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Abstract. The ensemble transform Kalman filter (ETKF) as- in the analysis error compared with the procedure using the
similation scheme has recently seen rapid development anttaditional inflation scheme.
wide application. As a specific implementation of the ensem-
ble Kalman filter (EnKF), the ETKF is computationally more
efficient than the conventional EnKF. However, the current
implementation of the ETKF still has some limitations when 1  Introduction
the observation operator is strongly nonlinear. One problem
in the minimization of a nonlinear objective function similar The spatial and temporal distribution of observations is con-
to 4D-Var is that the nonlinear operator and its tangent-lineaitinuously changing with the improvement in numerical mod-
operator have to be calculated iteratively if the Hessian isels and observation techniques. Sounding data, remote sens-
not preconditioned or if the Hessian has to be calculated seving observations, satellite radiance data and other indirect
eral times. This may be computationally expensive. Anotherinformation bring both opportunities and challenges in data
problem is that it uses the tangent-linear approximation of theassimilation. How to assimilate these indirect observations
observation operator to estimate the multiplicative inflationis an important research topic in data assimilation (Re-
factor of the forecast errors, which may not be sufficiently ichle, 2008).
accurate. The observation operators for indirect observations are of-
This study attempts to solve these problems. First, we apten nonlinear. For example, radiative transfer codes (e.g., RT-
ply the second-order Taylor approximation to the nonlin- TOV, CRTM, Saunders et al., 1999; Han et al., 2006) can
ear observation operator in which the operator, its tangentbe treated as observation operators by mapping air temper-
linear operator and Hessian are calculated only once. Thature and moisture to the microwave radio brightness tem-
related computational cost is also discussed. Second, wperature (McNally, 2009). Because the relationship of these
propose a scheme to estimate the inflation factor when th@bservations with modeled variables may be strongly nonlin-
observation operator is strongly nonlinear. Experimentationear (Liou, 2002) and the observation errors may be spatially
with the Lorenz 96 model shows that using the second-correlated (Miyoshi et al., 2013), data assimilation schemes
order Taylor approximation of the nonlinear observation op-have to be appropriately designed to address such indirect
erator leads to a reduction in the analysis error comparedgbservations.
with the traditional linear approximation method. Further- Most data assimilation methods are fundamentally based
more, the proposed inflation scheme leads to a reduction linear theory, but have different responses to departures
from linearity (Lawson and Hansen, 2004). Conceptually,
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variational data assimilation schemes (VAR; e.g., Parrish andhe forecast error inflation in the ETKF (e.g., Li et al., 2009).
Derber, 1992; Courtier et al., 1994; Lorenc, 2003) can assimif the observation operators are strongly nonlinear, the in-
ilate data with nonlinear observation operators and spatiallyflation factors and hence the forecast error covariance ma-
correlated observation errors. However, a drawback of VARtrices may be estimated erroneously, leading to an eventual
is that it has to calculate the adjoint of a dynamical model,increase in the analysis error.
which is not an easy task in practice. Moreover, VAR does In this study, we propose two alternative approaches to im-
not give a direct estimate of the background error covari-proving assimilation quality when the observation operator
ance matrix, which is crucial for the performance of any datais strongly nonlinear. First, in an effort to reduce computa-
assimilation scheme. In general ensemble data assimilatioriional cost without significantly reducing estimation quality,
the maximum likelihood ensembile filter (MLEF) minimizes we use the second-order Taylor expansion of the observation
a cost function that depends on a general nonlinear observasperator to estimate both the inflation factors and the ana-
tion operator to estimate the state vector, which is equivalentysis states. Second, for the case where the inflation factor is
to maximizing the likelihood of the posterior probability dis- constant in space, we propose a new forecast error inflation
tribution (Zupanski, 2005). The particle filter uses a set of method for general nonlinear observation operators without
weighted random samples (particles) to approximate the posdsing tangent-linear approximation. It is worthwhile pointing
terior probability distribution that may depend on a nonlinear out that the proposed methodology implicitly assumes the
observation operator (van Leeuwen, 2009). use of incremental minimization with outer and inner loops.
The ensemble Kalman filter (EnKF) scheme has a strategyrhere may be other efficient methods available in mathemat-
to optimize forecast error statistics without using the adjointical optimization and control theory.
of the dynamical model (e.g., Evensen, 1994a, b; Burgers et The potential use of the second-order information has been
al., 1998; Anderson and Anderson, 1999; Wang and Bishopnoted by some authors. For example, Hunt et al. (2007) noted
2003; Wu et al., 2013). It is also conceptually applicable tothat the second-order derivatives of the objective function
data assimilation with nonlinear observation operators. How-might be used to estimate the covariance of analysis weight,
ever, it has been demonstrated that when the observation opvhich is an important step in ETKF with a nonlinear observa-
erator is strongly nonlinear, using the linear approximation oftion operator. Moreover, Le Dimet et al. (2002) and Daescu
the observation operator to derive the error covariance evoand Navon (2007) noted that the second-order information
lution equation can result in an oversimplified closure andin nonlinear variational data assimilation is important to the
dubious performance of the EnKF (e.g., Miller et al., 1994; issue of solution uniqueness.
Evensen, 1997; Yang et al., 2012). In the conventional ETKF scheme, linear approximation
The ensemble transform Kalman filter (ETKF) was first of nonlinear observation operators is used for the purpose
introduced in atmospheric assimilation by Bishop and of reducing the computational cost compared with conven-
Toth (1999) and Bishop et al. (2001). Wang and Bishoptional methods of searching for the minima of nonlinear cost
(2003) transformed the forecast perturbations into analysigunctions (Hunt et al., 2007). This study also aims to inves-
perturbations by multiplying a transformation matrix. They tigate the changes in analysis errors when a nonlinear obser-
also proposed an efficient way to construct the transform mavation operator is substituted by its first-order and second-
trix through eigenvector decomposition of a matrix of the en- order Taylor approximations. However, we focus on the for-
semble size. Hunt et al. (2007) extended the ETKF method tanulation of the forecast error inflation method in the case
deal with a general nonlinear observation operator using thef a nonlinear observation operator, and on the improved
cost function. In addition to the reduction of computational accuracy with second-order versus first-order approximation
cost compared with EnKF, another advantage of the ETKFor linear approximation. Further studies on the performance
proposed by Hunt et al. (2007) is that it can assimilate obserof the proposed schemes in practical data assimilations are
vations with strongly nonlinear observation operators (Chemeeded, and should be performed in the future.
et al., 2009) and with spatially correlated observation errors The rest of the paper is organized as follows. Our modified
(Stewart et al., 2013). ETKF schemes are described in Sect. 2. The assimilation re-
However, there are still problems associated with thesults in a Lorenz 96 model with a nonlinear observation sys-
ETKF when the observation operator is strongly nonlinear.tem are presented in Sect. 3. The discussions are given in
First, the current ETKF is based on the minimization of a costSect. 4, and the conclusions are in Sect. 5.
function similar to that in VAR for nonlinear observation op-
erators (Hunt et al., 2007). First, the direct calculation for the
minima requires iterative evaluation of the nonlinear opera-2  Methodology
tors and their tangent-linear operators. Using linear approx-
imation of the nonlinear observation operators (e.g., Hunt e2.1 ETKF with forecast error inflation
al., 2007) can effectively reduce the computational burden,
but at the cost of increasing analysis error. Second, tangentHunt et al. (2007) gave a comprehensive description of
linear approximation of the observation operator is used fothe ETKF with a nonlinear observation operator without
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procedures for forecast error inflation. In this section, we pro-2003), and

pose an inflation scheme for general nonlinear observation

operators. 1l G2 ¢ ¢ .
Using the notations of Ide et al. (1997), a nonlinear Cin= m_lz[Ri (H’ (xi"'ﬁ(xi»f_xi))

discrete-time forecast and observation system can be written /

i () (e ()

f -1/2
K= Mt (58 ) + ® -t (x!)) R g
°— H; (x!) +¢;, 2
¥P = Hi(xi) + e @ (See Appendix A for details.)
T Step 3. Calculate the analysis state as
wherei is the time step indexy! = {xil,x;l,...,x}l’i}
is the n-dimensional true state vector;x? ;= x?=x§+\/5:XIw?, (8)

T
a a a H H
{xl,ifl’xzifl’""xn,ifl} is the n-dimensional analysis where
state vector that is an estimatexilf_l; M; is the nonlinear

r . f_ (. f _ F f  f £ f
forecast operator;yf’:{y‘l’i,ygi,...,ygii} is the p;- Xi—(xi,l XppXio—=Xjses Xy x,') 9)

. . . T
dimensional observation vectatf; = {h1;, h2;....hp, i}

is the nonlinear observation operator, wherg; is an
n-dimensional multivariate function; angl ande; are the

andw? is estimated by minimizing the objective function

1
forecast and observation error vectors that are assumed té (w) = E(m Dw’w+ 2[ (x +\/>Xf )]
be statistically independent of each other, time uncorrelated,
and to have mean zero and covariance matrigeandR;, Rl._l[y? — H; (x‘lc +\/3T,-X§w)]. (10)

respectively. The detailed procedure of the ETKF with a
nonlinear observation operator (Hunt et a.l., 2007) with the Step 4. Calculate a perturbed ana|ysis state as
proposed inflation scheme is as follows.
Step 1. Calculate thgth perturbed forecast state at tirhe )
=X +\/>X Wl >

as (11)

fo_
x; ;=

©)

( a where W, is the jth column of the matrix W=
i—1\X; 1]) ’

N-12 . .
Nm— 1(],»,,,,?) and Jijwa IS the second-order deriva-
wherex? ; . is the jth perturbed analysis state at tie 1. tive of J;(w) atw? (see Appendix B for details). Lastly, set

Then, the mean forecast state is defined as i =i+ 1andreturnto Step 1 for the next iteration.
To estimate the inflation factor, Li et al. (2009) proposed
1 a scheme that requires the tangent-linear operator of the ob-
xl== Zx?j, (4)  servation operator (see Sect. 2.2.1 for the definition). In an
= effort to reduce the computational cost of searching for the
minima of the objective function (E4.0), Hunt et al. (2007)
wherem is the total number of ensemble members. suggested the following linear approximation:
Step 2. Assume the forecast errors to be in the form
\/)L_,»(xfyj —xﬁ), j=1,2,...,m, where the inflation fac- (x +\/>Xf ) ( )—i-Yf (12)
tor A; can be estimated by minimizing the objective function
where
Li(h) = Tr[(d,-d-T—Ci (x)—|) (did-T—Ci (A)—I)T] (5)
1 l ° A
V= [a (Vo (e - xl) +x!) - i ().
Here,l is the p; x p; identity matrix, A
pi > Pi y Hi(\/):-(xiz—x];)+x5> — H; (xf),

di =Ry — 1y (x])) ®  a (i () ) e (x]) ] (13)

is the innovation vector normalized by the square root ofIn this study, this traditional ETKF approach is validated
the observation error covariance matrix (Wang and Bishopagainst other approaches.
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2.2 Simplified estimation methods in special cases

To compute the variational minimization in EqLQ) op-

erationally, one can directly compute the explicit solution wi=
of the minima and iterate the process as in the 4D-Var
2008). However, do-
ing so still requires repeatedly calculating the nonlinear func-

outer loop (Lorenc, 2003; Liu et al.,
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and the analytic solution is

((m — DI+ (XE)T SHE RleszE)l
) - ()

(20)

tion H; (xf + ﬁxﬁw) and its tangent-linear operator (see (See Appendix C for details.)

Sect. 2.2.1 for the definition), which depend wnand xf.

2.2.2 Second-order Taylor approximation for H;

In this subsection, we propose an alternative procedure when

the observation operatdf; can be approximated by its Tay-
lor expansions.

2.2.1 First-order Taylor approximation for H;

The first-order Taylor approximation fad; at the forecast
state vectox! is defined as

t A~ f
H; (xi)N ( >+Hl|x ( l_xi>’ (14)
where
ohy; ohy;
0x1,; 00Xy,
Hipt =1 P (15)
dhp, i dhp, i
0x1,; AXp, i xi= f

=x;

is the first-order derivative off; evaluated at the forecast
statexﬁ (tangent-linear operator). Theky, can be estimated
by minimizing the quadratic function

Ll,i()&):Tr[(didiT—)LRi_l/zH fP H,|fo 1/2_|>

T
(dial —2R7Y2H, PR Y2 - |> ] (16)
The analytic solution is
TR Y2, PR Y (didT —1)] |

hi = 172 v AN
Tr[R PR, PR Py HlleR_/]

where

=1 X (x,)T

m—1" (18)

Similarly, w? can be estimated by minimizing the multivari-
ate quadratic function

J1i(w) = %(m -Dw'w
~I—%[yc~’—Hi (xf.)—\/i»iHi‘xf_xf.w]T
R;l[ (f) \/>H X! w] (19)
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The second-order Taylor approximation f&f at xE is de-

fined as
s () g (1) 54—+

®H, /®<x -+1)).

whereH .

(21)

¢ is the tangent-linear operator defined in Ep)(

and Hl‘x

derivative ofH; atxg, which is ap;-dimensional vector with
thekth element meaning the following Hessian matrix:

. T .
f—{le\xEv“"Hp,-,nxf] is the second-order

hii 82
0x1,;0x1,i 0x1,;0xp i
Hiiel = : : k=1...p. (22)
32hk_i azhk.i
0xp,i0x1,i 0xn.i0%ni /| x; :xlf

Here,® is the outer product operator; i.e., for two arbitrary
n-dimensional vectors andy,

T T T
x ®Hl|xf®y—{x Hy ety ¥ Hpi,i‘xgy} . (@23)

is ap;-dimensional vector. Then, can be estimated by min-
imizing the polynomial objective function of/2

L2y =T [(d dl — ARV, P, HR; Y
—2¥2Cy; —a¥2Cl, —2%Cy, — |)

(d dl =R Y2, PR 3320
—AS/ZC{I.—)\ZCZJ—l) ] (24)

where
1 m
Cli=——
L= om =1 Z
Jj=1
—1/2,° T .
R+ (e, ) ()
T
o (x1;—+!)) RV
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and component, so it is larger than F-Spread (see Appendix B of

" , Wu et al., 2013, for a detailed proof). Besides model error,

Cyi= _r Z[Ri_l/z((xf',j _x5> ® Hile the nonlinearities and the sampling error may also affect the
4(m —1) = i consistency between F-RMSE and F-Spread, as is discussed

; AT . later in this paper.
(xi,j_xi) ®Hi\x§

o4, )

N~

® (xjj _ xf)) Ri‘l/z] (26) 3 Experiments with the Lorenz 96 model
are twom x m matrices. In Sect. 2.1, we outlined the general ETKF assimilation
Moreover,w? can be estimated by minimizing the multi- Scheme with second-order least squares (SLS) error covari-
variate polynolmial objective function ance matrix inflation. In Sect. 2.2, we proposed simplified

estimation methods for two special cases whgresither is

1 1 . tangent linear (Sect. 2.2.1) or can be approximated by the
Toi(w) ~ E(m—1)wTw+—[y?—H,- (xﬁ) —ﬁHileXfw g ( ) PP y

2 second-order Taylor expansion (Sect. 2.2.2). In this section,
Ai N ¢ T, we apply these assimilation schemes to the Lorenz 96 model
) (Xiw) ® Hi|x§ ® (Xiw) ] R; (Lorenz, 1996) with model errors and a nonlinear observa-
A tion system, because it is a nonlinear dynamical system with
[J’? —H, (xf> _ \/;iHthXEw _ %((XE"’)T properties relevant to realistic forecast problems.
® ':'i|x§ ® (Xfw))] 27y 3.1 Description of the dynamic and observation system

The Lorenz 96 model (Lorenz, 1996) is a strongly nonlinear
dynamical system with quadratic nonlinearity governed by

2.3 Validation statistics the equation

In the following experiments, the “true” staté is known by aX = (Xpp1— Xp_2) Xx—1— Xy + F, (31)
experimental design, and is non-dimensional. In this case, we d’

can use the root mean square error of the analysis state (AWherek —1,2,....K (K =40, so there are 40 variables).
RMSE) to evaluate the accuracy of the assimilation resultsWe apply the cyclic boundary conditions_; —
The A-RMSE at théth step is defined as

(see Appendix D for details).

XKk-1,
Xo= Xk, and Xx+1 = X1. The dynamics of Eq.31) are
“atmosphere-like” in that the three terms on the right-hand
, (28) side consist of a nonlinear advection-like term, a damping
term and an external forcing term, respectively. These terms
where||-|| denotes the Euclidean norm, ands the dimen-  can be thought of as a given atmospheric quantity (e.g., zonal
sion of the state vector. A smaller A-RMSE indicates a betterwind speed) distributed on a latitude circle.
performance of the assimilation scheme. We solve Eq. 81) using the fourth-order Runge-Kutta
Following Anderson (2007) and Liang et al. (2012), the time integration scheme (Butcher, 2003), with a time step
root mean square error of the forecast state (F-RMSE) an@®f 0.05 non-dimensional units to derive the true state. This
the spread of the forecast state (F-Spread) attthetep are IS equivalent to about 6h in real time, assuming that the

2

i

A-RMSE= /= |2 —xt
n

defined as characteristic timescale of the dissipation in the atmosphere
is 5days (Lorenz, 1996). In our assimilation schemes, we
F-RMSE—= 1 ||xf it ”2 (29) set F =8 so that the leading Lyapunov exponent implies
n'! ! an error-doubling time of approximately 8 time steps (i.e.,

0.4 non-dimensional time units), and the fractal dimension
of the attractor is 27.1 (Lorenz and Emanuel, 1998). The
initial condition is chosen to b&; = F whenk # 20 and
(30) X20=1.001F.
Because the microwave brightness temperature is an expo-
nential function of soil temperature, we use the exponential
Roughly speaking, iﬁc?i andx} are identically distributed observation function to mimic the radiative transfer model in
with a mean value of‘;, then F-RMSE and F-Spread should this study. Suppose the synthetic observation generated at the
be consistent with each other. This is more likely the casekth model grid point is
if the model error is small. In general, the F-RMSE can be ¢ ‘
decomposed into an F-Spread component and a model errdfk.i = *k.i explax ;| +ex.i.

and

2
f f
Xij—Xi| -

1 m
F-Spread= premcr ;‘

(32)
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wherek=1,..., p;, ande; = {sl,i,ez,,-,...,s,,l.,i}T is the o |

observation error vector with mean zero and covariance ma- “ Method ETKF (@)
trix R;. Here,« is a parameter controlling the nonlinearity of n | —— Method TT
the observation operator, and= 0 corresponds to the lin- - — Method TN
ear case. All 40 model variables are observed in our exper- o _| — Method 55
iments. Suppose the observation errors are spatially corre- N —— Method NN
lated. The leading-diagonal elementsRyfarec? = 1, and é |

the off-diagonal elements at site pajr, k) are ! -

R; (j, k) =ag.o.5mi”<'f-’<l~4“‘f—k'>. (33) =

With the exponential observation function and spatially cor- a

related observation errors, the proposed scheme may poten:

tially be applied to assimilate remote sensing observations =

and radiance data. ' ' ' ' '
We added model errors to the Lorenz 96 model because 4 6 8 10 12
they are inevitable in real dynamic systems. The model is a
forced dissipative model with a paramefethat controls the
strength of the forcing (EcB1). It behaves quite differently
with different values ofF, and it produces chaotic systems
with integer values of’ larger than 3. Thus, we used various
values of F to simulate a wide range of model errors while

Forcing

retaining F = 8 when generating the “true” state. These ob- @ (b)
. L . Method ETKF
servations were then assimilated with= 4,5, ...,12. We —— Method TT
simulated observations every 4 time steps for 100 000 steps —— Method TN
to ensure robust results (Sakov and Oke, 2008; Oke et al., " —— Method SS
2009). The ensemble size is 30. ~ T —— Method NN
w
(%]
3.2 Assimilation results %
<
In this section, we examine the following five data assimi- Q
lation methods corresponding to five different treatments of
nonlinearity in inflation factor estimation and optimization:
ETKF: traditional ETKF in linear approximation -
(Eg.12) and optimization (EqL0). - , , , , ,
TT: tangent-linear approximation in both inflation 000 002 004 006 008 010
(Eqg.17) and optimization (Eq20). Parameter

TN: tangent-linear approximation in inflation (Ej7)

and nonlinearity in optimization (E4.0). Figure 1. (a) Time-mean values of the A-RMSE as a function of

forcing F for different assimilation methods in the Lorenz 96 model

SS: second-order approximation in both inflation @nd the observation operator (E§2) with parametera = 0.1.
(Eq. 24) and optimization (EGR7). (b) Time-mean values of the A-RMSE as a function of parameter

«a for different assimilation methods in the Lorenz 96 model with
NN: nonlinearity in both inflation (Ecp) and optimiza-  F = 12. ETKF: traditional ETKF in linear approximation (E&)2)
tion (Eq.10). and optimization (Eql0) (cyan line); TT: tangent-linear approx-
) . imation in both inflation (Eq17) and optimization (Eq20) (red
The corresponding time-mean A-RMSEs of these asqine): TN: tangent-linear approximation in inflation (E&j7) and
similation schemes witlk = 0.1 andF =4,5,...,12, over  ponlinearity in optimization (EqL0) (green line); SS: second-order
100000 time steps, are plotted in Fig. 1a. First, the figureTaylor approximation in both inflation (E4) and optimization
clearly shows that for each estimation method, the A-RMSE(Eq. 27) (blue line); NN: nonlinearity in both inflation (Ec) and
increases a¥' becomes increasingly distant from the true optimization (Eq.10) (black line). The ensemble size is 30.
value of 8.
Moreover, method NN has a smaller A-RMSE uniformly
over all values ofF than method TN, indicating that the pro- the other hand, the A-RMSEs of methods SS and TN are
posed nonlinear inflation estimation (E8). performs bet-  close, and smaller than that of method TT, suggesting that the
ter than the tangent-linear inflation scheme (E@). On second-order Taylor approximation method is comparable to
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the partial nonlinear method and is better than the first-ordefable 1. The time-mean values of A-RMSE and F-RMSE, the ratio
Taylor approximation method. Lastly, the traditional ETKF of F-RMSE to A-RMSE, and the objective function (second-order
method has the largest A-RMSE, which implies that althoughdistance from the squared innovation statistic to its expectation)

the linear approximation is computationally more efficient, it in the five ETKF methods for the Lorenz 96_ model, with forcing
may introduce a larger analysis error parameterF = 12 and parameter of observation operaict 0.1.

For the Lorenz 96 model with a large erraf & 12), the ~ = <F: traditional ETKF in linear approximation (E42) and op-

time-mean A-RMSEs and F-RMSEs of the five methods aretlmlzatlon (Eqg.10); TT: tangent-linear approximation in both in-
. . . flation (Eqg.17) and optimization (Eq20); TN: tangent-linear ap-
given in Table 1, as well as the time-mean values of the Ob'proximation in inflation (Eq17) and nonlinearity in optimization

jective functions. The function represents the second-ordefgq._10); ss: second-order Taylor approximation in both inflation
distance from the squared innovation statistlgd() to its  (Eq. 24) and optimization (Eq27); NN: nonlinearity in both infla-
expectation. Generally speaking, for a more accurate assimion (Eq.5) and optimization (EGL0).

ilation scheme, the realization df,-dl.T should be closer to

its expectation, and therefore the value of the objective func- Scheme ETKF TT ™ SS NN
tion should be smaller. It can be seen that the full nonlinear a-rmse 2.74 2.50 2.25 2.29 2.08
method (NN) has both the smallest A-RMSE and F-RMSE, E'Emgg 3.20 3.00 277 2.66 2.52
while the traditional linear approximation method (ETKF) A-RMSE 117 120 123 116 191
has the largest RMSEs. The second-order Taylor approxima- L 49700074 17078480 8768825 9177962 8458902

tion method (SS) performs similarly to the partial nonlinear
method (TN), but better than the first-order Taylor approxi-
mation method (TT). In the majority of the cases, a smallerTaple 2.The time-mean values_ of F-RMSE and F-Spread, and the
error corresponds to a smaller value of the objective func-ati0 of F-RMSE to F-Spread in the four ETKF schemes for the
tion L. The ratios of F-RMSEs to A-RMSEs are also listed Lorenz 96 model, with forcing parametér= 12 and parameter of

in Table 1, which can be considered a measurement of th(ca)bservaltlon operatar = 0.1.

improvement gained at the analysis step. All the ratios are

S . - Scheme ETKF TT TN SS NN
larger than 1, which indicates that the analysis state is bet-
ter than the forecast state. Among all methods, the ratio is F-RMSE 320 3.00 277 266 252
largest for the TN method, which indicates the largest error ~ F-Spread 106 145 146 148 145
reduction at the analysis step. F-RMSE/F-Spread  3.02 207 190 180 1.74

To illustrate the variation in A-RMSE with respect to
the parametery, the corresponding time-mean A-RMSEs
of different assimilation schemes with =12 and o =
0,0.02,0.04,0.06,0.08,0.1 are plotted in Fig. 1b. It shows

Table 3. Similar to Table 2, but withF” = 8.

that all the schemes have the same A-RMSE with O (i.e., Scheme ETKF 7T TN SS M
the observation operator is linear), indicating that there isno  F-RMSE 030 029 026 027 023
difference between them. For each scheme, the A-RMSE in- F-Spread 020 022 021 022 021
creases as the parameteincreases from 0 to 0.1. The mag- F-RMSE/F-Spread  1.50 132 124 118 1.09

nitude relation of all schemes is basically consistent with that
in Fig. 1a. The larger the parameteiis, the bigger the dif-
ference that the different schemes have. 3.3 Impacts of Taylor approximations

To investigate the consistency between F-RMSE and F-
Spread, we present the time-mean values of the five methin Sect. 3.2, we see that the A-RMSEs derived from the five
ods for case§” =12 andF = 8 in Tables 2 and 3, respec- ETKF assimilation schemes are close wheis close to the
tively, as well as the ratios of F-RMSE to F-Spread. It is easytrue value of 8, but are different wheéfideparts from 8. This
to see that in all cases, the F-RMSEs are larger than the Feffect may depend on how well the Taylor expansions ap-
Spreads, and therefore, all the ratios are greater than 1. Howsroximate the nonlinear observation operatbr
ever, the ratio of the full nonlinear method (NN) is the small-  For example, the Taylor expansion of #tta component of

est, while the ratio of the linear approximation method is theobservation operatalf; (x) = x exp{ex} (Eq. 32) with o =
largest. The ratio of the second-order approximation metho.1 around the forecast Stat%i is

(SS) is comparable to that of the partial nonlinear method

(TN), but smaller than that of the first-order approxima- i f f f
tion method (TT). This suggests that the ensemble-perturbed.i eXp{O'l"k,i} =Xk eXp{o'lxk,i} + (1+ O'lxk»i)

predictions are the most (least) reasonable for method NN 0.1x t o f 0.2+ 0.0Lc .

(ETKF). Moreover, the ratios withF = 8 are much closer exp{ ']'x’”} <x’” x"") +( SR Jxk”>

to 1 than those withF = 12, because the model error with f t . f 2

F = 12 is much larger than that with = 8 (see Sect. 2.3). eXp[o'lx""’] (x’“' xk,,-) T (34)
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To verify how well the Taylor expansions approximate the

0.5

nonlinear observation operatéf;, we calculate the ratios of —— First-order

+ Second-order

the Taylor expansion residuals ovef ; exp[O.lx}m]. If a

ratio falls outside the interval{0.1, 0.1], then the corre-
sponding residual cannot be regarded as being of a highel
order infinitesimal, and hence cannot be ignored. There-
fore, a larger proportion of ratios falling outside the inter-
val [-0.1, 0.1] indicates a worse Taylor expansion, and vice
versa.

The proportions of the ratios that fall outside the inter-
val [-0.1, 0.1] are plotted in Fig. 2, which shows that when
F =8, the proportions are 0.0169 and 0.0006 for the first-
order and second-order Taylor expansions, respectively. This
result indicates that at almost all times and locations, both the
first-order and second-order Taylor expansions are good ap:
proximations otx}“. exp’O.].x}“.}. However, whenF =12,
at approximately 47 % (19 %) of the times and locations,
X} exp{O.]_x}(,l.} cannot be approximated adequately by its
first-order or second-order Taylor expansion. Therefore, thé_:igure 2. The proportions of res_idual ratios of the _first-order (solid
A-RMSEs derived by the five ETKF schemes are quite dif- line) and second-order (dotted line) Taylor expansions over the non-
ferent. This example also indicates that the success of thinear observation operatar, ; eXp{O-L‘i,i} that fall outside the
Taylor approximation method depends on both the smoothinterval [-0.1, 0.1], as a function of forcing'.
ness ofH; and the range of forecast states. It seems that for
the same strongly nonlinear observation operator, the larger

the model error, the less the success of the Taylor approxibecause of the way the inflation factor appears in these equa-
mation. tions. The objective function for estimating the multiplica-

tive inflation factors is the second-order distance between
the expectations of the squared innovation and its realization,

0.4

Ratio
0.3

0.2

0.1

0.0

Forcing

4 Discussions which also makes the rms spread equal to the rms error (e.g.,
Palmer et al., 2006; Wang and Bishop, 2003; Flowerdew and
4.1 Inflation Bowler, 2011).

The proposed nonlinear method is tested using the

It is widely recognized that the initial estimates of ensembleLorenz 96 model with nonlinear observation systems
forecast errors should be inflated to improve assimilated re{Sect. 3.2). The resulting A-RMSEs are clearly smaller than
sults. To date, however, all of the existing adaptive inflationthose of the first-order Taylor approximation in the estima-
schemes in ETKF are based on the assumption that the obsetfen of the inflation factor. This indicates that the proposed
vation operator is linear or tangent linear (e.g., Li et al., 2009;full nonlinear inflation method is better than the first-order
Miyoshi, 2011). In this study, a method to estimate the mul- Taylor approximation inflation method in the case of non-
tiplicative inflation factors is proposed for general nonlinear linear observation operators (i.e., method NN is better than
observation operators. method TN). In addition, the F-RMSE and F-Spread of the

Historically, in systems such as the Met Office ETKF proposed nonlinear method are more consistent than those
(Flowerdew and Bowler, 2011), the need for inflation arisesof the first-order Taylor approximation method. The second-
primarily due to spurious correlations that cause the raw anaerder approximation method for estimating inflation factors
lysis ensemble to be severely underspread even when thehile using the nonlinear optimization scheme is also inves-
background ensemble is well spread. In this case, therefordigated. The corresponding A-RMSE is 2.20 for the forcing
inflation must be applied to the analysis ensemble to respongaramete = 12 and the parameter of observation operator
correctly to the actual analysis uncertainty in the nonlin-« = 0.1, and is larger than that of method TN and smaller
ear forecast step. Inflation of the background ensemble mayhan that of method NN.
be more appropriate when the inflation primarily represents The proposed inflation methods work well in the cases
forecast model error, although stochastic physics or additivevhere observation errors are spatially correlated. Some data
inflation may also be appropriate in this case (Hamill andassimilation schemes assume the observation error covari-

Whitaker, 2005; Wu et al., 2013). ance matrix to be diagonal for simplicity and ease of compu-
Our choice to inflate the background ensemble is crucial tatation (e.g., Anderson, 2007, 2009). However, because satel-
the ability to find a direct nonlinear solution for EqS)+(7), lite observations often contain significantly correlated errors,
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the observation error covariance matrix has nonzero off-scheme based on the first-order Taylor approximation, and
diagonal entries (Miyoshi et al., 2013). The inflation method is comparable with the scheme based on nonlinear optimiza-
proposed in this study can be applied to assimilate such obtion and tangent-linear multiplicative inflation. However, it is
servations. less accurate than the nonlinear optimization and the nonlin-
In many practical experiments, the inflation factor is con- ear inflation estimation ETKF scheme proposed in this study.
stant in time, and is chosen by trial and error to give theOn the other hand, both schemes have similar F-RMSE over
assimilation with the most favorable statistics (e.g., An- F-Spread ratios.
derson and Anderson, 1999). To test the fixed-tuned infla- Despite the advantage that the objective functions (E4)s.
tion method, suppose?(1) andxﬁ(k) are the analysis sate and27) are easier to minimize, the computational cost of
and the forecast state using the time-invariant inflation fac-the ETKF with the second-order Taylor approximation may

increase from computingX{w)” M, .1 X{w. Because the
most typical nonlinear observation operator in numerical
N 2 I weather prediction is the radiative transfer model (RTTOV),
El\/% ”y?_Hi (xﬁ()»))” are minimized to tune tha, the related computational issue is discussed and is docu-
respectively. When Eq.10) is minimized to estimate the mented in Appendix E. In fact, unlike forecast operators, the
weights of perturbed analysis states, the corresponding Aobservation operators are usually localized, and therefore,
RMSE:s of the two fixed-tuned methods are estimated as 2.9%he computation o(xjw)T Hi‘xthgw is still feasible. For

and 2.85, respectively, which are larger than that of methodhe observation operators that are not localized, the compu-
SS (2.29). The ratios of F-RMSE to F-Spread are estimatedation of the second-order term may be complex.

as 3.14 and 3.45, respectively, which are also larger than the | addition, there are other ways to address this prob-
1.80 of method SS (see Table 1). All these facts indicate thajfem. For example, in the deterministic variational framework,
the empirical estimation method for the inflation factor is not \jet Office re-linearizes the observation operator every 10

N
tor A. Then, the statistics) \/pl |y?— H; (x?(k))||2 and
i=1 !

as good as method SS. iterations (Rawlins et al., 2007), and ECMWF uses a non-
linear outer loop. Both approaches retain the efficiency of
4.2 Second-order Taylor approximation a tangent-linear approximation in the inner loop, while al-

lowing for nonlinearity at a higher level. To understand the
In Sect. 3.2, we showed that the ETKF scheme equipped witt¢fficacy of the ETKF scheme with second-order Taylor ap-
our proposed nonlinear inflation method leads to the smallfProximation better, a more careful comparison with alterna-
est A-RMSE in all ETKF schemes analyzed in this study. tive assimilation schemes is necessary. We plan to face this
However, this ETKF scheme requires repeated calculation ofhallenge in the near future.

the nonlinear observation functiof& (x‘lc ~|—\/X<x§,j — xf))

andH; (xf +\/5T,-X§w) when minimizing the objective func- 4.3 Caveats

tions L; (1) and J; (w). To reduce the computational cost, a
commonly used approach is to substitéfeby its tangent-  This study assumes the inflation factor to be constant in
linear operator (i.e., first-order Taylor expansion). However,space, but this is apparently not the case in many practi-
this approach comes at the cost of losing estimation qualitycal applications — specifically when observations are sparse.
as we have shown in this study. Applying the same inflation value to all state variables may
As an effort to strike a balance between the estimationoverinflate the forecast errors of the state variables without
quality and computational cost, the nonlinear observation op-observations (Hamill and Whitaker, 2005; Anderson, 2009;
erator H; in the objective functiong.; () and J; (w) is sub-  Miyoshi et al., 2010; Miyoshi and Kunii, 2012). If the fore-
stituted by its second-order Taylor expansion. This is becauseast model has a large error, a multiplicative inflation may
(1) the second-order Taylor expansion is a better approximanot be effective enough to improve the assimilation results. In
tion of H; than its tangent-linear operator; (2) with second- this case, the additive inflation and the localization technique
order Taylor expansion, the inflation factoand the weight may be applied to improve the assimilation quality further
vectorw are concentrated out df;, so the objective func- (Wu et al., 2013).
tions (Eqs24 and27) become polynomials, for which a min- This study also assumes that the analysis increment can be
imum is easier to derive; (3) the second-order derivative ofexpressed as a linear combination of ensemble forecast errors
H; is required to estimate ensemble analysis statesi{Bq. (Eqg.8). This assumption is true if the observation operator is
in the ETKF scheme, so its computation is not an additionaltangent linear, but the nonlinear observation operator can af-
task. fect the combination of possible increments that produce the
The accuracy of the ETKF scheme with the second-ordeoptimal analysis (Yang et al., 2012). However, our examples
Taylor approximation is examined in Sect. 3.2. The resultsdemonstrate that the proposed ETKF methods can still work
suggest that the scheme is more accurate than the ETKell when the observation operators are not tangent linear.
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For general nonlinear or even non-smooth radiative trans-
fer operators (Steward et al., 2012), the utility of higher-order
elements in a Taylor expansion may be questionable. Also,
the development of the second-order term may be time con-
suming and difficult in the case of complex observation op-
erators, especially when the observation operators cannot be
localized.

Last but not least, the results concluded in this study are
related to the Lorenz 96 experiment, and may not be regarded
as general rules. However, they can serve as counterexamples
to validate some ideas.

5 Conclusions

In this study, a new approach to inflating the ensemble fore-
cast errors is proposed for the ETKF with a nonlinear ob-
servation operator. For an idealized model, it is shown that
the proposed inflation approach can reduce analysis error
compared with the tangent-linear multiplicative inflation, de-
spite it being computationally more expensive. An ETKF
scheme with the second-order Taylor approximation is also
proposed. In terms of analysis error, the scheme is better
than the first-order Taylor approximation ETKF scheme and
the traditional ETKF scheme, especially when the model er-
ror is larger. However, it is comparable to the scheme based
on nonlinear optimization and tangent-linear multiplicative
inflation. The proposed ETKF scheme with nonlinear opti-
mization and nonlinear inflation was found to be the best
among all schemes presented in this study. Finally, the pro-
posed method is computationally feasible for assimilating
satellite observations with radiative transfer models as the
nonlinear observation operators (see Appendix E), which are
broadly used in atmospheric, ocean and land data assimila-
tions.

In the future studies, we plan to investigate further the
computational efficiency of the proposed ETKF schemes and
to validate them using more sophisticated dynamic models
and observation systems.

Nonlin. Processes Geophys., 21, 9550 2014
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Appendix A: Derivation of Eq. (6) Assuming the forecast and observation errors are statisti-
cally independent, we have
The estimation of the inflation factoksis based on the inno-

vation statistic normalized by the square root of the observa- 12 . . T 172
tion error covariance matrix E[Ri (¥ — Hi(x))) (Hi (x;) — H; (xi)) R; ]
_ V2pl(v0 — H. (xt b )
d; = R 1/2( o —H; (x;‘>) _ Rl‘ 1/2 (ylo —H (xf)) = Rl I:(yl H; (xi)> (Hl (xi) H; (xl-)) ]
_ -2 _
R (1 () - 1 (+]) o RO )
E[R2 (Hixh) — i) ) (0 = Hixh) T RH?]
where y°, xf andx! are the observation, forecast and true 125 (g Y — B 0 g7t
state vectors at theh time step, respectively, arfd; is the =R [(H’ i) —H (x")>( — Hix)) ]
observation operator. The mean valuelpd! is RY2_¢o (A7)
1
E (d,-diT) = E[(R;l/z (y2— H; (x})) From Eq. @), y? — H;(x!) is the observation error at the
_ _ ith time step, and hence,
+R Y2 (Hieh—Hi ) ) (R (90— Hix))
_ T —1/2 —1 2
+R7V2 (B - HixD)) ], (A2)  E[R7Y2 (50— Hix)) (59 — Hixh) R
_ _ o :R,_l/zE[( — H(x) (50— H; (xh)) ] ~1/2
whereFE is the expectation operator. Especially if the obser- !
vation operator is a linear matrixi¢), Eq. (A2) can be sim- =R YRR V2 =1 (A8)
plified to

, 120 & LT e1/2 In a perfect system, truth would be statistically indistin-
E (did,' ) =R, 7"H;P;H; R, 7" +1, (A3) guishable from one of the ensemble forecast states, but in
a real system, this is not guaranteed. Hence, we use an

matrix of the random vectat; can be expressed as asecond-o x! + f( _ xf,), j=1,...,m. Because the ensemble

order regression equation (Wang and Leblanc, 2008): forecast states may be regarded as sample poim$ @n-

, 12,6 vz . derson, 2007), we have
didi:E[<Ri (97 — Hi (x})) +R; ( i (%)

— ; (x1))) (R72 (50 — By (x1)) E[R Y2 (e — e ) (Hiteh) — Hix)) R
T
+R; 1/2( i (x}) — Hi (xf))) ]+E, (A4) :mi_l;[Ri_l/z(Hi<x§+ﬁ(x];,j_xg)>
1l s e DS 0y )1 143 ) -)

=C;(V). (A9)
B[ (R72 (02 = i (xl)) + RY2 (11 x) - 1 (x1)))

(R._l/z (yF’ o (xt-)) iR _12 (H (x G )))T] Substituting Egs. (A5)—(A9) into Eq. (A4), we have

[ V239 _ g xh)) (0 — Hi(xh) T RV did] =C;(})+1 +E. (A10)
+E 12 (H, (xt) H; (x ) (H,- (x})—Hi (xi)) Ri_l/z} It follows that the second-order moment statistic of eror
, can be expressed as
vE| ‘1/2(y — H;(x})) (H (xb) — Hi(xg)) Ri‘l/z}
T
B (s ) o - ety T[]~ () (e )]
(A5) =L;(M). (A11)
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Appendix B: Derivation of ji|w and J",~|w The termC; (1) in Eq. 6) can be simplified to

The first-order derivative of the objective functioh(w)

(Eq.10)is Ci = 3[Ry (x4 VE (2! — x))

m—14
Jiwy = om — vw— /3 (x1) ] R ¥
() = 0n = Dw =i (X1) A R A CHICICESACIE))
fo /3yt
[y;’—H,- (xi-i-\/;ixiil))}, (B1) _H (xf))T —1/2]
where 1
__ 1 ’1/2< o ))
Puo o m_ljzl[ (R v (L -
|;|i|xf+x/7xfw : i : (H \/X(xf —xf>)TR_l/2
i P ahp,ui ma,i ilxg g i i
0x1; 0xp,i x-:xf«l»ﬁxf.w 1/2.¢ 1 i
i i i/ _ -1/2
. . L f r f T
is the first-order derivative off; evaluated at! + \/)T,'Xl.w. [(XE, _xg) (x;j —xf) ]Hl‘fo—l/z

Then, the second-order derivative Bfw) is

1/2, 12
. ) T . p =R YA, fPH (R
Jiw) = (m — Dl + 4, (xf.) H it /T i
Ri et fxf — MiA, (B3) It follows that the objective functioi; (1) of Eq. ) can be
_ simplified to
whereA is anm x m matrix with the &, /) entry
.. T _ . _
(= xDT @, @ (31— 21)) Ly, =Tr (did] =R 2R, (BRTgR Y2 1)
N _ T
Ril[y?—Hi (xf—l-\/)Tinw)] (B4) (didiT—ARi Y2, PF L R; 1/2—|) ] (C2)

The notation ®” denotes an outer product operator of the

block matrix defined in Eq. (23Hi\xf+ﬁxfw is the second- BecauseL ;(A) is a quadratic function ok with positive

quadratic coefficients, the inflation factor can be easily ex-

order derivative off; atx! + \/?\ijw, that is, pressed as
Hooor /o 12, _172
Lilxf+v/Aix(w . T [R7VARaPR R (did! 1) ]
H = = : s Ai = (C3)
il /A X w g Tr[R vy ;PiHileRi_lH P H,leR‘lfz]
pi,i|x5+\/i_,‘XEw ' l
92ny ; 92ny ; .
- Similarly,
Hk,i\x§+\/5»_ixfw5 : : ’
3hy i 32hy i f ¢
W ot el ) N B W H; | x; +\/7X ( )+\/>H £ X;w (C4)
k=1,...,p,'. (55)

Substituting Eq. (C3) into Eq8], we can simplify the objec-
Appendix C: Details of the first-order approximation tive functionJ;(w) to
method in Sect. 2.2.1

1
SupposeH; can be approximated by its first-order Taylor ex- /1.i(w) = 5(m — Dw'w

pansion at!, . .
H (xE +ﬁ(x{. : _x.)) ~ H; (x;) + % [y?— H (x?) - \/;H,.le_xﬁw]
f\/—( f) (C1) R [y, ( f) \/>Hl‘xfx w} (C5)
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The first-order derivative afy ; (w) is

T
o= - (,0)

Ri_l y?—H; (x{) — \/i»,-H”x;XEw

=(m—1Dw— \/E(XE)T ng'x'f

lel y?—H; (xf) _\/)TiHux;XEw_ (C6)
Setting Eq. (C6) to zero and solving it leads to
wi=(n - Dl +3 (XE)T Higef R X! -
\/i»,-(xﬁ)TH,.Tlngyl(y?—Hi (=) C7)
Lastly, the second-order derivative &f ; (w) is
Jriw) = (m =Dl +4; (XI)THlleR WXl (C8)

Appendix D: Details of the second-order approximation
method in Sect. 2.2.2

SupposeH; can be approximated by its second-order Taylor

expansion at:

e o)) = 1 (o), )
() 006t ).

2
The notation ®” is defined as in Eq. (23). The ter®; (1)
in Eq. (7) can be simplified to

(D1)

Ciln) = ﬁ ml[Ril/Z(Hi (xf +«/X<x£j —xg))
j

— i (x1)) (B (3! 7 (L~ 1))
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O e (G
®<x¢f—xﬁ>>> ]
=3ty g3 () (e )]

/=1
3/2 m
12 A R-1/2p f f
i mln;[ g (e, )
f AT o f A o172
((xi,j_xi> ®Hi|x§®(xi,j_xi>> R; ]
ISR I PR YV R B
T —1);Rf (xi—+!) A

T
f f f f o7 -1/2
®<xi’j—xi>> (xf,—1) AR

4(m 1 i R_m(( x§>T®Hi|x5

j=1

~.

® (x! —x1)) ((x1, =) @ Fiyg

® (=) R ]

=RV, x{ﬁ’iHiTleRi_l/Z—AS/ZClJ—)ﬁ/ZCL—AZCZJ, (D2)
where

Cii1= 2(m 1 g[ R, /*H t\x ( f]

j=1

T
f f f
=xl) (=)

@Hy® (x,—xl)) RV (D3)
and
Ciz2= 4(m D ml[ —1/2((xf —.X'E)T@Hilxj
iz
o (xl =) (+L, 1)’
@F @ (xl; —xl)) R 2] (D4)

arep; x p; matrices, which are independentiof
It follows that the objective functiod; (1) of Eq. ) can
be expressed as

LZ,i()»)ZTI’I:<didT ,\R‘l/zH prl‘fo—1/2 5372
R P |)

(d dr_/\R—l/zH fPH”fo -1/2 3320, 332
Cl,—2%Cy,; — |)T], (D5)

which is a polynomial algebraic equatiaf/2.
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Similarly,
i+ X ~ e +Hi\x;/;fx§w
+%((\/)A‘»ix;w>T®|:Ii|xxlf®<\/)§-XEw>), (D6)

Substituting Eq. (D6) into Eq1(0), we can simplify the ob-
jective functionJ; (w) to

J2,i(w) =

1 -~ .
+ E[J’? — Hi(x]) - \/;iHileXEw

®Hy ® Xw) | R[50 -

1
E(m—l)wTw

VN
2 <(X""’)
H; (xh)

~ - )v ..
- \/)T,-Hilxgxﬁw -3 (Kfw) @, @ Xfw)].
(D7)

The first-order derivative af2; (w) is

T
Joi(w) = (m = Hw — [\/;i""ixﬁxg +5\iBli|

. b
H; (xj) - \/)T,-Hl.leXEw — E’((xﬁw)T

(D8)

-1
R; [y?_
@ ®(Xfw))]

where B; is a p; xm matrix with the (k,l) entry

T f
(Xi,l) Hi|x§,kxiw-
The second-order derivative @3 ; (w) is

T
Jo,i(w) = (m — Dl + [\/XTH,-MXE +ii81}

R [\/’TI‘HM;XE + A Bl} — 1iBa, (D9)
whereB; is anm x m matrix with the(k, /) entry
((x?k —x';)T ® Hlle ® (xl I xE))T

Ri_l[y? — Hi(x)) - \/)TiHi\xlf.x];w - %((XEW)T

®Hyp ® (xfw))] (D10)

Appendix E: Computational feasibility

G.Wuetal.:

Improving the ETKF using second-order information

is hundreds of thousands, and the dimension of the state vec-
tor n is tens of millions. If the storage and the number of mul-
tiplications for computing any array are not in the dimension
of nxn,nx p; or p; x p;, the computation should be feasible.

In our proposed ETKF with second-order approximation,
the most expensive part is in computing the array

(xﬁw)T ® Hlle ® (xf )

Therefore, we onIy discuss the problems related to the com-
putation of(XEw) H

(E1)

ilx!, kX w.

E1l Storage problems

By the matrix multiplication rule,

T
f f T f W f
(Xiw) Aiper i Xtw =" (XF) A XD,

where the matrix in the middle of the right-hand side of
Eqg. (E2),

(E2)

T .

f f
(XI) Fiper X, (E3)
is of dimensionn x m, because subscriptruns from 1 top;,
and the size of the array in Eq. (E1lyisx m x p;. Therefore,
there is no storage problem in saving this array.

E2 The computational cost of Eq. (E3)

Usually,mn(m + n) times multiplication is required to com-
pute a matrix such as the one in Eq. (E3). However, in the
case of the RTTOV observation operaﬂé%”xf_ is a sparse
matrix with a large number of zeros, and the non-zero part
has a simple regular structure. This is because a microwave
sounding units (MSU) brightness temperature measurement
on a grid point — denoted by (k) — is only related to the me-
teorological state variables on the transmission route. Sup-
pose the meteorological model has 50 layers and 6 types
of variables; the number of state variables on the transmis-
sion route of the MSU brightness temperatwfék) is ap-
proximatelys = 300. For the variables not on the transmis-
sion route, the corresponding entrleer,g ! (Eq. 22) are
zero. Therefore, the computation of Eq. (E3) only requires
ms(m + s)/2 times multiplication.

We take the RTTOV as an example of observation opera- On the other hand, computing the first and second deriva-
tors in numerical weather prediction to discuss the compu-ives requires an additional number of operations, but it is
tational feasibility of the ETKF with a second-order approxi- manageable.

mation assimilation method. Generally speaking, the ensem-

ble sizem is from tens to hundreds, the dimension of ob-

servations (including gauge observations and advanced mi-

crowave sounding units, AMSU, brightness temperatpye)

Nonlin. Processes Geophys., 21, 9550 2014
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