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Abstract. Describing the nature and variability of Indian and may relate to linked variability on different temporal and
monsoon precipitation is a topic of much debate in the cur-spatial scales as noted Byrner and AnnamaldR012.
rent literature. We suggest the use ofeneralized linear For instanceGoswami et al(2006 used daily central In-
mixed mode(GLMM), specifically, the logit-normal mixed dian rainfall and found rising trends in frequency and magni-
model, to describe the underlying structure of this complextude of extreme rain events along with decreasing light and
climatic event. Four GLMM algorithms are described and moderate rainfall. While validating their 2006 stu@hosh
simulations are performed to vet these algorithms before apet al. (2012 indicated increasing spatial variability in ob-
plying them to the Indian precipitation data. The logit-normal served Indian rainfall extremes. They also found that mod-
model was applied to light, moderate, and extreme rainfall.erate rainfall increased in central India despite a decreasing
Findings indicated that physical constructs were preservedrend in occurrence of moderate rainfall. For high and ex-
by the models, and random effects were significant in manytremely high rainfall, they noted a few locations experienced
cases. We also found GLMM estimation methods were sena significant upward or downward trend, however, most grid
sitive to tuning parameters and assumptions and therefordhgoxes showed a lack of trend.
recommend use of multiple methods in applications. This A similar study conducted bghosh et al(2009 used a
work provides a novel use of GLMM and promotes its ad- finer spatial scale and indicated a mixture of increases and
dition to the gamut of tools for analysis in studying climate decreases of extreme rainfall events dependent on location.
phenomena. An increasing trend in exceedances of 99th (extreme) per-
centile daily rainfall was discovered Bgrishnamurty et al.
(2009. On the other hand, they stated many parts of India ex-
hibited a decreasing trend for exceedances of the 90th (mod-
erate to extreme) percentile. Increases in the frequency of
both light and moderate to extreme rainfall events were ob-
) ) o served inSingh et al.(2014), along with decreasing proba-
Explanation of Indian monsoon precipitation has been a chalyjjity of regional rainfall events and higher variability in the
lenging problem in physics as well as data analysis. In thiﬁntensity of these events.
paper, we focus on statistical analysis of the summer mon- thege studies utilized parametric — regression, extreme
soon precipitation data, to provide insight symbiotic with \ 5,6 theory, time series methods — and nonparametric statis-
deterministic physics modeling. Previous statistical analy-tica| techniques, yet their lack of unanimity suggests impor-
sis studies regarding precipitation in Indian monsoons havggnt properties of the Indian monsoon remain partially mis-
explored two main areas — identifying methodology of data ;nqerstood.
analysis and covariate selection. o In view of the above, we propose adding tyeneralized
The establishment of appropriate statistical methodolog¥jinear mixed mode{GLMM) as a potential framework for
for explanation and prediction of precipitation, while si- gnalysis of Indian monsoon precipitation data. A GLMM is

multaneously capturing underlying variability, is paramount. 5 roader framework compared to the standard (linear, log-
These methods are used in identification of trends for predicyjnear logistic, or other) regression in that there medom

tion, however, trends tend to be inconsistent across studies

1 Introduction
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effectsinvolved. This implies part of the signal is random, applications to climate. Overall, we feel GLMMs could be a
and changes from one set of circumstances to another. In thgignificant addition to data analytics in climate applications.
current context, a GLMM may be suitable for capturing lo-  The rest of the paper is organized as follows. Section 2
cal, instantaneous variability. Such local variability may arise gives a short background on GLMMs and in particular, elu-
from cloud and other physical micro-properties. When therecidates the logit-normal model. The theory of the chosen esti-
is no such local variability, an appropriate variance compo-mation methods for GLMMs are discussed in Sect. 3. Section
nent in the GLMM would be zero, thus, recovering the true 4 furnishes the results of several simulations using these ex-
underlying “fixed-effects” regression model. isting methods. Section 5 applies these methods to monsoon
The second principal focus of literature has been identi-precipitation data from India. Finally, Section 6 presents con-
fying relevant covariates for study of Indian monsoon pre- clusions and future work in this area.
cipitation. Certain oscillations are commonly useful predic-
tors for precipitation. For instance, the synoptic activity in-
dex (SAl) developed imAjayamohan et al(2008 corre-
lated strongly with frequency of extreme rainfall. The In-
dian Ocean dipole (IOD) studied iRajeevan et al(2008

was shown to modulate in_ter—annual, inter-decadal and longg afore discussing GLMMs, we provide preliminaries on the
term trends of extreme rainfall events. Most commonly, theyey component use of an exponential family for the observed
El Nifio-Southern Oscillation (ENSOKUmar et al, 1999 yat5  An exponential family probability mass/density func-
Li and Yanaj 1996 Prell and Kutzback1992 Tumer and  ijon (pmf/pdf) has several unique properties conducive to
Annamalaj 2012 is cited as a driver of the monsoon. modeling. For further discussion of these properties, refer to
Several other climatic predictors of monsoons have beeryy, 5 ofkeener(2010. For simplicity, consider a univariate
proposed in the literature including Himalayan/Eurasian anqom variabler distributed as an exponential family. The

Snow ext_ent Kumar et al, 1,999' Pacific "a‘?'e windsL canonical form of the pmf/pdf then can be written as follows:
and Yanai 1996, atmospheric C@concentrationRFrell and

Kutzback 1992, and tropospheric temperature difference y-n—c(n)

(Xavier et al, 2007). Unfortunately, none have been conclu- fOlm = exp{ T(p) —r(, ¢)} : @)

sively attributed for the monsoon rainfall which suggests an

intricate relationship between some or all of these factors. Notea(-) is a function of a dispersion parametgrr (-, -) is
Because explicit attribution to covariates may not be possi-a function of data and the dispersion parameter,@nds a

ble, GLMM is a logical model for Indian monsoon precipita- function of parameters and is known as the cumulant func-

tion. It allows underlying randomness to drive observed datation. The statistioy is complete and sufficient; it is known as

in a particular hierarchy while still accounting for hypothe- the canonical statistic with corresponding canonical parame-

sized drivers of rainfall. tern. An exponential family can be written in a more general
This paper provides an introduction on extending GLMMs fashion compared to Eql), but will not be discussed here

to climate applications. Three paradigms of estimation — apfor simplicity.

proximate likelihood, method of moments, and Bayesian — o

were tested using four separate algorithmic implementations2-2 Model description

The methods of estimating GLMMs were penalized quasi-

likelihood, penalized iteratively reweighted least squares, X
P y g d ure. Given the latent unobservable second layer, known as

method of simulated moments, and data cloning. The theor)} g & h | h df/om followi
and limitations of these estimates are described in detail, thef@N4OM ?feCtT’ td.e tptf) ‘?‘yerAaS ap hpm bo omg%an ex-
utilized in simulations to test the validity of the methodology. ponential family distribution. Assume the observed data are

Simulation findings showed that penalized quasi- independent conditional on the random effects, and that we

likelihood was not accurate for the given application, thus,have’ =1, ..., N observations. Define thih response as
the three remaining methods were used to fit logit-normal” " .
models with random intercepts by weather station for Indian Then, we can write a GLMM as

summer rainfall data in light, moderate, and extreme rainfa”Level 1:

classifications. Maximum temperature and elevation were

consistently significant in the models aligning with the y, |, ™ £y, ) =exp{ Yi-ni — b (i) _r(yl,’qs)}’ @)
physics of precipitationATT — tropospheric temperature (®)

difference — was also significant for many of the models. ), zxiTﬂ +z,-Tu, ()
The most meaningful finding was a random effect by Level 2:

weather station was non-negligible in many of the models.

This provides further credibility to the methodology in U~Nu(©,%). (4)

2 Overview of generalized linear mixed models

2.1 Exponential families

A GLMM is a probability model with a hierarchical struc-
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The p-components of the vectg are calledixed effects
The random effects covariance is a function of theg-
dimensional 1, ...,0,) known asvariance components

Fixed covariates are represented by the 1 vectorx;.
Random covariate vectors for thi data point andth vari-
ance component can be denoted by,ax 1 vectorz;,. We

combine the vectors for each variance component to form

the random covariate vectag =(zl.T1, ...,ziTq)T of length

M =Y""_, m,. The random effects vectdy, follows an)-
dimensional normal distribution with mean vectband co-
variance matrixe.

In EQ. ), b() is a function of only the canonical parame-
tern;. The “linear” part of GLMM comes from the fact that

ni can be represented as a linear function of the fixed anck(ﬂ iy) =

random parameters(-, -) is a function of the data angl As
before,a(-) is a dispersion function.

To illustrate this form, we consider a commonly used ver-
sion of this model, the logit-normal GLMM. The random-
intercept form of this model is

Level 1% |u < Bernoulli(6;) . (5)
logit(6;) = n; = x! B +u;, (6)
Level 2U; '@'J\/<O,02>~ (7)

Notice that in this modek; is a vector with a 1 in théth
position and 0’s in all other positions.

Returning to the generic form of the GLMM, the assump-
tion of conditional independence among observations im
plies the density oY |u is

N

fOlu ) =]]rf ilu.B). ®)
i=1

and that the joint density of(, U) is

fy.ulB, %)= f(ylu,B)f(ul%). ©)

However, since random effects are unobserved, in orde
to utilize the observed data likelihood, one must find the
marginal distribution with respect to the observed déta
only. The log-likelihood is then
€. 2I¥) = log [ f(y.ulf. Dydu. (10)

This integral is rarely analytically tractable. Thus, maxi-
mum likelihood estimation (which is usually preferable when
possible) is very difficult. Many methods for inference have

Indian monsoon precipitation 941

approximate an integral by a normal distributiofiefney
and Kadangl1986. Then Eq. 10) can be written as follows:

09 [ /. B ulZ)d = an
09 [ expilog  y1u. §) + 109 f [} 12)
Let
h(u) =109 f(ylu, B) + 109 f (u|X). (13)
Then, we can express the log likelihood as follows:
log / "“du. (14)

This expression can now be approximated. To use the ap-
proximation, one first needs the maximizer of the integrand.
Let uo be the maximizer o#"™ . Then a Taylor expansion
aroundug yields the approximation to the log-likelihood,

92h(u)
ou,ou’l

1
LB, Z;y) %h(uo)+%loan—Elog‘

(15)

3.1.1 Penalized quasi-likelihood

Penalized quasi-likelihood (PQL) was proposecBrgslow
and Clayton(1993 to approximate the high-dimensional in-
tegral using Laplace approximation as a method for obtaining

uo andd?h(u)/du du’ . Filling in the details of Eq.13),
1, q 1
h(u) = Iogf(y|u,ﬂ)—§u 2u+§Ioan—§Iog|E|. (16)

This equation is differentiated with respect #oand g
respectively. Further approximations are made within the
derivatives becaus& is also unknown. The approximate
perivatives are used to form estimating equations for the
mean parameters. For more detailed discussion of these ap-
proximations, please refer tdcCulloch and Searl¢2010.

The same estimating equations arise from jointly maximizing

1 T
log f (ylu, ) — Su’ Zu, (17)
with respect tar andg.

These equations are solved by using Fisher scoring as an
iterated reweighted least squares (IRLS) problem. The quasi-

been proposed. Variants of the most popular methods are Xyelihood, log f (y|u, 8), is optimized taking into account

amined in Sect. 3.

3 Methods for estimating in GLMM

3.1 Likelihood approximation methods

the penalty,% u” T u. This penalty term has a shrinkage ef-
fect, i.e. forces values of to be closer to zero.

Variance components iB are subsequently estimated us-
ing a restricted maximum likelihood approach. Further de-
tails on the estimation algorithm are found in Sect. 2 of
Breslow and Claytoi§1993.

Both methods discussed in the following sections make The function in R which computes PQL estimates is
use of a technique known as Laplace approximation togImmPQL{MASS}. PQL is reasonably accurate when data
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are approximately normal and can be very fast. Howeuiar, Referring to the model elucidated in Eq®)+(7), let
and Breslow(1996 and others have criticized this method the dispersion function be(¢) = %t wherew; is a weight

for its bias in highly non-normal data. It is especially bad depending on the exponential family of the response. Let
in binomial data with a small sample size or true probabili- # = (8, o1, ..., 0,). Restrict all elements of thg to be ei-
ties near zero or one. Reliance on the quadratic expansion dgher 0 or 1. Represent

the log-likelihood is appropriate with normal random effects,

yetitis very difficult to assess normality of these unobservedz u = (zirlul, e zl.Tquq) (20)

effects. . :
= (Ulzilvl, ...,(quiqvq>, (21)
3.1.2 Penalized iteratively reweighted least squares

whereV, ~ N, (0, I,).
Another approach to likelihood approximation is presented Then,

by Bates(2010. The main difference from PQL is that it

attempts to approximate the true likelihood rather than thef (y;|v) = C (y;,0,¢)*

guasi-likelihood. N N T g N
To understand the approach, first,let- Ny, (0, ). Con- e 9r s

sider the decomposition of the random effects covariance ma_exp (; wleyz) * ; ¢ ; Wi

trix T =TTT. Then,U=TV whereV ~ Ny (0, I,,). This

implies that the canonical parameter in E3).¢an be written ~ whereC(., -, -) represents the other portion of the function.

as This yields canonical paramete$/@, o1/¢, ..., 04/¢)

with corresponding sufficient statistics

<™=

ni :xiTﬂ—i—ZiTl"v. (18)
N T N
Substituting inv to Eq. @), we note thatf(y, v) is pro- Zwixiyi vzwi)’izilvuwzwiyiziq
portional to f (v|y). Thus,vg is found to maximizef (v|y). i—1 -1 i1

The penalized iteratively reweighted least squares (PIRLS)

algorithm is as follows. Estimating equations are derived as
1. Given starting values fg8, X, andvo, evaluatey, iy, N ety
and vay|,. Let W = diag vag}.. D wixiyi =) wixiEy (i) (22)
i=1 i=1
2. Use a Gauss—Newton algorithm to solve m, [ N 2 i N 2
se
_ 1o ) ) < wiZirIYi) = ZEQ <Z wizmyi) . (23)
wly :argmu|n(||W 12(y = pyp) 12+ 10]] ) 19) i=\i=t = \i3

Note that the expectations on the right hand side are func-
3. Update the weightsW, and check for convergence. If tions of the parameters while the formulae on the left hand
not converged, go to step 2. sides are functions of data only. Since the expectations are
not available, they must be estimated by Monte Carlo sim-
ulation. The system of equations can then be solved for the
parameters using the Newton—Raphson algorithm.
We implemented this method in a newly created R pro-

Once the conditional modeis determined, a Laplace ap-
proximation to the deviance— x log-likelihood) is eval-
uated atv. This evaluation may alternatively be done by
the Gauss—Hermite quadrature which is discussed further i@ram As shown inJiang (1998, this method is consis-
Bolker et al,(2009. The function in R used to compute esti- tent and is potentially computationally less intensive than a

mates iggimer{lme4} . This method can experience sim- Markov Chain Monte Carlo (MCMC) method
ilar problems to PQL in cases where the random effects are '

non-normal. The Gauss—-Hermite quadrature can allay somg 3 pata cloning
of these issues, but is only computationally feasible for small

numbers of random effects. GLMM estimates can be produced in a traditional Bayesian
) framework; one must choose priors for the parameters of in-
3.2 Method of simulated moments terest and calculate the posterior distribution by multiplying

the prior densities by the likelihood,(8, X|Y), correspond-

ing Eq. (L0). One may then use MCMC to generate a de-

[gendent sample from the posterior distribution from which
stimates can be derived based on strong laws.

Lele et al.(2010 derived a method calledata cloning

to be used in conjunction with MCMC. The algorithm can

Jiang(1998 describes methodology known as thethod of
simulated momen{81SIM). The method first derives a set of
sufficient statistics. Estimating equations are then obtaine
by equating sample moments of sufficient statistics to their
expectations.
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Table 1.MSIM simulation resultsy =2, 62 =1. Table 2.dclone simulation resultsy =2, 02 =1.
# of Obs. per subject # of Obs. per subject
Par.  Sub. 2 10 50 200 Par. Sub. 2 10 50 200
10 17.41 (4.38) 2.11(0.07) 2.05(0.03) 2.00 (0.01) 10 13.18 (2.65) 2.12(0.05) 2.03(0.03) 2.02(0.04)
u 20 2-03 (0.05) 1.98 (0-03) 2.02(0.01)  2.00(0.00) 50 2.11(0.07) 1.99(0.02) 1.99(0.02) 1.99 (0.01)
1880 2'82) Eg'gi)) 1-22 Eg-g 1)) ;-gi ((g-gg ;gg Eg-gg; ko 200 2.05(0.03) 2.02(0.01) 1.99(0.01) 2.01(0.01)
Bt DA i R 1000 2.01(0.01) 2.00(0.00) 1.99(0.00) 2.00 (0.00)
10 741.99 (302.51) 1.71(0.33) 1.16(0.09) 0.97 (0.04)
, 50 1.02(0.10) 0.98(0.05) 0.98(0.02) 0.99 (0.01) 10 7.79(179) 1.18(0.11) 0.95(0.06) 0.98(0.05)
o 200 0.87(0.05) 0.97(0.03) 0.98(0.02) 0.99 (0.01) o2 90 1.67(0.33) 1.00(0.05 0.99(0.03) 1.00(0.02)
1000 0.92(0.06) 0.99(0.02) 1.00(0.02) 1.00 (0.01) 200 1.16(0.08) 0.99(0.02) 0.98(0.01) 1.00(0.01)
1000 0.98(0.04) 0.99(0.01) 1.00(0.01) 0.99 (0.00)
10 288574 (1016.73) 4.32(0.71) 1.14(0.33) 0.09 (0.01)
Loss 50 3.29(0.58) 0.19(0.02) 0.04(0.01) 0.01(0.00) 10 131.65(86.2) 1.26 (0.14) 0.32(0.04) 0.31(0.05)
200 0.33(0.04) 0.07(0.01) 0.02(0.00) 0.00 (0.00) Loss 20 1.58(0.44) 0.19(0.02) 0.06(0.01) 0.04 (0.00)
1000 0.50(0.16)  0.05(0.00) 0.02(0.00) 0.00 (0.00) 200 0.40 (0.06) 0.04 (0.00) 0.02(0.00) 0.01(0.00)

1000  0.09(0.01) 0.01(0.00) 0.00(0.00) 0.00 (0.00)

be summarized in the following three steps. First, create a ) ) )
k-cloned data sevi=(y, y, ..., y) where the observed 4 Logit-normal simulations
data vector is repeatek times. Choose a prior distribu-
tion 7 (B, X). Then, the posterior distributior (8, X|Y),
which corresponds to thecloned data is

4.1 Simulation setup

For subjecti wherei (1, ...,m) and observatiorj where

(LB SIY) (8. ) je(,...,n)and(u, 02 =(2, 1), we simulated 100 differ-

(B, Z|Y) = . 24 ent data sets from the model
N N =PI I R N
B.%) Level 1;;u ~ Bernoulli(6;;) (26)
Under regularity conditions as— oo, logit(6;;) = ni = +u; (27)
ind.
1 Level 2U; A (0,02). (28)
(B, Z|Y) = N((B. E)’ES 1. %)), (25) ( )

The number of subject#() was set at (10, 50, 200, 1000)

where(8, ) is the maximum likelihood estimate (MLE) of and the observations per subjes) vas set at (2, 10, 50,
(B, ) ands is the Fisher information matrix of the original 200). All methods were tested at each of these 16 settings.
data. Thus, largé means the posterior distribution is nearly Means and standard errors over the 100 estimates at each set-
degenerate at the MLE. ting were then calculated.
To generate a dependent sample from the posterior dis- To quantitatively describe the estimation discrepancy be-
tribution 7 (8, £|Y), one may use an appropriate MCMC tweenu andji, », we used squared error loss,
Z:gg:::ﬂm such as a Gibbs sampler or Metropolis Hastlnng (,&m,n) _ (/lm,n _ M)z' (29)
Finally, one can calculate the sample means and varianceBecause squared error loss is criticized for a bounded param-
of the components aff, ¥). Estimates of MLEs fo(g, X) eter space, we used Stein’s loss,
correspond to these sample means and approximate vari- 2 2
ances of estimated MLEs correspond tiimes the posterior ¢ (&2 ) _mn 4 Iog% (30)
variance of the original data as seen in E2§)( e 2 o2’
This method was implemented usidglone{dclone}
discussed inSolymos (2010 which relies on the well-
reputed BUGS language for estimation of hierarchical mod-

to measure how wet? was estimated b§?2 . A combined
loss was then calculated as

els. The method is computationally intensive, and it mayG</1m,n,5',5,n> = Q(,llm,n)+S(5nzz,n)- (31)
prove difficult to assess convergence as with any MCMC . s
implementation. Ideally, asn, n — 00, G(fim n, 6,, ,) = 0.

4.2 Simulation estimation analysis

The estimation results are displayed in Taldle$. All meth-
ods failed to reasonably estimate bptlando 2 in the small-
est scenario with 10 subjects and two observations each.

www.nonlin-processes-geophys.net/21/939/2014/ Nonlin. Processes Geophys., 2198392014
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Table 3.glmer simulation resultsy =2, 02 =1.

Table 4. gimmPQLsimulation resultsp = 2, o2=1.

# of Obs. per subjects # of Obs. per subjects
Par.  Sub. 2 10 50 200 Par. Sub. 2 10 50 200
10 6.02(0.70) 2.77(0.18) 2.33(0.09) 2.10(0.02) 10 310(017) 1.92(0.16) 1.34(0.14) 0.68 (0.08)
R 2.18(0.09)  1.99(0.02)  2.02(0.01)  2.00(0.00) 50  1.83(0.06) 1.61(0.03) 1.60(0.02) 1.54(0.01)
igg . ;-gg(g-gj) i-gg(g-gi) ;-gi(g'g? 2-33 (g-gg) M 200 181(0.04) 1.71(0.02) 1.73(0.01) 1.72(0.01)
02(0.04)  199(0.01) 2.01(0.01) 2.00(0.00) 1000 1.81(0.04) 1.81(0.02) 1.81(0.01) 1.79(0.01)
10  198.73(81.39) 7.48(1.36) 3.07(0.76) 1.19(0.04)
, 50 166(054) 095005 0.94(0.02) 0.94(0.01) 10 1.71(0.13) 1.26(0.11) 0.81(0.11) 0.26 (0.06)
7 200 0.93(0.06) 0.97(0.03) 0.97(0.01) 0.98(0.01) o2 50 0.52(0.06) 0.25(0.04) 0.15(0.04) 0.01(0.01)
1000 0.97 (0.05)  1.00(0.02) 1.00(0.01) 0.99 (0.00) 200 0.51(0.04) 0.54(0.03) 0.67(0.02) 0.68(0.01)
1000 0.48 (0.04) 0.72(0.03) 0.75(0.01) 0.74 (0.01)
10  270.68(84.19) 13.35(1.91) 3.79(1.12) 0.11(0.02)
Loss 50 4.96(1.15) 0.19(0.02) 0.04(0.00) 0.01 (0.00) 10 6.04(0.50) 5.95(0.47) 7.80(0.50) 10.21(0.47)
200 0.32(0.04) 0.06(0.01) 0.02(0.00) 0.00 (0.00) Loss 50 4.81(0.44) 5.61(0.38) 6.26(0.31)  7.89(0.12)
1000 0.47 (0.20)  0.04(0.00) 0.01(0.00) 0.00 (0.00) 200  3.40(0.48) 1.77(0.33) 0.24(0.06)  0.15(0.01)
1000 3.95(0.47) 0.75(0.25) 0.10(0.01)  0.10(0.00)

This was expected because there are not enough replicatiormable 5. Total system time (in seconds) results for Nokomis.
within the subject to get a meaningful estimate of a variance
by subject.

All other settings for MSIM,dclone , andglmer esti-

(# of subjects, obs. per subject)

e Method (50,10) (50,200) (200,10) (200, 200)
matedy within 2 standard errors. These methods also pro-

vided reasonable estimatessdffor settings other than those ~ glmer 0.089 0.048 0.080 0.071
with 10 subjects. The combination of the loss for the two es- PQL 0.286 0.234 0.384 0.394
timates went to 0 quickly for all three methods. In general, '\D/'jg\:efaSt 13272% 13;21595 328.407699 42(')4(?034
estimation by these three methods were unbiased. MSIMslow 94729 9363.849 1069.468 ~

The methodyimmPQLdid not converge to the true values
of (u, ?) as evidenced by combined loss greater than 0 for
all settings. Further, this method displayed an underestimat- o )
ing bias in both parameters. Also, this function in R could & @pproximations that they make. The Bayesian method,

not produce estimates for some of the 100 data sets in eaciclone , was slower at about 4 to 25min to produce esti-
setting. mates. The simple algorithm of MSIM fast was faster than

dclone and slightly slower than approximation methods
taking 3 to 6s per run. The MSIM slow method was much
slower ranging from 1.5min to nearly 4h. The case with
Subsequently, we tested 4 of the 16 simulation settings tc?00 subjects 200 observations could not be handled by this
determine computing speed of the estimation methods. Th&ethod because '_che size of matrices and vectors exceeded
settings used were combinations of (50, 200) subjects witihe storage capacity allowed by R.

(10, 200) observations. Theystem.time() command . . .

in R was used to record times. Simulations were indepen-A"4 Simulation conclusions

dently rur:jt_)n four computers,Rand _each est!ma:tlon me(t:hoqo\n ideal method would provide high quality estimates in a
was teste In sequence in one S.C”pt on a single core. LOMyy, 51t amount of time. The simulation indicated trade-offs be-
puter _f,pecmcauons can be. found in the Appendix. tween speed and accuracy in some of the methods.

We implemented MSIM in two ways fqr the speed test. In Theglmer andglmmPQLmethods were the fastest, but
the intercept-only model Eqs2§)—(28), it is possible to use glmmPQL estimates were biased. Accurate estimates were

?S|mr}lfhalg(|)rlth_rt1; fo_r estlrr:jat(ljo:. HOV\Sver’ a rr:og_a gef_nerglproduced bydclone despite being much slower than the
orm of the algorithm is needed for problems including fixe approximation methods.

covariates. This form relies on matrices and does not work In the intercept-only implementation, MSIM provided

with large data sets at this time. These methods are referre%st accurate estimation. However. it was much slower than

to :\QAS”V:tfaStandMS.:M ?IOW rers]p?(t:::vefly. ¢ th other methods in its matrix version and failed when too many
esulls were simifar for €ach ot the four COmpUters, tNere-,,cq 1 ations were used. It should be noted that tuning param-

fore,lfn_ly d(_)netogttr;]e slets (;f reLsuIts faret sflqw?hln ;’gbrérl;_e ¢ eters within each of the methods, such as convergence crite-
results indicated thafimmPQLwas fastest in the 50 subject iz ¢, MM or number of MCMC samples idclone  may

cases andlmer was fastest in the 200 subject cases. Thes Lo —
o mpact computing time significantly.
two likelihood methods were the fastest due to the nature o P puting 9 y

4.3 Simulation speeds
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Based on the output of these simulations, giramPQL ) )
method was not consistent. The other three methods — : '\P/Iriz::;);slyAvallable
glmer , dclone , and MSIM — provided estimates with rea- = Available
sonable accuracy. Therefore, these estimation methods are — Raininmm

used to fit models for Indian monsoon precipitation data.

5 Application in Indian monsoon precipitation
5.1 Data

Multiple data sets have been used to study Indian monsoon
precipitation in the literature of different temporal and spa-
tial granularity. However, the initial goal was to develop and
test the methods on widely and freely available data sets for
the purpose of understanding the usefulness of GLMM in
this context. This led to our selection of the data sources de-
scribed below.

We chose the National Climatic Data Center (NCBC)
in the National Oceanic and Atmospheric Administration
(NOAA) to gather latitude ), longitude ¢), elevation (m),
and daily minimum and maximum temperature8), These
data were collected from 1 January 1973 to 31 DecemM+igyre 1. Observed Indian rainfall (in mm) on 25 August 2012,
ber 2013. Data were queried for all available Indian stationsshown in contours. Markers indicate NCDC NOAA data status of
in the database. This data source was developed for a wid@dividual stations.
variety of potential applications, including climate analysis

and monitoring studies that require data at a daily time reso- » )
lution. Quality assurance checks are routinely applied to thedrought years. The Nifio-3.4 monthly anomaly series was

full data set according thlenne et al(2012. gathered for inclusion in the models from the NCEP site
We note this data had a large amount of missing observaSPonsored by NOAR. _ o o

tions, therefore, only stations with at least five observations The Indian Ocean Dipole (IOD) is an irregular oscillation
were included in analysis. One year in particular, 1975, did®ccurring in the Indian Ocean. Itis commonly measured by
not contain enough data to be included in the analysis. T¢he Indian Dipole Mode Index (DMI) which takes the dif-
elucidate this missingness, on 25 August 2012, there werderence between sea surface_temperature (SST) anomalies in
33 stations with missing (NA) values, 12 stations with precip- the western and eastern Indian Ocean. Non-ENSO drought
itation of 0mm, and 31 stations with greater than 0 mm pre-years are associated with DMI thus, this is a relevant co-
cipitation. This implies several stations were not included in Variate for inclusion in modeling. This index was only avail-
the data for this day and in general, stations included chang@ble for 1973-2010 models and data were procured from

over time. Figurel illuminates the rainfall on this date. the Japan Agency for Marine-Earth Science and Technology
We also included several other covariates of interest. ThdJAMSTEC) sité. . S .
first was tropospheric temperature differenaelT); the air We note that analysis of monsoon precipitation using

temperature averaged between the levels 600 and 200 hpiiIresholds was previously done iKrishnamurty et al.
The hypothesis that Indian ocean warming leads to reduc{2009. Rather than use a fixed threshold for the en-
tion in ATT which in turn reduces monsoon circulation is tirety of India, they utilized data derived percentile thresh-
noted inXavier et al.(2007). Thus, the inclusion of this co- ©0lds which changed depending on spatial location. How-
variate in the models was relevant. Data were collected fronfVer, their research was focused on trend analysis. Since
the National Centers for Environmental Prediction (NCEP)We were able to include spatial covariates, we only con-
Reanalysis sife sider fixed thresholds for the entire country foundAitiri

As stated ifWang (2006 and other literature, Indian rain- and Tyagi(2010. This report defined three categories of
fallis strongly associated with ENSO, and onset of dischargd@infall: light rainfall (0<x <64.4mmday?), moderate
in Nifio-3.4 region can lead to drought in India. The occur- rainfall (64.4<x <124.4mmday?), and extreme rainfall
rences of precipitation extremes are thought to be fewer irf= 124.4 mmday?).

http:/Avww.ncdc.noaa.gov/ Shttp://www.cpc.ncep.noaa.gov/products/analysis_monitoring/
2http:/www.esrl.noaa.gov/psd/data/gridded/data.ncep. ensostuff/detrend.nino34.ascii.txt
reanalysis.derived.html 4http://www.jamstec.go.jp/e/
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All stations were were marked each day with indicators Table 6. This table indicates the percentage of significamalues
of these categories to be used in the modeling. Only obserat « =0.05 level for each of the 1973-2013 modglsvalues for
vations considered to be within monsoon season were usedixed coefficients and goodness-of-fit test are from LRTs on GLM
This conservatively included the time period from 1 May to fits. p values for the va_riance components are from LRTs that com-
31 October (184 days) for each year. We fit models for eactPar¢ GLM andgimer fits.
year (excluding 1975) from 1973-2013. To account for spa-

tial variability, we fit a random intercept by weather station Variable Light  Moderate  Extreme
(WS) in the following logit-normal model: DMI 84% 30% 14%
Nifio34 68 % 20% 13%
ind. - ATT 98 % 95 % 70 %
Level 1Y ~"Bernoulli 32
s, daylu (Bws, day) . (32) e  Clevaion  95% 98%  95%
logit(6ws,day) = x\fvs‘da)ﬂ + uws, (33) max. temp.  100% 98% 100%
ind. min. temp. 75% 100% 40 %
Level 2Uws ~ NV (0, 0\,2v5> . (34) latitude 90% 30% 8%
longitude 90 % 33% 55%
5.2 Results of GLMMs Random  station 93% 53% 28%
To aid interpretation and provide a basis for comparison lack-of-fit?  38% 0% 0%

among models, we performed tests of significance for both
fixed and random parameter estimates. We also give results

frolrr?grggft(z)n;frsos\/_ic()jféﬂtte:zt;?;%i?f?cﬁire;sf(;?cf)iizlc'j effect co component, the asymptotic distribution for th2e LRT corre-
efficients, we propose the following procedure: :tsiponds half of they value optamed from thej d|st_r|bu-

on as noted byhang and Lin(2008. We only do this test
for glmer since the other two methods do not use maxi-
mum likelihood, although it should be noted the likelihood
produced byglmer is only approximate. Overall, we take a
cautious view on the interpretation of these tests.

1. Run a generalized linear model (GLM) with all eligible
fixed covariates.

2. Run a GLM with all eligible fixed covariates except the
one we are testing.
5.2.1 Discussion of rainfall models
3. Do a likelihood ratio test (LRT) to compare these
models and get g value from the asymptotig(lz Results of significance testing for each of the models can be
distribution. found in Table6. All covariates were significant in the light
rainfall model in the majority of the years. However, 38 % of
We recognize this method does not include the variance comthe years showed lack-of-fit based on the deviance test. The
ponent and is thus, not the same model that we are proposingnoderate and extreme rainfall models showed no lack of fit,
The likelihood ratio test for GLM described above provides but had far fewer significant covariates over the years.
an idea about the relative important of various fixed effects Clearly, maximum daily temperature was important in all
covariates that may be influential for light, moderate or heavythree levels of rainfall aligning with the Clausius—Clapeyron
precipitation. The above procedure may be supplemented bgquation regarding water vapor capacity of the atmosphere.
a multiple testing correction procedure, if needed. The de-Minimum temperature was significant in most years for light
tails of this analysis is available from the authors. Also noteand moderate rainfall, but was only significant in a minority
that in this part of the analysis we did not include random of the extreme rainfall models.
effects, owing to a lack of viable and theoretically justifiable  Elevation was also significant in many years for all rainfall
testing procedure when a random effect is present. Inclusiohevels. This aligns with the physical explanations of warm
of random effects are likely to reduce variance attributed tomoist air cooling at higher altitudes to produce precipitation.
noise, thus typically increasing significance levels. Latitude and longitude were both significant in most light
We chose the GLM with all fixed covariates to provide rainfall years. Moderate and extreme rainfall did not indicate
a test of goodness-of-fit based on residual deviance beingatitude as significant in most years. Longitude was signifi-
asymptoticallyy 2. For details, refer té-araway(2006). This cant in just over half of the extreme models. Coefficient esti-
compares the fitted model to the saturated model which conmates for latitude indicated the probabilities of rain increas-
tains one parameter for each observation. Failure to reject thing going south to north. Longitude estimates were mostly
null hypothesis of this test indicates a lack-of-fit. negative indicating a decreasing probability of rainfall going
Finally, a test of the variance component in the GLMM fit west to east.
by glmer is done using a LRT with a nonstandard asymp- DMI was significant for the majority of light rainfall mod-
totic distribution. Because our models have a single variancels; however, it was significant in very few of the moderate
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Figure 2. Top panel: weather station standard deviation estimates for logit-normal models with light Indian raiafal{(64.4 mm day 1)

as the response from 1973-2013. Estimates over time indicate variability near 0, however, mosglofetheestimates are signifi-

cant at the 0.05 level. Middle panel: weather station standard deviation estimates for logit-normal models with moderate Indian rainfall
(64.4< x < 124.4mmday?) as the response from 1973—2013. Approximately half ofiheer estimates are significant at the 0.05 level.
Bottom panel: weather station standard deviation estimates for logit-normal models with extreme Indian rair#dl¥(mm da)_/l) as the
response from 1973—-2013. Approximately one-quarter ofjthmeer estimates are significant at the 0.05 level
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Figure 3. Fixed coefficient estimates for logit-normal models with light Indian rainfakk (@< 64.4 mm dayl) response from 1973-2013.

and extreme models. This corresponds to the DMI influ-even though most years are significant. The variance was
ence in non-ENSO drought years as hypothesized in previousignificant in about half of the moderate and a quarter of
literature. the extreme rainfall models. As seen in F&).these mod-
ATT was significant in most years for all three rainfall els tended to have higher variability than light rainfall even
levels corroborating the hypothesis that it is instrumental inthough fewer years were significant. The variance compo-
monsoon circulation. nent does provide additional explanation for the rainfall vari-
The Nifio 3.4 anomaly index was significant in the major- ability and thus, vets the methodology use in this application.
ity of light rainfall models, but in less than 20 % of both mod- This verifies the thesis of this paper: that a significant por-
erate and extreme models. This could be related to the posstion of the variability in any precipitation category is a ran-
ble weakening of the relationship between ENSO and the Indom component that is distinguishable from random noise
dian monsoon as noted@hang et al(2001) but may also be  variability.
a function of the other covariates included in the modeling.
The station variance component was significant in nearly5.2.2  Estimation method performance
all of the light rainfall models. One can note from Fi).

(top panel), there is less variability in general in light rainfall The coefficient estimates over the time period for all fixed
effects at each level of rainfall are depicted in Figsb.

Nonlin. Processes Geophys., 21, 93853 2014 www.nonlin-processes-geophys.net/21/939/2014/



L. R. Dietz and S. Chatterjee: Logit-normal mixed model for Indian monsoon precipitation 949

o |
©
, -t . \
o | : B .
© \ E <
_ ; <
= d V. < -
o - - vt DY %
. L g v
e v z _ '
o ’ f =}
n - 1) © -
T T T T T T T T
o 1980 1990 2000 2010 o 1980 1990 2000 2010
e
o | . =
o . [}
- | T
< . 2 o7
[l RN = X
o N o
2
© ©
o o
T T T T T T T T T T
«~ 1980 1990 2000 2010 1980 1990 2000 2010
N
4 o~ /\ I~~~
o A AN S 7] A~ /N
§ * ‘/\/\/‘\/ \_/\_’"\/v'\\ VARN E )< ~ ST N / \ /,
= 9 L N TN TS © ] J
87 o ‘\ Y N e >
p o ©
S _ y g
S i
~ o |
< T T T T o T T T T
© 1980 1990 2000 2010 ° 1980 1990 2000 2010
(<3 - 7
o
c 7| = o ]
. . o
S 3
(0} o
: o l— o = T~ :tﬁ_f—x-\-tf\?-\-'—-%‘—;*-—h——
~ c -
s =T
i S ]
o | e |
o o T T T T
1980 1990 2000 2010 1980 1990 2000 2010
— MSIM - Dclone ——— glmer

Figure 4. Fixed coefficient estimates for logit-normal models with moderate Indian rainfall (64.4 124.4 mmday?) response from
1973-2013.

The three estimation methods tended to produce differenin Sect.3.3, one of the issues with using this method is dif-
answers on at least a few of the coefficients in each of thdiculty in assessing convergence. It would likely require a
models. The best agreement amongst all methods occurred imuch larger sample to provide suitable answers in this ap-
the estimates for maximum temperature (moderate, extremeplication. Based on this, we would say ttlelone results
longitude (light, extreme), and the variance components (all)were mostly inconclusive in this application.
Estimates foglmer and MSIM tended to agree more often  The outcome of this application indicategmer and
than either agreed witticlone . However, they were fairly MSIM provided more reasonable estimates, however, a
different in magnitude for several covariates and did not al-longer run ofdclone may also be useful. The three methods
ways trend with each other. Light rainfall models displayed are representative of distinct statistical paradigms of estima-
slightly more disagreement more than moderate and extremgon including approximate likelihood, Bayesian, and method
rainfall. of moments. Each of the methods uses a different algorithm
Standard deviations frondclone estimates indicated and different assumptions, thus, we recommend use of mul-
that the algorithm had likely not converged for all parameterstiple methods when applying GLMM in an application.
in the 10 000 samples taken from the posterior. As mentioned
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Figure 5. Fixed coefficient estimates for logit-normal models with extreme Indian rainfal4.4 mm day 1) response from 1973-2013.

6 Conclusions dclone , in the context of any application will help verify
consistency of estimates. Use of multiple methods will pro-
vide researchers with higher confidence in results and will be
more robust to limitations of any of the individual methods.
Since the relevance of GLMM in this context has been es-
ablished, climate model output, such as that of CMIP5, will

Outcomes for Indian monsoon rainfall coincide with results
in the Indian monsoon literature providing evidence of the
usefulness of GLMM. Physical constructs are preserved b){

the models demonstrated by the importance of elevat|onbe explored to gain deeper intuition of the nature of this ran-

maximurm temperatur_e, ?T‘“TT_'” all levels of rainfall. . dom effect. Further work on GLMMs may include studying
Random effects are significant in several of the models in-

dicati : f modeli fth b bl C{)ther proposed drivers of Indian monsoons in their contribu-
Icaling promise o modeling some of the Unobservable anG;, s 14 fixed or random effects. Additional random effects
complicated interactions that underly climate patterns.

The GLMM thod lored in thi ficl | that include spatial correlation will be tested in future work.
. c methods explored in this article purposely \ya 5150 note that this model could be pursued in the future
included several styles of estimation including approximate

likelihood. B . d method of o t i as a multinomial logit model.
Ikelihood, Bayesian, and method ol Moments type estima- -, 54 suggested that Normalized Difference Vegetation

Shdex (NDVI ful iate f i
fwo out of three of the best methodsimer . MSIM, and dex ( ) may be a useful covariate for understanding
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feedback of vegetation on precipitation. However, data cov-
erage was limited, thus, it was not included in our models. It
will be examined more closely in future modeling efforts.

Providing improvements to the GLMM estimation meth-
ods is another open research area. One limitation of GLMM,
as presented here, is the reliance of modeling random ef-
fects as normal. Expanding the possible distributions of ran-
dom effects to include extreme value distributions would be
a breakthrough in mixed modeling. Providing more conclu-
sive tests of significance for fixed and random effects is also
important.
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Appendix A: Additional specifications for simulations MSIM slow
and applications ) )
— Number of Monte Carlo simulations: 100

Computers used — Convergence criterion for Newton Raphson Method:

— Assawa: 2010 Frontier i7 8-core Intel i7 940 (2.93 GHz) Euclidean norm of change .01

with 3 GB of RAM
Dclone

— Geneva: 2011 Frontier i7 8-core Intel i7 950 (3.07 GHz) Clones: 5
with 6 GB of RAM '

_ Dri . 1

— Nokomis: 2012 Optiplex 7010 8-core Intel i7-3770 Prior for 12 N (0. 55001)

(3.40 GHz) with 8 GB of RAM

Prior for 4,: Gamma (0.01, 0.01)

— Tilde: 2013 Optiplex 7010 8-core Intel i7-3770

— Adaptation length: 100
(3.40 GHz) with 8 GB of RAM P g

Markov chain length after adaptation: 10 000
MSIM fast

— Number of Monte Carlo simulations: 100 000
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