R−1
i

[
yo

i − Hi

(
xf

i

)
−

√
λ̂iḢi|xf

i
Xf

iw

]
. (C5)
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The first-order derivative ofJ1,i(w) is

J̇1,i(w) = (m − 1)w −

(√
λ̂iḢi|xf

i
Xf

i

)T

R−1
i

[
yo

i − Hi

(
xf

i

)
−

√
λ̂iḢi|xf

i
Xf

iw

]
= (m − 1)w −

√
λ̂i

(
Xf

i

)T

Ḣ
T

i|xf
i

R−1
i

[
yo

i − Hi

(
xf

i

)
−

√
λ̂iḢi|xf

i
Xf

iw

]
. (C6)

Setting Eq. (C6) to zero and solving it leads to

wa
i =

(
(m − 1)I + λ̂

(
Xf

i

)T

Ḣ
T

i|xf
i
R−1

i Ḣi|xf
i
Xf

i

)−1

√
λ̂i

(
Xf

i

)T

Ḣ
T

i|xf
i
R−1

i

(
yo

i − Hi

(
xf

i

))
. (C7)

Lastly, the second-order derivative ofJ1,i(w) is

J̈1,i(w) = (m − 1)I + λ̂i

(
Xf

i

)T

Ḣ
T

i|xf
i
R−1

i Ḣi|xf
i
Xf

i . (C8)

Appendix D: Details of the second-order approximation
method in Sect. 2.2.2

SupposeHi can be approximated by its second-order Taylor
expansion atxf

i :

Hi

(
xf

i+
√

λ
(
xf

i,j−xf
i

))
≈ Hi

(
xf

i

)
+Ḣi|xf

i

√
λ
(
xf

i,j−xf
i

)
+

1

2
λ
((

xf
i,j − xf

i

)T

⊗ Ḧ
i|x

f
i

⊗

(
xf

i,j − xf
i

))
. (D1)

The notation “⊗” is defined as in Eq. (23). The termCi(λ)

in Eq. (7) can be simplified to

Ci(λ) ≡
1

m − 1

m∑
j=1

[
R−1/2

i

(
Hi

(
xf

i +
√

λ
(
xf

i,j − xf
i

))
− Hi

(
xf

i

))(
Hi

(
xf

i +
√

λ
(
xf

i,j − xf
i

))
− Hi

(
xf

i

))T

R−1/2
i

]
=

1

m − 1

m∑
j=1

[
R−1/2

i

(
Ḣi|xf

i

√
λ
(
xf

i,j − xf
i

)
+

1

2
λ

((
xf

i,j−xf
i

)T

⊗Ḧ
i|x

f
i

⊗

(
xf

i,j−xf
i

)))

·

(
Ḣi|xf

i

√
λ
(
xf

i,j − xf
i

)
+

1

2
λ
((

xf
i,j−xf

i

)
⊗Ḧ

i|x
f
i

⊗

(
xf

i,j−xf
i

)))T

R−1/2
i

]
= λR−1/2

i Ḣi|xf
i

1

m − 1

m∑
j=1

[(
xf

i,j − xf
i

)(
xf

i,j − xf
i

)T ]
Ḣ

T

i|xf
i
R−1/2

i +
λ3/2

2(m − 1)

m∑
j=1

[
R−1/2

i Ḣi|xf
i

(
xf

i,j − xf
i

)
((

xf
i,j − xf

i

)T

⊗ Ḧi|xf
i
⊗

(
xf

i,j − xf
i

))T

R−1/2
i

]
+

λ3/2

2(m − 1)

m∑
j=1

[
R−1/2

i

((
xf

i,j − xf
i

)T

⊗ Ḧi|xf
i

⊗

(
xf

i,j − xf
i

))(
xf

i,j − xf
i

)T

Ḣ
T

i|xf
i
R−1/2

i

]
+

λ2

4(m − 1)

m∑
j=1

[
R−1/2

i

((
xf

i,j − xf
i

)T

⊗ Ḧi|xf
i

⊗

(
xf

i,j − xf
i

))((
xf

i,j − xf
i

)T

⊗ Ḧi|xf
i

⊗

(
xf

i,j − xf
i

))T

R−1/2
i

]
= λR−1/2

i Ḣi|xf
i
P̂i Ḣ

T

i|xf
i
R−1/2

i −λ3/2C1,i−λ3/2CT
1,i−λ2C2,i , (D2)

where

Ci,1 =
1

2(m − 1)

m∑
j=1

[
R−1/2

i Ḣi|xf
i

(
xf

i,j − xf
i

)((
xf

i,j − xf
i

)T

⊗ Ḧi|xf
i
⊗

(
xf

i,j − xf
i

))T

R−1/2
i

]
(D3)

and

Ci,2 =
1

4(m − 1)

m∑
j=1

[
R−1/2

i

((
xf

i,j − xf
i

)T

⊗ Ḧi|xf
i

⊗

(
xf

i,j − xf
i

))((
xf

i,j − xf
i

)T

⊗ Ḧi|xf
i
⊗

(
xf

i,j − xf
i

))T

R−1/2
i

]
(D4)

arepi × pi matrices, which are independent ofλ.
It follows that the objective functionLi(λ) of Eq. (5) can

be expressed as

L2,i(λ) = Tr
[(

d id
T
i − λR−1/2

i Ḣi|xf
i
P̂iḢ

T

i|xf
i
R−1/2

i − λ3/2

C1,i − λ3/2CT
1,i − λ2C2,i − I

)
(
d id

T
i −λR−1/2

i Ḣi|xf
i
P̂iḢ

T

i|xf
i
R−1/2

i −λ3/2C1,i−λ3/2

CT
1,i − λ2C2,i − I

)T ]
, (D5)

which is a polynomial algebraic equationλ1/2.
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Similarly,

Hi(x
f
i +

√
λ̂iXf

iw) ≈ Hi(x
f
i) + Ḣi|xf

i

√
λ̂iXf

iw

+
1

2

((√
λ̂iXf

iw

)T

⊗ Ḧi|xxf
i
⊗

(√
λ̂iXf

iw

))
. (D6)

Substituting Eq. (D6) into Eq. (10), we can simplify the ob-
jective functionJi(w) to

J2,i(w) =
1

2
(m − 1)wT w

+
1

2

[
yo

i − Hi(x
f
i) −

√
λ̂iḢi|xf

i
Xf

iw −
λ̂i

2

(
(Xf

iw)T

⊗ Ḧi|xf
i
⊗ (Xf

iw)
)]T

R−1
i

[
yo

i − Hi(x
f
i)

−

√
λ̂iḢi|xf

i
Xf

iw −
λ̂i

2

(
(Xf

iw)T ⊗ Ḧi|xf
i
⊗ (Xf

iw)
)]

.

(D7)

The first-order derivative ofJ2,i(w) is

J̇2,i(w) = (m − 1)w −

[√
λ̂iḢi|xf

i
Xf

i + λ̂iB1

]T

R−1
i

[
yo

i − Hi

(
xf

i

)
−

√
λ̂iḢi|xf

i
Xf

iw −
λ̂i

2

(
(Xf

iw)T

⊗ Ḧi|xf
i
⊗ (Xf

iw)
)]

, (D8)

where B1 is a pi × m matrix with the (k, l) entry(
Xf

i,l

)T

Ḧi|xf
i ,k

Xf
iw.

The second-order derivative ofJ2,i(w) is

J̈2,i(w) = (m − 1)I +

[√
λ̂iḢi|xf

i
Xf

i + λ̂iB1

]T

R−1
i

[√
λ̂iḢi|xf

i
Xf

i + λ̂iB1

]
− λ̂iB2, (D9)

whereB2 is anm × m matrix with the(k, l) entry((
xf

i,k − xf
i

)T

⊗ Ḧi|xf
i
⊗ (xf

i,l − xf
i)
)T

R−1
i

[
yo

i − Hi(x
f
i) −

√
λ̂iḢi|xf

i
Xf

iw −
λ̂i

2

(
(Xf

iw)T

⊗ Ḧi|xf
i
⊗ (Xf

iw)
)]

. (D10)

Appendix E: Computational feasibility

We take the RTTOV as an example of observation opera-
tors in numerical weather prediction to discuss the compu-
tational feasibility of the ETKF with a second-order approxi-
mation assimilation method. Generally speaking, the ensem-
ble sizem is from tens to hundreds, the dimension of ob-
servations (including gauge observations and advanced mi-
crowave sounding units, AMSU, brightness temperature)pi

is hundreds of thousands, and the dimension of the state vec-
torn is tens of millions. If the storage and the number of mul-
tiplications for computing any array are not in the dimension
of n×n, n×pi orpi×pi , the computation should be feasible.

In our proposed ETKF with second-order approximation,
the most expensive part is in computing the array(

Xf
iw
)T

⊗ Ḧi|xf
i
⊗

(
Xf

iw
)

=

{(
Xf

iw
)T

Ḧi|xf
i ,1

Xf
iw, . . . ,

(
Xf

iw
)T

Ḧi|xf
i ,pi

Xf
iw

}
.

(E1)

Therefore, we only discuss the problems related to the com-

putation of
(
Xf

iw
)T

Ḧi|xf
i ,k

Xf
iw.

E1 Storage problems

By the matrix multiplication rule,(
Xf

iw
)T

Ḧi|xf
i ,k

Xf
iw = wT

((
Xf

i

)T

Ḧi|xf
i ,k

Xf
i

)
w , (E2)

where the matrix in the middle of the right-hand side of
Eq. (E2),(
Xf

i

)T

Ḧi|xf
i ,k

Xf
i, (E3)

is of dimensionm×m, because subscriptk runs from 1 topi ,
and the size of the array in Eq. (E1) ism×m×pi . Therefore,
there is no storage problem in saving this array.

E2 The computational cost of Eq. (E3)

Usually,mn(m + n) times multiplication is required to com-
pute a matrix such as the one in Eq. (E3). However, in the
case of the RTTOV observation operator,Ḧk,i|xf

i
is a sparse

matrix with a large number of zeros, and the non-zero part
has a simple regular structure. This is because a microwave
sounding units (MSU) brightness temperature measurement
on a grid point – denoted byyo

i (k) – is only related to the me-
teorological state variables on the transmission route. Sup-
pose the meteorological model has 50 layers and 6 types
of variables; the number of state variables on the transmis-
sion route of the MSU brightness temperatureyo

i (k) is ap-
proximatelys = 300. For the variables not on the transmis-
sion route, the corresponding entries inḦk,i|xf

i
(Eq. 22) are

zero. Therefore, the computation of Eq. (E3) only requires
ms(m + s)/2 times multiplication.

On the other hand, computing the first and second deriva-
tives requires an additional number of operations, but it is
manageable.
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