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Abstract. The time series data of 31 wildfires in 2012 in the
US were analyzed. The fractal dimensions (FD) of the wild-
fires during spreading were studied and their geological fea-
tures were identified. A growth model based on the cellular
automata method is proposed here. Numerical study was per-
formed and is shown to give good agreement with the fractal
dimensions and scaling behaviors of the corresponding em-
pirical data.

1 Introduction

Wildfire is one of the main disturbances in an ecosystem and
has been of much concern in many countries over the years.
Historically, it has been the cause of numerous and possibly
irreversible damages, with deep ecological as well as soci-
ological and economic impacts. In some extreme cases, the
whole ecosystem might be wiped out and result in large num-
bers of human casualties. It is therefore understood that the
need for designing and developing effective ways of deal-
ing with wildfires is constantly increasing, as such phenom-
ena appear ever more often. In fact, the area burned annually
by wildfire has always been a factor that influences policy
decisions and future land-use planning in countries such as
the United States and Canada. There are indeed many fac-
tors that can affect the spreading of wildfire and the area that
will be burned once the fire has started. Among them, cli-
mate (Kitzberger et al., 2007), forest type (McKenzie et al.,
1996), wind (Weise and Biging, 1996), landscape (Romme,
1982) and also human activities are some of the major fac-
tors that can influence the occurrence and spreading of wild-
fires. Among these factors, climate seems to be a major fac-
tor that governs the rate of spread and the burned area of
wildfires. For example, there are significantly more cases of
wildfires reported during summer time, when the tempera-
ture in a region is considerably higher. Early wildfire history

evidence from diverse climate regions and vegetation also
suggests that ignitions and spreads of wildfires have strong
relations to climate changes (Matthew et al., 2010; Littell et
al., 2009; Westerling and Bryant, 2008). In recent years, there
have also appeared studies that investigate the relationship
between global and regional warming in wildfire activities
(Westerling et al., 2006; Lee et al., 2013). Over the years,
there have been many studies on the modeling of wildfire
spreading by various approaches (Sullivan, 2009a) to assist
policy makers in designing and developing effective ways
of dealing with wildfires. In recent years, it has also caught
the attention of physicists, who want to understand this sub-
ject from the physical point of view (Bak et al., 1990; Chen
et al., 1990). In the study of complex dynamical systems
such as wildfires, physicists are interested in investigating
whether they are critical systems. In these studies, the au-
thors modeled the wildfires as self-organized critical systems
and studied their properties. A more interesting feature of
wildfires is that satellite images show that the spreading of
wildfires looks fractal (Caldarelli et al., 2001). A natural ap-
proach would therefore be to use some physical models such
as percolation models (Caldarelli et al., 2001) to mimic the
spreading of wildfires. One would then be able to calculate
the statistical properties of wildfires by using these physical
models and comparing them with empirical data. Previous
works (Caldarelli et al., 2001) only analyzed the final image
of wildfires because of data availability. With the advance-
ment of modern technology, more and better wildfire image
data are now available. Some of the large wildfires can now
be recorded daily once they are discovered, and one can in-
deed observe the spreading of a particular wildfire as a func-
tion of time. The images have a spatial resolution of 5 m,
and thus provide much more accurate data for analysis. One
would then be able to analyze the dynamical and statistical
properties of wildfires with better precision.
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Table 1.The list of 31 wildfires analyzed in the paper.

Name Date Position State Size Duration
(mm/dd) (W, N) (USA) (km2) (days)

County Line 04/05 82.5, 30.5 FL 141.5 17.7
Sunflower 05/13 111.5, 34.0 AZ 65.2 8.7
Gladiator 05/14 112.3, 34.2 AZ 61.8 7.5
Little Sand 05/24 107.2, 37.4 CO 100.9 43.3
High Park 06/09 105.4, 40.6 CO 354.3 20.0
Little Bear 06/09 105.8, 33.4 NM 179.8 17.0
Poco 06/15 110.9, 34.1 AZ 48.4 7.2
Russells Camp 06/19 105.8, 42.5 WY 22.1 9.9
Waldo Canyon 06/23 104.9, 38.9 CO 73.9 12.0
Weber 06/23 108.3, 37.3 CO 41.0 9.0
Wood Hollow 06/25 111.5, 39.7 UT 192.0 4.2
Neighbor
Mountain 06/26 78.4, 38.7 VA 8.6 9.3
Point 06/26 78.3, 38.9 VA 4.7 7.7
Ash Creek 06/27 106.5, 45.7 MT 1005.2 7.5
Seeley 06/27 111.2, 39.5 UT 192.7 14.2
Arapaho 06/28 105.5, 42.2 WY 396.7 13.4
Clay Springs 06/28 112.4, 39.3 UT 436.5 11.4
Wolf Den 06/30 109.2, 39.8 UT 80.4 7.0
Shingle 07/03 112.6, 37.5 UT 32.8 7.1
Mill 07/08 122.7, 39.3 CA 119.5 12.8
Miller
Homestead 07/10 119.2, 42.8 OR 647.1 7.2
Chrandal Creek 07/11 114.2, 45.5 MT/ID 10.1 20.0
Flat 07/12 123.4, 40.8 CA 7.0 6.5
Robbers 07/12 120.9, 39.0 CA 10.7 8.5
Chips 07/30 121.3, 40.0 CA 305.3 37.7
Trinity Ridge 08/04 115.4, 43.7 ID 593.5 64.0
Barry Point 08/07 120.8, 42.1 OR 376.0 27.4
Merino 08/12 114.9, 44.7 ID 31.9 37.0
Cascade Creek 09/01 121.5, 46.1 WA 81.2 36.0
Sheep 09/07 116.3, 45.5 ID 196.7 33.7
Pole Creek 09/11 121.6, 44.2 OR 108.4 25.9

In this paper, we provide the first analysis of wildfire
spreading time series. We show that wildfire spreading ex-
hibits a universal scaling behavior that has never been re-
ported before. We also show that the satellite images reveal
very interesting statistical and dynamical properties as the
wildfire spreads.

2 Analysis of empirical data

We construct here the digital perimeters of the wildfire events
that happened in America that are available from the Geospa-
tial Multi-Agency Coordination (Geomac) database (Geo-
mac, 2012) as a form of geographic information system
(GIS). In the Geomac database, these digital data are recon-
structed from Global Positioning System (GPS) and infrared
imagery. We analyze a total of 31 wildfires that either spread
over a large area or persisted for a long enough time before
they were extinguished. For example, the wildfire that oc-
curred in Ash Creek, Montana had the largest burned area of
1005 km2, and the wildfire in Trinity Ridge, Idaho persisted
for a total of 64 days. Table 1 above is the list of wildfires
analyzed in this paper.
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very interesting statistical and dynamical properties as the
wildfire spreads.

2 Analysis of Empirical Data75

We here construct the digital perimeters of the wildfire events
happened in America that are available from the Geospatial
Multi-Agency Coordination (Geomac) database (Geomac,
2012) as a form of geographic information system (GIS). In
Geomac database, these digital data are reconstructed from80

Global Positioning System (GPS) and infrared imagery. We
analyze a total of 31 wildfires which either spread a large area
or persist for a long enough time before they extinguished.
For example, the wildfire that occurred in Ash Creek, Mon-
tana had the largest burnt area of 1005 km2 and the wildfire85

in Trinity Ridge, Idaho persisted for a total of 64 days. Table
1 below is the list of wildfires analyzed in this paper.

Fig. 1. The time sequence of Little Bear wildfire in New Mexico,
U.S.A. in 2012, (a)Jun 18, 21:04 (b)Jun 19, 13:33 (c)Jun 19, 21:42
(d)Jun 20, 08:42 (e)Jun 21, 20:57 (f)Jun 22, 20:46. Each of the fig-
ures (a) - (f) has width of 2750 pixels and height 4450 pixels, cor-
responding to an actual size of 13.75 km × 22.25 km.

In the empirical wildfire datasets, both the burnt and burn-
ing sites are given by their longitudinal and latitudinal co-
ordinates. To construct the digital perimeters of the wildfire90

events, we first project the empirical wildfire data recorded
in geographic coordinates onto a two-dimensional square lat-
tice, transforming the wildfire data into digital graphs. Each
lattice site corresponds to one pixel of the digital image of
the wildfire from the database with a precision of 25 m2 per95

pixel. Figure 1 is an example of a wildfire occurred in Little
Bear, New Mexico, U.S.A. in 2012 after we project its ge-
ographic coordinate onto a two dimensional lattice. The im-
ages correspond to a time sequence (a)Jun 18, 21:04 (b)Jun
19, 13:33 (c)Jun 19, 21:42 (d)Jun 20, 08:42 (e)Jun 21, 20:57100

(f)Jun 22, 20:46. The white portion in each figure corre-
sponds to the burnt area while the black portion is the un-
burnt surroundings. Each of the figures (a) - (f) in Fig.1 has
width of 2750 pixels and height 4450 pixels, corresponding
to an actual size of 13.75 km × 22.25 km.105

From the digital graph, we can compute the burnt area (A)
of the wildfire under study. To proceed, we label lattice sites
with 1 for the burnt sites and 0 for the unburnt sites. Figure 2
is an illustration of a digital graph of wildfire with 1 for the
burnt sites and 0 for the unburnt sites. By counting the num-110

ber of lattice sites with value 1, we will obtain an approxi-
mate value of the burnt area of the wildfire. We will then de-

Figure 1.The time sequence of the Little Bear wildfire in New Mex-
ico, USA in 2012:(a) 18 June, 21:04 LT,(b) 19 June, 13:33 LT,
(c) 19 June, 21:42 LT,(d) 20 June, 08:42 LT,(e) 21 June, 20:57 LT,
(f) 22 June, 20:46 LT. Each of the panels(a)–(f) has a width of
2750 pixels and a height of 4450 pixels, corresponding to an actual
size of 13.75km× 22.25km.

In the empirical wildfire data sets, both the burned and
burning sites are given by their longitudinal and latitudi-
nal coordinates. To construct the digital perimeters of the
wildfire events, we first project the empirical wildfire data
recorded in geographic coordinates onto a two-dimensional
square lattice, transforming the wildfire data into digital
graphs. Each lattice site corresponds to one pixel of the dig-
ital image of the wildfire from the database, with a precision
of 25 m2 per pixel. Figure 1 is an example of a wildfire that
occurred in Little Bear, New Mexico, USA in 2012 after we
project its geographic coordinate onto a two-dimensional lat-
tice. The images correspond to a time sequence: (a) 18 June,
21:04 LT, (b) 19 June, 13:33 LT, (c) 19 June, 21:42 LT,
(d) 20 June, 08:42 LT, (e) 21 June, 20:57 LT, and (f) 22 June,
20:46 LT. The white portion in each figure corresponds to
the burned area, while the black portion is the unburned sur-
roundings. Each of the panels (a)–(f) in Fig. 1 has a width of
2750 pixels and a height of 4450 pixels, corresponding to an
actual size of 13.75km× 22.25km.

From the digital graph, we can compute the burned area
(A) of the wildfire under study. To proceed, we label lat-
tice sites with 1 for the burned sites and 0 for the unburned
sites. Figure 2 is an illustration of a digital graph of wild-
fire, with 1 for the burned sites and 0 for the unburned
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Fig. 2. Example of a binary graph. For this graph, A = 19, and its
accessible perimeter L = 18.

duce the radius of gyration (Rg) from its burnt area. The ra-
dius of gyration of the burnt area can be obtained as follows:
Let the location of the i-th site of the burnt area be (xi,yi).115

The loocation of the center of the burnt area is then equal to
(xrc,yrc) = (

∑
ixi/A,

∑
i yi/A) , and the radius of gyration

would then be equal to
√

(
∑
i(x

2
i + y2

i )/A− (x2
rc + y2

rc) .
In a straightforward way, one can also calculate the ac-

cessible perimeter (L) of the wildfire as it spreads. We here120

compute the accessible perimeter in the following way. In
the original digital graph, when a burnt site (1) has all 8 near-
est and next nearest neighbors being burnt sites (1), we will
change its label to 0. After we do this, we can count the num-
ber of 1’s in the new graph and obtain the accessible perime-125

ter (L) of the wildfire. Figure 3 is an illustration of this pro-
cedure. In Figure 3 (a), the sites in yellow and red are burnt
sites but only the red site is surrounded by burnt sites as its
nearest and next nearest neighbors. We then re-label this site
as 0 as shown in Figure 3 (b). After we carry out this relabel-130

ing, we will then count the sites labeled 1 to obtain L. One
can of course do the perimeter measurement in other ways.
As an example, let us again refer to Fig. 3 (a). One may ne-
glect the corner sites (yellow) in the neighborhood of the red
site. let us take the upper left corner site as an illustration. In135

this case, we neglect the site but instead take the length of the
perimeter around this yellow corner site as the length of the
distance of the centers on the left and top of this corner site.
The perimeter around this corner would then be 2

√
2 instead

of 3. This would give an error of about 5%. The difference140

by using these two different ways of counting would differ
by much less than 5%. We should mention here that the dif-
ference by using different counting methods would mainly

Fig. 3. An illustration of the evaluation of L. In (a), the sites in
yellow and red are burnt sites (1) but only the red site is surrounded
by burnt sites as its nearest and next nearest neighbors. We re-label
this site as 0 as shown in (b) for the evaluation of L.

affect the proportional constant but has very little effect on
the exponent.145

There are a total of 717 temporal datasets of wildfire im-
ages in the database for the 31 wildfires listed in Table 1.
Each of the temporal datasets corresponds to one data point
when one plots e.g., the burnt area as a function of Rg . As
mentioned above, the resolution of these wildfire images is150

good to a scale of 5 meters. With such a high resolution and
long periods of observation, one would be able to study the
change of fractal dimensions as the wildfire spreads over a
large area. We will here study the fractal dimensions of the
burnt area (Df ) and perimeter (Dp) of the recorded wildfires155

by using the box-counting method (Caldarelli et al., 2001).
The fractal dimension (Df ) for a regular two-dimensional
object such as a square is equal to 2. We will therefore plot
2−Df vs.Rg and see how the burnt areas of wildfires deviate
from regular objects. Fig. 4 is a plot of the (2−Df ) vs. Rg for160

all the wildfires listed in Table 1. The green dots are the data
points of the longest wildfire event (Little Sand) with a total
of 50 points. One can see that as Rg grows, Df approaches
2. The slope of a linear fit is equal to −0.72± 0.02. This
suggests that as the burnt area grows larger, the perimeter of165

this burnt area becomes smoother and closer to a regular two-
dimensional object. This behavior was already observed in a
percolation model studied a long time ago (Niessen and Blu-
men, 1986). Fig. 5 is a plot of Dp vs. Rg . Dp remains to be
within the range of 1 and 1.15 as Rg grows. The average of170

Dp for all the data points is about 1.06.
Fig. 6 shows the result of the burnt area (A) as a function

of Rg. It is interesting to note that all the 717 data points
obey an empirical function, A∼ 4.51R2

g . The fact that A is
proportional to the square of Rg is in agreement with the175

empirical behavior ofDf (going to 2 as its asymptotic limit).
What is more striking is the fact that they have approximately
the same proportional coefficient. The error estimate of the
proportional coefficient and the exponent of Rg are respec-

Figure 2. Example of a binary graph. For this graph,A = 19, and
its accessible perimeterL = 18.

sites. By counting the number of lattice sites with value 1,
we will obtain an approximate value of the burned area of
the wildfire. We will then deduce the radius of gyration
(Rg) from its burned area. The radius of gyration of the
burned area can be obtained as follows: let the location of
the ith site of the burned area be (xi , yi). The location of
the center of the burned area is then equal to(xrc,yrc) =(∑
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In a straightforward way, one can also calculate the ac-
cessible perimeter (L) of the wildfire as it spreads. We com-
pute here the accessible perimeter in the following way. In
the original digital graph, when a burned site (1) has all
eight nearest and next-nearest neighbors as burned sites (1),
we will change its label to 0. After we do this, we can count
the number of 1s in the new graph and obtain the accessible
perimeter (L) of the wildfire. Figure 3 is an illustration of this
procedure. In Fig. 3a, the sites in yellow and red are burned
sites, but only the red site is surrounded by burned sites as its
nearest and next-nearest neighbors. We then re-label this site
as 0, as shown in Fig. 3b. After we carry out this relabeling,
we will then count the sites labeled 1 to obtainL. One can
of course make the perimeter measurement in other ways.
As an example, let us again refer to Fig. 3a. One may ne-
glect the corner sites (yellow) in the neighborhood of the red
site. Let us take the upper left corner site as an illustration.
In this case, we neglect the site, but instead take the length
of the perimeter around this yellow corner site as the length
of the distance of the centers on the left and at the top of
this corner site. The perimeter around this corner would then
be 2

√
2 instead of 3. This would give an error of about 5 %.

The difference by using these two different ways of count-
ing would differ by much less than 5 %. We should mention
here that the difference by using different counting methods
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Figure 3. An illustration of the evaluation ofL. In (a), the sites
in yellow and red are burned sites (1), but only the red site is sur-
rounded by burned sites as its nearest and next-nearest neighbors.
We re-label this site as 0, as shown in(b) for the evaluation ofL.

would mainly affect the proportional constant, but has very
little effect on the exponent.

There is a total of 717 temporal data sets of wildfire im-
ages in the database for the 31 wildfires listed in Table 1.
Each of the temporal data sets corresponds to one data point,
e.g., in the plot of the burned area as a function ofRg. As
mentioned above, the resolution of these wildfire images is
good to a scale of 5 m. With such a high resolution and long
periods of observation, one would be able to study the change
in fractal dimensions as the wildfire spreads over a large area.
We will study here the fractal dimensions of the burned area
(Df) and perimeter (Dp) of the recorded wildfires by using
the box-counting method (Caldarelli et al., 2001). The frac-
tal dimension (Df) for a regular two-dimensional object such
as a square is equal to 2. We will therefore plot 2− Df vs.
Rg and see how the burned areas of wildfires deviate from
regular objects. Figure 4 is a plot of 2− Df vs. Rg for all
the wildfires listed in Table 1. The green dots are the data
points of the longest wildfire event (Little Sand), with a total
of 50 points. One can see that asRg grows,Df approaches 2.
The slope of a linear fit is equal to−0.72± 0.02. This sug-
gests that as the burned area grows larger, the perimeter of
this burned area becomes smoother and closer to a regular
two-dimensional object. This behavior was already observed
in a percolation model studied a long time ago (Niessen and
Blumen, 1986). Figure 5 is a plot ofDp vs.Rg. Dp remains
within the range of 1 to 1.15 asRg grows. The average ofDp
for all the data points is about 1.06.

Figure 6 shows the result of the burned area (A) as a func-
tion of Rg. It is interesting to note that all the 717 data points
obey an empirical function,A ∼ 4.51R2

g. The fact thatA is
proportional to the square ofRg is in agreement with the em-
pirical behavior ofDf (going to 2 as its asymptotic limit).
What is more striking is the fact that they have approxi-
mately the same proportional coefficient. The error estimates
of the proportional coefficient and the exponent ofRg are,
respectively, 4.51± 0.10 and 2.00± 0.02. For comparison
with some of the known regular two-dimensional figures, we
know that the relationship betweenA andRg for the circle
is A = 2πR2

g, while those of the square and an equilateral
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triangle are 6R2
g and 5.19R2

g, respectively. For a star polygon
with a coefficient of 7/3 heptagram (Coxeter, 1973), the co-
efficient is∼ 4.49, as shown in Fig. 7. The result from the
empirical data thus indicates that the burned areas of all the
wildfires that one has recorded have shapes close to that of a
two-dimensional concave polygon. Figure 8 is a plot of the
boundaries (L) of the wildfires as a function ofRg. Again,
the data points follow an empirical function,L ∼ 19.57R1.17

g ,
with an error estimate of 19.57±1.10 and 1.17±0.04 for the
proportional coefficient and the exponent ofRg, respectively.

To summarize, we have observed that both the burned area
and the accessible perimeter of wildfire reveal power law be-
havior as a function ofRg. Moreover, the burned areas of
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Figure 6. Burned area (A) as a function ofRg, A ∼ 4.51R2
g. The

broken red line has a slope of 2 for comparison.

all the wildfires under study could be described by the same
empirical functionA ∼ 4.51R2

g.

3 Model and numerical simulation

In this section, we introduce our model for the spreading
of wildfires. To try to model wildfire dynamics by taking
into account all possible factors such as temperature, pre-
cipitation, wind speed, vegetation, landscape, etc. is a very
complex task to achieve. In fact, a model for predicting a
wildfire spreading would inevitably have to take into account
these external environmental factors in a certain way. We
also notice that there have already been many attempts to
model wildfire spreading, ranging from physical models to
empirical models (Sullivan, 2009a; Bak et al., 1990; Chen
et al., 1990; Rothermel, 1972; Anderson et al., 1982). Each
of these proposed models has had some success, but a com-
plete picture of how to describe the dynamics of wildfires
effectively is still not available for the moment. For our pur-
poses, we will analyze the empirical data by employing a
statistical approach. We set here an easier task by introduc-
ing a simple model to investigate the wildfire dynamics to
reveal the geographic features of the wildfires under study.
This is based on a cellular automata approach by introduc-
ing a two-dimensional lattice to mimic the forests that the
wildfires would spread in. There exist works using a cellu-
lar automata or lattice model approach to study wildfire; see,
e.g.,Bak et al.(1990), Caldarelli et al.(2001), andPorterie
et al.(2007). For example, people have used hexagonal cel-
lular automata to model wildfire spreading (Trunfio, 2004;
Hernandez Encinas et al., 2007; Avolio et al., 2012). There
are also works that incorporate meteorological factors such
as wind speed and direction, type and density of vegetation,
etc. into the dynamical rules of cellular automata, and which
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rological factors such as wind speed and direction, type and
density of vegetation, etc. into the dynamical rules of cellular
automata and compared the numerical results to the wildfire
on Spetses Island in 1990(Alexandridis et al., 2008). As a
first step of our numerical study, we will not take into ac-230

count these factors into the dynamical rules of our model.
In this way, we are trying to capture the qualitative behavior
of wildfire dynamics by using this simple model. To make
it more specific, we here only consider a two-dimensional
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tices can be treated in a similar manner. On each lattice site,
there is only one unit of plant, or we simply say one tree/site.
In order to simulate the spreading of wildfires, we incorpo-
rate dynamical rules that can mimic the wildfires under study.
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The rules for the model are as follows. There are indeed 3240

states that each site can take, namely, unburnt (U), ignited (I)
and burnt (B). If the site is in state U, it will remain in state
U if it has no neighboring site in state I. In our simulation,
we only consider nearest neighbors. Therefore, each lattice
site will only be affected by 4 nearest neighbors during our245

simulation. On the other hand, if the site has a neighboring
site in state I, it will then have a certain probability q that
will be ignited and if it is ignited, it will be in state I in the
next time step. Furthermore, for any cell in a state I, it will
become burnt in the next time step, i.e. in a state B. Once the250

cell reaches state B, it will remain to be in state B throughout
the rest of our simulation and a burnt site cannot ignite any
of its neighboring sites once it reaches such a state. The rules
of the spreading of wildfire at each time step t can now be
summarized as follows, for a lattice site i, its state Si(t+ 1)255

is given by

Si(t) = U → Si(t+ 1) = U (1)
(no neighboring site in state I at time
step t)

Si(t) = U → Si(t+ 1) = I (2)260

(a probability q from each of its neig-
hboring site in state I at time t)

→ Si(t+ 1) = U (3)
(a probability 1-q from each of its ne-
ighboring site in state I at time t)265

Si(t) = I → Si(t+ 1) =B (4)
(the site is in state I at time t)

Figure 7. An illustration of a two-dimensional concave polygon,
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Island in 1990 (Alexandridis et al., 2008). As a first step of
our numerical study, we will not take into account these fac-
tors in the dynamical rules of our model. In this way, we are
trying to capture the qualitative behavior of wildfire dynam-
ics by using this simple model. To make it more specific, we
only consider a two-dimensional square lattice here. Other
types of lattices such as triangular lattices can be treated in a
similar manner. On each lattice site, there is only one unit of
plant, or we simply say one tree/site. In order to simulate the
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Figure 8.L vs.Rg for the 31 wildfires listed in Table 1. The broken
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have a certain probabilityq that will be ignited, and if it is
ignited, it will be in state I in the next time step. Furthermore,
for any cell in state I, it will become burned in the next time
step, i.e., in state B. Once the cell reaches state B, it will re-
main in state B throughout the rest of our simulation, and a
burned site cannot ignite any of its neighboring sites once it
reaches such a state. The rules of the spreading of wildfire
at each time step t can now be summarized as follows: for a
lattice sitei, its stateSi(t + 1) is given by

Si(t) = U → Si(t + 1) = U (1)

(no neighboring site in state I at time stept)

Si(t) = U → Si(t + 1) = I (2)

(a probabilityq from each of its neighboring

site in state I at timet)

→ Si(t + 1) = U (3)

(a probability 1− q from each of its

neighboring site in state I at timet)

Si(t) = I → Si(t + 1) = B (4)

(the site is in state I at timet)

From the above rules, one can easily see that for a site that
is in state U, and having n neighboring sites in state I at time
t , the probability that it will be ignited at timet+1 is equal to
1−(1−q)n. This is the basic model that one can start with. In
reality, the parameterp depends on many factors, such as the
climate, vegetation, landscape, etc. of the region under study.
Indeed, this basic set of rules would leave too many unburned
lattice sites within the burned area, which is different from
what we observed in the case of real wildfires, e.g., the Little
Bear wildfire shown in Fig. 1. This is illustrated in Fig. 11a,
which is a sample simulation of wildfire spreading on a two-
dimensional square lattice with size 1024× 1024 using the
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820 S.-L. Wang et al.: Fractal dimensions of wildfire spreading

Figure 9. An illustration of the two-dimensional lattice with one
burning site in the middle, with its neighbors denoted by N, M, NN
and MM by their distance from the site.

above set of basic rules. We will therefore modify the dy-
namical rules of the model to mimic this empirical behavior.
In the case of real wildfires, the threshold for the unburned
plants to be on fire within the burned region could likely be
lower than the area outside the burned region, thus leaving
very few unburned areas within the burned region. To take
this observation into account, we therefore need to introduce
additional dynamical rules that could mimic such an effect.
In general, it can be argued that a burning tree can ignite not
only its nearest neighboring trees, but also its next neighbor-
ing trees, and sometimes even next to next-neighboring trees,
etc. We therefore incorporate this scenario into our dynami-
cal rules by taking the second, third and fourth nearest neigh-
bors into account. This is illustrated in Fig. 9 below. The first,
second, third and fourth nearest neighbors are denoted by N,
M, NN and MM, respectively. We will here choose the prob-
ability of ignition to be inversely proportional to the square
of the distance between sites in the numerical simulations of
the spreading of wildfires. The probability that the site would
not be ignited by a neighboring burning site labeledN is then
equal to (1−q), while the probability that it would not be ig-
nited by a burning site labeledM is equal to(1− q)1/2. The
overall ignition probabilityf is

f = 1− (1− q)(n+m/2+nn/4+mm/5),

wheren, m, nn and mm denote the number of burning sites
for N, M, NN and MM, respectively.

Another possible extension of the set of dynamical rules
is to introduce into the model some kind of nonlinear effect
that simulates the various factors mentioned above. We sug-
gest here two sets of nonlinear rules, namely the fire den-
sity effect (FDE) and the burned site effect (BSE). The jus-
tification for introducing these sets of rules is the following.
As the wildfire spreads, the temperature and the humidity in
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ent from what we observed in the case of real wildfires, e.g.,
the Little Bear Wildfire shown in Figure 1. This is illustrated
in Figure 11 (a), which is a sample simulation of wildfire
spread on a two-dimensional square lattice with size 1024 x
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To take into account this observation, we therefore need to
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an effect. In general, it can be argued that a burning tree can
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trees, etc. We therefore incorporate this scenario into our dy-
namical rules by taking the second, third and fourth nearest
neighbors into account. This is illustrated in Figure 9 below.
The first, second, third and fourth nearest neighbors are de-
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the probability of ignition to be inversely proportional to the
square of the distance between sites in the numerical simu-
lations of the spreading of wildfires. The probability that the
site would not be ignited by a neighboring burning site label-
ing N is then equal to (1− q), while the probability that it300

would not be ignited by a burning site labeling M is equal to
(1− q)1/2. The overall ignition probability f is

f = 1− (1− q)(n+m/2+nn/4+mm/5)

(where n, m, nn and mm denotes the number of burning sites
for N, M, NN and MM respectively.)305

Another possible extension of the set of dynamical rules
is to introduce some kind of nonlinear effects which simu-
late the various factors mentioned above into the model. We
here suggests two sets of nonlinear rules, namely, the fire
density effect (FDE) and the burnt site effect (BSE). The jus-310

tification to introduce these sets of rules is the following. As
the wildfire spreads, the temperature and the humidity in the
neighborhood of the burning (FDE) and burnt trees (BSE)
would change. This would then change the probability for
the unburnt trees to be ignited, which usually increases. To315

imitate these effects, we set the probability for an unburnt
site to be ignited by FDE to be f = 1− (1− q)(nk). k = 1
is the basic percolation model. In a similar fashion, we set
the probability of an unburnt site to be ignited by BSE to be

Fig. 9. An illustration of the two-dimensional lattice with one burn-
ing site in the middle with Its neighbors denoted by N, M, NN and
MM by their distance from the site.

Fig. 10. Set of dynamical rules used in the simulation
throughout this paper. Basic Percolation (BP) f = 1− (1− q)n.
Fire Density Effect(FDE)f = 1− (1− q)(n

k), k 6= 1. Burnt Sites
Effect(BSE)f = 1−(1−q)(n(1+zn(b))), z 6= 1. Correlated(Cor)f =
1− (1− q)(n+m/2+nn/4+...).

f = 1− (1− q)(n(1+zn(b))), where n(b) denotes the number320

of burnt sites in nearest neighbor. z = 0 corresponds to the
basic percolation. One can see that the exponent of (1− q)
increases as z increases. This in turn means that the proba-
bility that the site would not be ignited by neighboring sites
will drop faster as z increases. In our simulations, we always325

set z to be larger than or equal to 0. Figure 10 summarizes
the set of dynamical rules used in our simulation.

Figure 11 is an illustration of our simulation on a 1024
x 1024 square lattice using different sets of dynamical rules
in the model. As an example, we use the following set of330

parameters in the simulation (a)BP, p=0.5, q=0.38; (b)Cor,

Figure 10.Set of dynamical rules used in the simulation throughout
this paper. Basic percolation (BP)f = 1− (1− q)n. Fire density

effect (FDE)f = 1− (1− q)(n
k), k 6= 1. Burned sites effect (BSE)

f = 1− (1− q)(n(1+zn(b))), z 6= 1. Correlated (Cor)f = 1− (1−

q)(n+m/2+nn/4+...).

the neighborhood of the burning (FDE) and burned (BSE)
trees will change. This would then change the probability of
the unburned trees being ignited, which usually increases.
To imitate these effects, we set the probability of an un-
burned site being ignited by FDE atf = 1−(1−q)(n

k). k = 1
is the basic percolation model. In a similar fashion, we set
the probability of an unburned site being ignited by BSE at
f = 1− (1− q)(n(1+zn(b))), wheren(b) denotes the number
of burned sites in nearest neighbor.z = 0 corresponds to the
basic percolation. One can see that the exponent of(1− q)

increases asz increases. This in turn means that the probabil-
ity that the site will not be ignited by neighboring sites will
drop faster asz increases. In our simulations, we always set
z to be larger than or equal to 0. Figure 10 summarizes the
set of dynamical rules used in our simulation.

Figure 11 is an illustration of our simulation on a 1024×

1024 square lattice using different sets of dynamical rules
in the model. As an example, we use the following set
of parameters in the simulation: (a) BP,p = 0.5, q = 0.38;
(b) Cor,p = 0.5, q = 0.11 (correlation length is five lattice
sites); (c) FDE,p = 0.5, q = 0.34,k = 3; (d) BSE,p = 0.5,
q = 0.29, z = 3. In general, the set of rules based on BSE
gives better results as compared with the empirical data such
as in Fig. 1.

In the remaining part of this section, we will therefore
analyze statistical features of the model by performing nu-
merical simulations using BSE rules. All simulations were
performed on a 2048× 2048 square lattice, with each z av-
eraged over 100 simulations. In each of the simulations, we
put four burning sites at the center and let the wildfire spread
according to the BSE rules with different values ofz. In per-
forming the simulations, one can use any algorithm for asyn-
chronous updates for the lattice. In our simulation, we use
the Metroplis algorithm of the asynchronous update, which
is commonly known as the Monte Carlo method in statisti-
cal physics (Metropolis et al., 1953). Figure 12 is an illus-
tration of the spreading of burned areas with BSE for differ-
ent values ofz. One can see that asz increases, so does the
spreading of burned areas. Note that forz ≤ 1, the burned
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Fig. 11. (a) BP, p = 0.5, q = 0.38 (b) Cor, p = 0.5, q = 0.11,
(correlation length = 5 lattice sites (c) FDE, p = 0.5, q = 0.34, k =
3 and, (d) BSE, p = 0.5, q = 0.29, z = 3

p=0.5, q=0.11 (correlation length = 5 lattice sites) ; (c)FDE,
p=0.5, q=0.34 and k=3, (d)BSE, p=0.5, q=0.29 and z=3. In
general, the sets of rules based on BSE gives better results as
compared to the empirical data such as in Figure 1.335

In the remaining part of this section, we will therefore ana-
lyze statistical features of the model by performing numerical
simulations using BSE rules. All simulations were performed
on a 2048 x 2048 square lattice with each z averaged over
100 simulations. In each of the simulations, we put 4 burning340

sites at the center and let the wildfire spread according to the
BSE rules with different values of z. In performing the simu-
lations, one can use any algorithms for asynchronous updates
for the lattice. In our simulation, we use the Metroplis algo-
rithm of the asynchronous update which is commonly known345

as the Monte Carlo method in statistical physics (Metropolis,
1953). Fig.12 is an illustration of the spreading of burnt area
with BSE for different values of z. One can see that as z in-
creases, so does the spreading of burnt area. Note that for z
≤ 1, the burnt area stops growing after a few hundred Monte350

Carlo steps. The result also shows that the burnt area for the
same number of Monte Carlo steps increases rapidly as z in-
creases. In performing the numerical simulation, one Monte
Carlo step usually refers to one sweep of update for the lat-
tice, i.e., if the lattice is an N×N lattice, there will be an av-355

erageN2 update for each Monte Carlo step. In our simulation
here, one only needs to perform updates for the burning sites
and their neighboring sites in each Monte Carlo step. Further-
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Fig. 12. (a) The spreading of burnt area with BSE for different val-
ues of z. The burnt area for the same number of Monte Carlo steps
increases rapidly as z increases (Change the labeling of steps). (b)
The corresponding result of the burnt area as a function of Rg with
BSE and fitting A∝Rα

g . Empirical data points are also included
for comparison.

more, since one only performs about 1000 Monte Carlo steps
for each wildfire spread in Fig. 12, one can employ any type360

of boundary conditions on the lattice since the burnt sites will
never get to the boundaries of the lattice. Note that we also
include the empirical data points in Fig.12 for comparison. In
general, one would consider a forest to have about 10 trees or
more for each hectare (10,000 m2), we therefore assume that365

the distance between two adjancent lattice sites is equivalent
to a separation of 25 meters. Fig. 13 presents the numerical
results of the L versus Rg with BSE for different values of z.
One can see that there is a gradual decrease of β(L∝Rβg ) as
z increases.370

Figure 11. (a) BP, p = 0.5, q = 0.38; (b) Cor, p = 0.5, q = 0.11
(correlation length is five lattice sites);(c) FDE,p = 0.5, q = 0.34,
k = 3; and(d) BSE,p = 0.5, q = 0.29,z = 3.

area stops growing after a few hundred Monte Carlo steps.
The result also shows that the burned area for the same num-
ber of Monte Carlo steps increases rapidly as z increases. In
performing the numerical simulation, one Monte Carlo step
usually refers to one sweep of updates for the lattice; i.e., if
the lattice is anN × N lattice, there will be an averageN2

update for each Monte Carlo step. In our simulation here,
one only needs to perform updates for the burning sites and
their neighboring sites in each Monte Carlo step. Further-
more, since one only performs about 1000 Monte Carlo steps
for each wildfire spread in Fig. 12, one can employ any type
of boundary condition on the lattice, since the burned sites
will never get to the boundaries of the lattice. Note that we
also include the empirical data points in Fig. 12 for compar-
ison. In general, one would consider a forest to have about
10 trees or more for each hectare (10 000 m2). We therefore
assume that the distance between two adjacent lattice sites is
equivalent to a separation of 25 m. Figure 13 presents the nu-
merical results ofL vs. Rg with BSE for different values of

z. One can see that there is a gradual decrease inβ(L ∝ R
β
g )

asz increases.
Figure 14 showsDp vs.Rg, with BSE for different values

of z. When the simulated burned area is small, the perime-
ter is more rugged, and the increase in the burned area does
not change the perimeter as fast as a regular two-dimensional
object. As the burned area increases, so doesDp, and it will
eventually approach an asymptotic value close to that of a
regular two-dimensional object.
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Fig. 11. (a) BP, p = 0.5, q = 0.38 (b) Cor, p = 0.5, q = 0.11,
(correlation length = 5 lattice sites (c) FDE, p = 0.5, q = 0.34, k =
3 and, (d) BSE, p = 0.5, q = 0.29, z = 3

p=0.5, q=0.11 (correlation length = 5 lattice sites) ; (c)FDE,
p=0.5, q=0.34 and k=3, (d)BSE, p=0.5, q=0.29 and z=3. In
general, the sets of rules based on BSE gives better results as
compared to the empirical data such as in Figure 1.335

In the remaining part of this section, we will therefore ana-
lyze statistical features of the model by performing numerical
simulations using BSE rules. All simulations were performed
on a 2048 x 2048 square lattice with each z averaged over
100 simulations. In each of the simulations, we put 4 burning340

sites at the center and let the wildfire spread according to the
BSE rules with different values of z. In performing the simu-
lations, one can use any algorithms for asynchronous updates
for the lattice. In our simulation, we use the Metroplis algo-
rithm of the asynchronous update which is commonly known345

as the Monte Carlo method in statistical physics (Metropolis,
1953). Fig.12 is an illustration of the spreading of burnt area
with BSE for different values of z. One can see that as z in-
creases, so does the spreading of burnt area. Note that for z
≤ 1, the burnt area stops growing after a few hundred Monte350

Carlo steps. The result also shows that the burnt area for the
same number of Monte Carlo steps increases rapidly as z in-
creases. In performing the numerical simulation, one Monte
Carlo step usually refers to one sweep of update for the lat-
tice, i.e., if the lattice is an N×N lattice, there will be an av-355

erageN2 update for each Monte Carlo step. In our simulation
here, one only needs to perform updates for the burning sites
and their neighboring sites in each Monte Carlo step. Further-
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Fig. 12. (a) The spreading of burnt area with BSE for different val-
ues of z. The burnt area for the same number of Monte Carlo steps
increases rapidly as z increases (Change the labeling of steps). (b)
The corresponding result of the burnt area as a function of Rg with
BSE and fitting A∝Rα

g . Empirical data points are also included
for comparison.

more, since one only performs about 1000 Monte Carlo steps
for each wildfire spread in Fig. 12, one can employ any type360

of boundary conditions on the lattice since the burnt sites will
never get to the boundaries of the lattice. Note that we also
include the empirical data points in Fig.12 for comparison. In
general, one would consider a forest to have about 10 trees or
more for each hectare (10,000 m2), we therefore assume that365

the distance between two adjancent lattice sites is equivalent
to a separation of 25 meters. Fig. 13 presents the numerical
results of the L versus Rg with BSE for different values of z.
One can see that there is a gradual decrease of β(L∝Rβg ) as
z increases.370

Figure 12. (a)The spreading of burned areas with BSE for different
values ofz. The burned area for the same number of Monte Carlo
steps increases rapidly asz increases (changing the labeling of the
steps).(b) The corresponding result of the burned area as a function
of Rg, with BSE and fittingA ∝ Rα

g . Empirical data points are also
included for comparison.

Note that in Figs. 12–14,Rg is measured in terms of
the lattice length unit (one unit is the distance between two
neighboring lattice sites), while the areaA is measured in
terms of the number of unit lattice cells.

4 Conclusions

In this paper, we have analyzed time series data of 31 wild-
fires in the US that occurred in 2012, with a total of 717 data
sets of wildfire images. With a spatial resolution of 5 m
and daily data for these wildfire incidents, one is able to
carry out a better analysis of the dynamical and statistical
properties of wildfires. The behavior of fractal dimensions
(FD) during the spreading was studied and their geological
features were identified. The result shows that the fractal
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Fig. 14. Dp vs. Rg with BSE for different values of z

Figure 14 shows Dp vs. Rg with BSE for different values
of z. When the simulated burnt area is small, the perimeter
is more rugged and the increase in the burnt area does not
change the perimeter as fast as a regular two-dimensional
object. As the burnt area increases, so does Dp and it will375

eventually approach an asymptotic value close to that of a
regular two-dimensional object.

Note that in Figures 12-14, Rg is measured in terms of the
lattice length unit (1 unit is the distance between two neigh-
boring lattice sites) while the area A is measured in terms of380

the number of unit lattice cells.

4 Conclusions

In this paper, we have analyzed time series data of 31 wild-
fires in the U.S. that occurred in 2012, with a total of 717
datasets of wildfire images. With a spatial resolution of 5385

meters and daily data for these wildfire incidents, one is able
to carry out a better analysis on the dynamical and statis-
tical properties of wildfires. The behavior of fractal dimen-
sions (FD) during the spreading was studied and their ge-
ological features were identified. The result shows that the390

fractal dimension Df of the burnt areas approaches 2 while
Dp of the corresponding accessible perimeter ranges be-
tween 1 and 1.15 as the wildfire spreads. More interestingly,
all data points follow empirical relations for the burnt area
(A∼ 4.51R2

g) and accessible perimeter (L∼ 19.57R1.17
g ). In395

a spatially-uniform landscape, the fractal dimension of wild-
fire would be 2. The observation that the fractal dimension
of wildfire spreading is less than 2 could mean that its dy-
namics is driven by spatial heterogeneity in the environment,
e.g., different types of plants, different distances between400

patches, etc. may reduce the spatial spread of wildfire. This
may well imply that the fractal dimension of wildfires ob-
served in the data is a proxy for spatial heterogeneity, which
may come about because of differences in environmental, cli-
matic and other factors between locations. The fact that wild-405

fire spreading exhibits fractal behavior suggests that the un-
derlying dynamics can be characterized by the fractal struc-
tures. Thus, one can study models whose dynamics incor-
porate such fractal structures without knowing the details of
effects from ecology, climate, etc as a first step to understand410

the dynamics of wildfire spreading. Taking this as a starting
point, a growth model based on cellular automata method
is proposed in this paper to mimic both the dynamical and
statistical properties of the spreading of wildfires. Numerical
results are compared with the fractal dimensions and scal-415

ing behaviors of the corresponding empirical data and show
good agreement between the simulated data from the model
and the empirical data from the database(Geomac, 2012).
The results suggested that the simple model proposed here
is able to capture the qualitative behavior of wildfire dynam-420

ics. It would be interesting to see if one can further extend
the model to incorporate the meteorological factors as men-
tioned above.
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Figure 14 shows Dp vs. Rg with BSE for different values
of z. When the simulated burnt area is small, the perimeter
is more rugged and the increase in the burnt area does not
change the perimeter as fast as a regular two-dimensional
object. As the burnt area increases, so does Dp and it will375

eventually approach an asymptotic value close to that of a
regular two-dimensional object.

Note that in Figures 12-14, Rg is measured in terms of the
lattice length unit (1 unit is the distance between two neigh-
boring lattice sites) while the area A is measured in terms of380

the number of unit lattice cells.

4 Conclusions

In this paper, we have analyzed time series data of 31 wild-
fires in the U.S. that occurred in 2012, with a total of 717
datasets of wildfire images. With a spatial resolution of 5385

meters and daily data for these wildfire incidents, one is able
to carry out a better analysis on the dynamical and statis-
tical properties of wildfires. The behavior of fractal dimen-
sions (FD) during the spreading was studied and their ge-
ological features were identified. The result shows that the390
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dimensionDf of the burned areas approaches 2, whileDp
of the corresponding accessible perimeter ranges between
1 and 1.15 as the wildfire spreads. More interestingly, all
data points follow empirical relations for the burned area
(A ∼ 4.51R2

g) and accessible perimeter (L ∼ 19.57R1.17
g ).

In a spatially uniform landscape, the fractal dimension
of wildfire would be 2. The observation that the fractal
dimension of wildfire spreading is less than 2 could mean
that its dynamics is driven by spatial heterogeneity in the
environment, e.g., by different types of plants, different
distances between patches, etc., which may reduce the
spatial spreading of wildfire. This may well imply that the
fractal dimension of wildfires observed in the data is a proxy
for spatial heterogeneity, which may come about because
of differences in environmental, climatic and other factors
between locations. The fact that wildfire spreading exhibits
fractal behavior suggests that the underlying dynamics can

be characterized by the fractal structures. One can thus study
models whose dynamics incorporate such fractal structures
without knowing the details of effects from ecology, climate,
etc. as a first step to understanding the dynamics of wildfire
spreading. Taking this as a starting point, a growth model
based on the cellular automata method is proposed in this
paper to mimic both the dynamical and statistical properties
of the spreading of wildfires. Numerical results are compared
with the fractal dimensions and scaling behaviors of the
corresponding empirical data, and show good agreement
between the simulated data from the model and the empirical
data from the database (Geomac, 2012). The results suggest
that the simple model proposed here is able to capture
the qualitative behavior of wildfire dynamics. It would be
interesting to see if one can further extend the model to
incorporate the meteorological factors as mentioned above.
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