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Abstract. The time series data of 31 wildfires in 2012 in the evidence from diverse climate regions and vegetation also
US were analyzed. The fractal dimensions (FD) of the wild- suggests that ignitions and spreads of wildfires have strong
fires during spreading were studied and their geological fearelations to climate changeblatthew et al. 201Q Littell et
tures were identified. A growth model based on the cellularal., 2009 Westerling and BryanP008. In recent years, there
automata method is proposed here. Numerical study was pehave also appeared studies that investigate the relationship
formed and is shown to give good agreement with the fractabetween global and regional warming in wildfire activities
dimensions and scaling behaviors of the corresponding emfWesterling et al.2006 Lee et al, 2013. Over the years,
pirical data. there have been many studies on the modeling of wildfire
spreading by various approaché&ullivan, 20093 to assist
policy makers in designing and developing effective ways
of dealing with wildfires. In recent years, it has also caught
1 Introduction the attention of physicists, who want to understand this sub-
o o _ ject from the physical point of viewBak et al, 1990 Chen
Wildfire is one of the main d!sturbances in an ecosystem anyt 5| 1990. In the study of complex dynamical systems
has been of much concern in many countries over the yeargych as wildfires, physicists are interested in investigating
Historically, it has been the cause of numerous and possibly,hether they are critical systems. In these studies, the au-
ireversible damages, with deep ecological as well as soCihors modeled the wildfires as self-organized critical systems
ological and economic impacts. In some extreme cases, thgnq studied their properties. A more interesting feature of
whole ecosystem might be wiped out and result in large numyiigfires is that satellite images show that the spreading of
bers of huma_n gasualnes. Itis th_erefore u_nderstood that thgidfires looks fractal Caldarelli et al.2001). A natural ap-
need for designing and developing effective ways of deal-pr5ach would therefore be to use some physical models such
ing with wildfires is constantly increasing, as such phenom-5¢ percolation model<aldarelli et al. 2003 to mimic the
ena appear ever more often. In fact, the area burned annuallyn e ading of wildfires. One would then be able to calculate
by wildfire has always been a factor that influences policy e statistical properties of wildfires by using these physical
deC|5|o_ns and future land-use planning in c_ountnes such agyodels and comparing them with empirical data. Previous
the United States and Canada. There are indeed many fagyorks (Caldarelli et al. 2007 only analyzed the final image
tors that can affect the spreading of wildfire and the area thagy yj|dfires because of data availability. With the advance-
will be _burned once the fire has started. Among them, cli- hent of modern technology, more and better wildfire image
mate Kitzberger et al.2007), forest type KicKenzie etal.  gata are now available. Some of the large wildfires can now
1996, wind (Weise and Biging1996), landscapeRomme  pe recorded daily once they are discovered, and one can in-
1982 and also human activities are some of the major fac-yeeq ohserve the spreading of a particular wildfire as a func-
tors that can influence the occurrence and spreading of wildsig, of time. The images have a spatial resolution of 5m,
fires. Among these factors, climate seems to be a major faczng thus provide much more accurate data for analysis. One

tor that governs the rate of spread and the burned area Qf;oyid then be able to analyze the dynamical and statistical
wildfires. For example, there are significantly more cases Ofproperties of wildfires with better precision.

wildfires reported during summer time, when the tempera-
ture in a region is considerably higher. Early wildfire history
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Table 1. The list of 31 wildfires analyzed in the paper.

Name Date Position State Size Duration
(mm/dd) (W, N) (USA) (knd)  (days)
County Line 04/05 82.5,30.5 FL 141.5 17.7
Sunflower 05/13  111.5,340 AZ 65.2 8.7
Gladiator 05/14  112.3,342 AZ 61.8 7.5
Little Sand 05/24  107.2,37.4 CO 100.9 43.3
High Park 06/09  105.4,40.6 CO 354.3 20.0
Little Bear 06/09  105.8,33.4 NM 179.8 17.0
Poco 06/15  110.9,341 AZ 48.4 7.2
Russells Camp 06/19 105.8,42.5 WY 221 9.9
Waldo Canyon 06/23  104.9,389 CO 73.9 12.0
Weber 06/23  108.3,37.3 CO 41.0 9.0
Wood Hollow 06/25  111.5,39.7  UT 192.0 4.2
Neighbor
Mountain 06/26 78.4,38.7 VA 8.6 9.3
Point 06/26 78.3,38.9 VA 4.7 7.7
Ash Creek 06/27  106.5,457 MT  1005.2 7.5
Seeley 06/27  111.2,395  UT 192.7 14.2
Arapaho 06/28  105.5,422 WY  396.7 13.4
Clay Springs 06/28 112.4,39.3 uT 436.5 11.4
Wolf Den 06/30  109.2,39.8  UT 80.4 7.0
Shingle 07/03  112.6,37.5  UT 32.8 7.1
Mill 07/08  122.7,39.3 CA 119.5 12.8
Miller
Homestead 07/10  119.2,42.8 OR 647.1 7.2
Chrandal Creek  07/11  114.2,455 MT/D  10.1 20.0
Flat 07/12  123.4,408 CA 7.0 6.5 (d) (e) ("
Robbers 07/12  120.9,39.0 CA 10.7 8.5
Chips 07/30  121.3,40.0 CA 305.3 37.7 Figure 1. The time sequence of the Little Bear wildfire in New Mex-
Trinity Ridge 08/04  1154,437 D 593.5 64.0 ico, USA in 2012:(a) 18 June, 21:04LT(b) 19 June, 13:33LT,
Barry Point 08/07 1208421 OR 8760 2714 ()19 June, 21:42 LT(d) 20 June, 08:42 LT(e) 21 June, 20:57 LT,
Merino 08/12 114.9, 44.7 ID 31.9 37.0 . .
Cascade Creek 00/01 1215 461 WA 81.2 36.0 (fH 22 T]une, 20:46 LT. Each of th(_e pand—(f) has a width of
Sheep 09/07  116.3,455 D 196.7 33.7 2750 pixels and a height of 4450 pixels, corresponding to an actual
Pole Creek 09/11  121.6,442 OR 108.4 25.9 size of 1375kmx 22.25km.

In this paper, we provide the first analysis of wildfire In the empirical wildfire data sets, both the burned and

spreading time series. We show that wildfire spreading exurning sites are given by their longitudinal and latitudi-
hibits a universal scaling behavior that has never been ref@l coordinates. To construct the digital perimeters of the
ported before. We also show that the satellite images reveatildfire events, we first project the empirical wildfire data

very interesting statistical and dynamical properties as théd€corded in geographic coordinates onto a two-dimensional
wildfire spreads. square lattice, transforming the wildfire data into digital

graphs. Each lattice site corresponds to one pixel of the dig-

ital image of the wildfire from the database, with a precision
2 Analysis of empirical data of 25 n? per pixel. Figure 1 is an example of a wildfire that

occurred in Little Bear, New Mexico, USA in 2012 after we
We construct here the digital perimeters of the wildfire eventsproject its geographic coordinate onto a two-dimensional lat-
that happened in America that are available from the Geospaice. The images correspond to a time sequence: (a) 18 June,
tial Multi-Agency Coordination (Geomac) databasge0-  21:04LT, (b) 19 June, 13:33LT, (c) 19 June, 21:42LT,
mag 20129 as a form of geographic information system () 20 June, 08:42 LT, (€) 21 June, 20:57 LT, and (f) 22 June,
(GIS). In the Geomac database, these digital data are reco»:46 LT. The white portion in each figure corresponds to
structed from Global Positioning System (GPS) and infraredthe purned area, while the black portion is the unburned sur-
imagery. We analyze a total of 31 wildfires that either Spreadroundings. Each of the panels (a)—(f) in Fig. 1 has a width of

over a large area or persisted for a long enough time before750 pixels and a height of 4450 pixels, corresponding to an
they were extinguished. For example, the wildfire that oc-z¢ctyal size of 1F5kmx 22.25km.

curred in Ash Creek, Montana had the largest burned area of From the digital graph, we can compute the burned area
1005 knt, and the wildfire in Trinity Ridge, Idaho persisted () of the wildfire under study. To proceed, we label lat-
for a total of 64 days. Table 1 above is the list of wildfires tjce sjtes with 1 for the burned sites and 0 for the unburned
analyzed in this paper. sites. Figure 2 is an illustration of a digital graph of wild-
fire, with 1 for the burned sites and 0 for the unburned
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would mainly affect the proportional constant, but has very

Figure 2. Example of a binary graph. For this graph= 19, and little effect on the exponent.

its accessible perimetdr = 18. There is a total of 717 temporal data sets of wildfire im-

ages in the database for the 31 wildfires listed in Table 1.

Each of the temporal data sets corresponds to one data point,

e.g., in the plot of the burned area as a functionkgf As

we will obtain an approximate value of the burned area Ofmentloned above, the resplunon of these W|Idf|re Images 1S

the wildfire. We will then deduce the radius of gyration goqd to a scale 0“?”‘- With such a high resolution and long
periods of observation, one would be able to study the change

(Rg) from its burned area. The radius of gyration of the . . -
burned area can be obtained as follows: let the location O(Ir:/fractal dimensions as the wildfire spreads over a large area.

. . . ill study here the fractal dimensions of the burned area
the ith site of the burned area be;( y;). The location of e wi Y o .
the center of the burned area is tﬁzr? equalie, yrc) = (Dr) and perimeter Pp) of the recorded wildfires by using

, _ . . the box-counting methodC@aldarelli et al, 2001). The frac-
(¥ix1/A. 3, yi/A), and the radius of gyration would then tal dimension s) for a regular two-dimensional object such

be equal tc\/(zi (x2+y?) /A — (x2+ y2). as a square is equal to 2. We will therefore plet ®s vs.

In a straightforward way, one can also calculate the ac-Ry and see how the burned areas of wildfires deviate from
cessible perimeter() of the wildfire as it spreads. We com- regular objects. Figure 4 is a plot of-2Ds vs. Ry for all
pute here the accessible perimeter in the following way. Inthe wildfires listed in Table 1. The green dots are the data
the original digital graph, when a burned site (1) has all points of the longest wildfire event (Little Sand), with a total
eight nearest and next-nearest neighbors as burned sites (1f 50 points. One can see thatRggrows, Ds approaches 2.
we will change its label to 0. After we do this, we can count The slope of a linear fit is equal t60.72+ 0.02. This sug-
the number of 1s in the new graph and obtain the accessiblgests that as the burned area grows larger, the perimeter of
perimeter L) of the wildfire. Figure 3 is an illustration of this  this burned area becomes smoother and closer to a regular
procedure. In Fig. 3a, the sites in yellow and red are burnedwo-dimensional object. This behavior was already observed
sites, but only the red site is surrounded by burned sites as itg a percolation model studied a long time afjigssen and
nearest and next-nearest neighbors. We then re-label this si@umen 1986. Figure 5 is a plot oDy, vs. Rq. Dp remains
as 0, as shown in Fig. 3b. After we carry out this relabeling, within the range of 1 to 1.15 a&; grows. The average db,
we will then count the sites labeled 1 to obtdinOne can  for all the data points is about 1.06.
of course make the perimeter measurement in other ways. Figure 6 shows the result of the burned argéads a func-
As an example, let us again refer to Fig. 3a. One may nedion of Ry. Itis interesting to note that all the 717 data points
glect the corner sites (yellow) in the neighborhood of the redobey an empirical functiond ~ 4.51R2. The fact thatA is
site. Let us take the upper left corner site as an illustration proportional to the square & is in agreement with the em-
In this case, we neglect the site, but instead take the lengtpirical behavior of D; (going to 2 as its asymptotic limit).
of the perimeter around this yellow corner site as the lengthWhat is more striking is the fact that they have approxi-
of the distance of the centers on the left and at the top ofmately the same proportional coefficient. The error estimates
this corner site. The perimeter around this corner would therof the proportional coefficient and the exponentRyf are,
be 2/2 instead of 3. This would give an error of about 5%. respectively, 61+ 0.10 and 200+ 0.02. For comparison
The difference by using these two different ways of count-with some of the known regular two-dimensional figures, we
ing would differ by much less than 5 %. We should mention know that the relationship betweenand Rq for the circle
here that the difference by using different counting methodsis A = 27 R2, while those of the square and an equilateral

sites. By counting the number of lattice sites with value 1,
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Figure 4. Plot of 2— Ds vs. Rq for the 31 wildfires listed in Table 1. Figure 6. Burned area4) as a function ofRg, A ~ 4.51R§. The
The green dots are the data points of the longest wildfire event (Lit-broken red line has a slope of 2 for comparison.
tle Sand), with a total of 50 points. The broken red line has a slope

of —0.72+0.02.
all the wildfires under study could be described by the same
empirical functionA ~ 4.51Rg.
0.2
- data
3 Model and numerical simulation
0.15

In this section, we introduce our model for the spreading
of wildfires. To try to model wildfire dynamics by taking
into account all possible factors such as temperature, pre-
cipitation, wind speed, vegetation, landscape, etc. is a very
complex task to achieve. In fact, a model for predicting a
wildfire spreading would inevitably have to take into account
: SR these external environmental factors in a certain way. We
or R o 1 also notice that there have already been many attempts to
model wildfire spreading, ranging from physical models to
005 ‘ ‘ empirical models $ullivan, 20093 Bak et al, 1990 Chen
107 10° 10' et al, 1990 Rothermel 1972 Anderson et al.1982. Each
Rg (km) of these proposed models has had some success, but a com-

plete picture of how to describe the dynamics of wildfires
effectively is still not available for the moment. For our pur-
poses, we will analyze the empirical data by employing a
statistical approach. We set here an easier task by introduc-
triangle are &2 and 519R§, respectively. For a star polygon ing a simple model to investigate the wildfire dynamics to
with a coefficient of 73 heptagramQoxeter 1973, the co-  reveal the geographic features of the wildfires under study.
efficient is~ 4.49, as shown in Fig. 7. The result from the This is based on a cellular automata approach by introduc-
empirical data thus indicates that the burned areas of all théng a two-dimensional lattice to mimic the forests that the
wildfires that one has recorded have shapes close to that ofwildfires would spread in. There exist works using a cellu-
two-dimensional concave polygon. Figure 8 is a plot of the lar automata or lattice model approach to study wildfire; see,
boundaries &) of the wildfires as a function oRy. Again, e.g.,Bak et al.(1990, Caldarelli et al.(2001), andPorterie
the data points follow an empirical functioh,~ 19.57Ré-l7, et al.(2007). For example, people have used hexagonal cel-
with an error estimate of 1974+1.10 and 117+0.04 forthe  lular automata to model wildfire spreadingrnfio, 2004
proportional coefficient and the exponentRy, respectively.  Hernandez Encinas et a2007, Avolio et al, 2012. There

To summarize, we have observed that both the burned areare also works that incorporate meteorological factors such
and the accessible perimeter of wildfire reveal power law be-as wind speed and direction, type and density of vegetation,
havior as a function oRg. Moreover, the burned areas of etc. into the dynamical rules of cellular automata, and which

0.1

0.05 -

Figure 5. Plot of Dp vs. Rg for the 31 wildfires listed in Table 1.
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] have a certain probability that will be ignited, and if it is
§ o | ] ignited, it will be in state | in the next time step. Furthermore,
f for any cell in state |, it will become burned in the next time
P step, i.e., in state B. Once the cell reaches state B, it will re-
107 ﬂp‘d | main in state B throughout the rest of our simulation, and a
f” . burned site cannot ignite any of its neighboring sites once it
o° reaches such a state. The rules of the spreading of wildfire
1075 o — = at each time step t can now be summarized as follows: for a
10 10 Rg (km)w 10 lattice siter, its stateS; (r + 1) is given by
Figure 7. An illustration of a two-dimensional concave polygon, Sit)=U~=Sit+ ?L) - U_ o ] (1)
(a) a 7/3 heptagon(b) Scaling of the 73 heptagon showed ~ (no neighboring site in state | at time step
4.49R3. Sit)y=U— S;(t+1) = (2)

(a probabilityg from each of its neighboring

. _ . site in state | at time)
compared the numerical results with the wildfire on Spetses

Island in 1990 Alexandridis et al.2008. As a first step of = Sit+1) =__U ) 3)
our numerical study, we will not take into account these fac- (a probability 1— g from each of its

tors in the dynamical rules of our model. In this way, we are neighboring site in state | at time

trying to capture the qualitative behavior of wildfire dynam-  g.(s) =1 — §;(++1) =B (4)

ics by using this simple model. To make it more specific, we
only consider a two-dimensional square lattice here. Other
types of lattices such as triangular lattices can be treated in a From the above rules, one can easily see that for a site that
similar manner. On each lattice site, there is only one unit ofis in state U, and having n neighboring sites in state | at time
plant, or we simply say one tree/site. In order to simulate ther, the probability that it will be ignited at timet+1 is equal to
spreading of wildfires, we incorporate dynamical rules thatl—(1—g)". This is the basic model that one can start with. In
can mimic the wildfires under study. The rules for the modelreality, the parameter depends on many factors, such as the
are as follows. There are indeed three states that each site calimate, vegetation, landscape, etc. of the region under study.
take, namely, unburned (U), ignited (1), and burned (B). If the Indeed, this basic set of rules would leave too many unburned
site is in state U, it will remain in state U if it has no neighbor- lattice sites within the burned area, which is different from
ing site in state I. In our simulation, we only consider nearestwhat we observed in the case of real wildfires, e.g., the Little
neighbors. Therefore, each lattice site will only be affectedBear wildfire shown in Fig. 1. This is illustrated in Fig. 11a,
by four nearest neighbors during our simulation. On the othemwhich is a sample simulation of wildfire spreading on a two-
hand, if the site has a neighboring site in state I, it will then dimensional square lattice with size 1024024 using the

(the site is in state | at time

www.nonlin-processes-geophys.net/21/815/2014/ Nonlin. Processes Geophys., 2188352014
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Figure 10.Set of dynamical rules used in the simulation throughout
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Figure 9. An illustration of the two-dimensional lattice with one the neighborhood of the burning (FDE) and burned (BSE)
burning site in the middle, with its neighbors denoted by N, M, NN trees will change. This would then change the probability of
and MM by their distance from the site. the unburned trees being ignited, which usually increases.
To imitate these effects, we set the probability of an un-
burned site being ignited by FDE it= 1—(1—¢)®). k = 1

is the basic percolation model. In a similar fashion, we set
the probability of an unburned site being ignited by BSE at
f=1—(1—¢q)*A+tz®) \wheren(b) denotes the number

above set of basic rules. We will therefore modify the dy-
namical rules of the model to mimic this empirical behavior.
In the case of real wildfires, the threshold for the unburned

plants to be on fire within the burned region could likely be of burned sites in nearest neighbot= 0 corresponds to the

lower than the area outside the burned region, thus Ieavin%aSiC percolation. One can see that the exponeit ofq)

very few unbyrngd areas within the burned region. To takeincreases asincreases. This in turn means that the probabil-
this observation into account, we therefore need to introduc

additional dynamical rules that could mimic such an ef“fect.(?ty that the site will not be ignited by neighboring sites will

In general, it can be argued that a burning tree can ignite no%erp faster ag increases. In our simulations, we always set
g ! g 9 9 z to be larger than or equal to 0. Figure 10 summarizes the

only its nearest neighboring trees, but also its next nelghbor-Set of dynamical rules used in our simulation.

mtg t:/?/ei,handfsom_et|mes evtentﬁgxt to ne>§t-r_1et|ghbor|dng ”e‘?s’ Figure 11 is an illustration of our simulation on a 1024
€ ? Ie berte Igre |tr;]corpora£ej tk:lsdscege;rlo Itrr:O our tyna.mr';mm square lattice using different sets of dynamical rules
ct:)a ru ets yia '”?Th?‘ S.ec.lclm t, tlrd .anF' Ogrb Pear_(?ﬁ T'% in the model. As an example, we use the following set
ors 'ndoti%ound'f 'Sﬂ'ls' us rate 'mhblg. € %W' ted |kr)s ' of parameters in the simulation: (a) BP= 0.5, ¢ = 0.38;
i/IeCNORI ' dIersln our t_nelar?/\s/ ne'lliqh ors ﬁre ert]r? € g b) Cor, p = 0.5, ¢ = 0.11 (correlation length is five lattice
i af“. A, rfs‘;ec. IVEly. | ew etr_e N lotosfh € Prob- gites); (c) FDEp = 0.5, ¢ = 0.34,k = 3; (d) BSE,p = 0.5,
af 'I(rl1y§' |tgn| 'OE g/v € |nv$rsgyt$]ropor lona IO' els?_uare =0.29, z = 3. In general, the set of rules based on BSE
orthe distance between siies in th€ numerical simuiations Ogives better results as compared with the empirical data such
the spreading of wildfires. The probability that the site would 7 _ . .
o . . - . ) as in Fig. 1.
not be ignited by a neighboring burning site labeld then

. - . _ In the remaining part of this section, we will therefore
equal to (1- ¢), while the probability that it would not be ig- L : )
nited by a burning site labelet is equal to(1 — ¢)Y/2. The analyze statistical features of the model by performing nu

S e merical simulations using BSE rules. All simulations were
overall ignition probabilityf is performed on a 2048 2048 square lattice, with each z av-
f=1—(1—g)ntm/2rnn/armmys) eraged over 100 simulations. In each of the simulations, we

put four burning sites at the center and let the wildfire spread
wheren, m, nn and mm denote the number of burning sitesaccording to the BSE rules with different valuesofn per-
for N, M, NN and MM, respectively. forming the simulations, one can use any algorithm for asyn-
Another possible extension of the set of dynamical ruleschronous updates for the lattice. In our simulation, we use
is to introduce into the model some kind of nonlinear effect the Metroplis algorithm of the asynchronous update, which
that simulates the various factors mentioned above. We sugs commonly known as the Monte Carlo method in statisti-
gest here two sets of nonlinear rules, namely the fire deneal physics Ketropolis et al. 1953. Figure 12 is an illus-
sity effect (FDE) and the burned site effect (BSE). The jus-tration of the spreading of burned areas with BSE for differ-
tification for introducing these sets of rules is the following. ent values ot. One can see that asncreases, so does the
As the wildfire spreads, the temperature and the humidity inspreading of burned areas. Note that for 1, the burned

Nonlin. Processes Geophys., 21, 81823 2014 www.nonlin-processes-geophys.net/21/815/2014/
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Figure 11. (a) BP, p = 0.5, g = 0.38; (b) Cor, p = 0.5, ¢ = 0.11 10°F
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10’k —1, 0=2.0899 |
area stops growing after a few hundred Monte Carlo steps. i ;5 Z;ﬁgiii
The result also shows that the burned area for the same num- 10 ¢ 25,0=2.0631 7
ber of Monte Carlo steps increases rapidly as z increases. In | _i's 238‘3‘22
performing the numerical simulation, one Monte Carlo step  '° ¥~ 4 20302 |
usually refers to one sweep of updates for the lattice; i.e., if . - empirical data
the lattice is anV x N lattice, there will be an averag@2 10100 15* 152 10°

update for each Monte Carlo step. In our simulation here, Rg

one only needs to perform updates for the burning sites an
y P P 9 %igure 12. (a)The spreading of burned areas with BSE for different

their neighboring sites in each Monte Carlo step. Further‘values ofz. The burned area for the same number of Monte Carlo

more, SInC? ope only per.forms about 1000 Monte Carlo Step%teps increases rapidly asncreases (changing the labeling of the
for each wildfire spread in Fig. 12, one can employ any typegiens)(b) The corresponding result of the burned area as a function

of boundary condition on the lattice, since the burned sitesyt Rg, with BSE and fittingA o R. Empirical data points are also
will never get to the boundaries of the lattice. Note that we included for comparison.

also include the empirical data points in Fig. 12 for compar-

ison. In general, one would consider a forest to have about

10 trees or more for each hectare (10 03).rVe therefore Note that in Figs. 12-14R4 is measured in terms of
assume that the distance between two adjacent lattice sites ike lattice length unit (one unit is the distance between two
equivalent to a separation of 25 m. Figure 13 presents the nuaeighboring lattice sites), while the argais measured in
merical results ofL vs. Ry with BSE for different values of  terms of the number of unit lattice cells.

z. One can see that there is a gradual decreagélinx Rg)
asz increases. .
Figure 14 showsD, vs. Rq, with BSE for different values 4 Conclusions

to;zi.svr\rl]fg?;l :Se 2?“;%6%2%1?262?% I?hzngilrlﬁézea?g;:?g]n this paper, we have analyzed time series data of 31 wild-
9ged, . 90%Res in the US that occurred in 2012, with a total of 717 data
not change the perimeter as fast as a regular two-dlmensmng ts of wildfire images. With a spatial resolution of 5m

object. As the burned area increases, so dggsand it will - ang daily data for these wildfire incidents, one is able to
eventually approach an asymptotic value close to that of &arry out a better analysis of the dynamical and statistical
regular two-dimensional object. properties of wildfires. The behavior of fractal dimensions

(FD) during the spreading was studied and their geological
features were identified. The result shows that the fractal

www.nonlin-processes-geophys.net/21/815/2014/ Nonlin. Processes Geophys., 2188352014
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10° ‘ ‘ be characterized by the fractal structures. One can thus study
models whose dynamics incorporate such fractal structures
without knowing the details of effects from ecology, climate,
etc. as a first step to understanding the dynamics of wildfire
spreading. Taking this as a starting point, a growth model
based on the cellular automata method is proposed in this
paper to mimic both the dynamical and statistical properties
of the spreading of wildfires. Numerical results are compared

- e with the fractal dimensions and scaling behaviors of the
102k — '2;1:72 | corresponding empirical data, and show good agreement
—— 15, 02169 between the simulated data from the model and the empirical

2, a=155 data from the databas&éomac2019. The results suggest

10'k 250=139 | that the simple model proposed here is able to capture

T3 a=127 the qualitative behavior of wildfire dynamics. It would be

e interesting to see if one can further extend the model to

10°L - ‘ ' i . incorporate the meteorological factors as mentioned above.

10 10 10 10
R Edited by: A. Ganguly
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