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Abstract. A four-dimensional ensemble variational (4D-En-
Var) data assimilation has been developed for a limited area
model. The integration of tangent linear and adjoint mod-
els, as applied in standard 4D-Var, is replaced with the use
of an ensemble of non-linear model states to estimate four-
dimensional background error covariances over the assimi-
lation time window. The computational costs for 4D-En-Var
are therefore significantly reduced in comparison with stan-
dard 4D-Var and the scalability of the algorithm is improved.

The flow dependency of 4D-En-Var assimilation incre-
ments is demonstrated in single simulated observation exper-
iments and compared with corresponding increments from
standard 4D-Var and Hybrid 4D-Var ensemble assimilation
experiments. Real observation data assimilation experiments
carried out over a 6-week period show that 4D-En-Var out-
performs standard 4D-Var as well as Hybrid 4D-Var ensem-
ble data assimilation with regard to forecast quality measured
by forecast verification scores.

1 Introduction

Data assimilation for numerical weather prediction (NWP)
is the process of using observations to create initial condi-
tions for NWP models. The number of observed values at
any particular moment of time is generally much smaller
than the number of model state variables of the NWP model.
For this reason, a priori information has to be taken into ac-
count. In most data assimilation schemes, a short-range fore-
cast from the NWP model, valid at the time of the obser-
vations, is used as abackgroundfield for the data assimi-

lation and, in addition, statistical information about the un-
certainty of this background field may be utilized. This was
realized already byBergthorsson and Döös(1955), who ap-
plied a successive correction spatial interpolation to a quasi-
geostrophic barotropic forecast model. The successive cor-
rection interpolation was essentially based on weights given
to the observation-minus-background deviations being pro-
portional to the distances between the observation positions
and the grid points. During the 1960s and 1970s more ad-
vanced spatial interpolation techniques, for example the sta-
tistical interpolation or OI (optimum interpolation,Gandin,
1963), were introduced and brought into operational use in
three-dimensional versions, including also the idea of balanc-
ing between mass and wind field information (Rutherford,
1976; Gustafsson, 1981; Lorenc, 1981).

Variational data assimilation (Sasaki, 1958; Le Dimet and
Talagrand, 1986; Lewis and Derber, 1985) provides an ef-
ficient framework for data assimilation with NWP models,
since the possibility to apply dynamical and physical con-
straints for the data assimilation is introduced. In three-
dimensional variational data assimilation (3D-Var) a cost
function measuring the distance to the observations and the
distance to the background field is minimized. In its simplest
form, 3D-Var is equivalent to OI, with the exception that
there are no requirements for data selection, while OI gen-
erally has to rely on local data selection schemes to find the
observed values to influence each grid point of the model.
One of the most important reasons of 3D-Var replacing OI
is that 3D-Var can easily use non-linear observation opera-
tors such that satellite radiance data can be directly assimi-
lated. 3D-Var is applied to global NWP models (Parrish and
Derber, 1992; Courtier et al., 1998) and also to regional NWP

Published by Copernicus Publications on behalf of the European Geosciences Union & the American Geophysical Union.



746 N. Gustafsson and J. Bojarova: 4D-En-Var for HIRLAM

models (Gustafsson et al., 2001; Lindskog et al., 2001). In
four-dimensional variational data assimilation (4D-Var) the
model initial state is found by minimizing a cost function
measuring the distance to observations from an assimilation
time window (e.g. 6 h) including also the forecast model as
a strong constraint for the model development over the as-
similation time window. The concept of incremental 4D-Var
(Courtier et al., 1994) made it possible to practically solve the
computational problem of 4D-Var by introducing simplifica-
tion and linearization of the forecast model and the observa-
tion operators and by introducing a reduced spatial resolution
for the 4D-Var minimization. Incremental 4D-Var schemes
have been successfully introduced operationally for global
NWP models (Rabier et al., 2000) as well as for regional
high-resolution models (Kawabata et al., 2007; Gustafsson
et al., 2012).

The application of 4D-Var for operational NWP has been
very successful, but there are a few problems associated
with its further development. Firstly, the application of a
static background error constraint, similar to those applied
in 3D-Var, at the start of the assimilation window limits
the possibilities to describe flow-dependent background er-
ror structures, for example those associated with baroclinic-
ity. This can be alleviated by introduction of longer 4D-Var
assimilation time windows, allowing the implicit assimila-
tion structure functions to develop these flow dependencies.
With longer time windows it will, however, be necessary to
treat model errors more efficiently, for example by introduc-
ing the weak constraint 4D-Var (Trémolet, 2006). Secondly,
the incremental 4D-Var necessitates the development of the
tangent linear (TL) and adjoint (AD) versions of the NWP
forecast models. This requires substantial development and
maintenance efforts and, furthermore, the computational cost
of incremental 4D-Var is dominated by the costs for the TL
and AD model integrations.

The Kalman filter (KF,Kalman, 1960) provides a frame-
work for estimating the uncertainty of forecast model states
for linear forecast models, and the extended Kalman filter
(EKF, Kalman and Bucy, 1961) extends the Kalman filter
theory to weakly non-linear models and observation oper-
ators. The KF and the EKF cannot be applied directly to
large-scale NWP models, due to the huge size of the cor-
responding model state covariance matrix to be handled.
The ensemble Kalman filter (EnKF,Evensen, 1994) is es-
sentially a Monte Carlo approximation to the Kalman fil-
ter. The model uncertainty is represented through an ensem-
ble of model states, from which the required forecast er-
ror covariances are estimated. The implementation of EnKF
can roughly be subdivided into three different approaches:
the EnKF with perturbed observations, which samples dif-
ferent sources of uncertainty (Evensen, 1994; Houtekamer
and Mitchell, 2001), the square-root EnKF, which directly
handles covariances involved (Tippett et al., 2003) and the
reduced-rank KF (Heemink et al., 2001; Cohn and Todling,
1996), which focuses on a low-dimensional approximation

of the model state covariances. One main advantage of the
EnKF is the possibility to describe flow-dependent uncer-
tainties of the background model state. Another advantage
of EnKF, as compared with 4D-Var, is that it is no longer
necessary to develop and maintain TL and AD versions of
the NWP forecast models. These advantages have the price
of a low rank of the background error covariance for full-
scale NWP data assimilation, due to the necessity to apply a
limited number (∼ 10–100) of ensemble members. The low
rank of the background error covariance matrix can be han-
dled to some extent by, for example, application of localiza-
tion to avoid spurious correlations at large distance separa-
tions, caused by sampling errors. Additive and multiplicative
inflation techniques can also be used to compensate for the
effects of the low rank.

The advantages and disadvantages of EnKF, as compared
to 4D-Var, were discussed byLorenc(2003), Kalnay et al.
(2007), andGustafsson(2007). A synthesis of this discussion
is the recognition of the need to develop combinations of the
robust and full rank 4D-Var algorithms and the ensemble-
based methods that are able to describe flow dependencies.
A first step in this direction is the development of hybrid
variational ensemble data assimilation methods (Hamil and
Snyder, 2000; Lorenc, 2003; Wang et al., 2008a, b; Clayton
et al., 2013; Gustafsson et al., 2014) that incorporate, for ex-
ample, ensemble-based error covariances within the frame-
work of variational data assimilation. A further step is to
replace the TL and AD model integrations in 4D-Var with
the application of ensembles of non-linear model trajecto-
ries over the data assimilation window (4D-En-Var,Liu et
al., 2008, 2009; Liu and Xiao, 2013; Buehner et al., 2010a,
b; Desroziers et al., 2014). The subject of the present paper is
to present the 4D-En-Var developed for the High Resolution
Limited Area Model (HIRLAM,Undén et al., 2002). A more
detailed review of 4D-En-Var developments is provided in
Sect.2. Sections3 and4 focus on the HIRLAM implementa-
tion of 4D-En-Var. Section5 presents results of experiments,
both with single simulated observations to demonstrate the
abilities of the algorithm, and with real observations to show
the performance of 4D-En-Var. Section6 discusses the com-
putational performance and challenges with the scheme and
the concluding remarks are presented in Sect.7.

2 Review of 4D-En-Var developments

The following cost function is minimized with respect to the
assimilation incrementδx in incremental 4D-Var:

J =Jb + Jo =
1

2
(δx)T B−1δx

+
1

2

tK∑
tk=t0

(HkM kδx − dk)
T R−1

k (HkM kδx − dk) , (1)

whereB is the background error covariance,tk = t0, . . . , tK
the data assimilation time window,dk = yk − Hk (Mk (xb))

Nonlin. Processes Geophys., 21, 745–762, 2014 www.nonlin-processes-geophys.net/21/745/2014/



N. Gustafsson and J. Bojarova: 4D-En-Var for HIRLAM 747

the innovations withyk being the vector of observations at
time tk, xb the model background state valid at timet0, Mk(.)

denotes integration of the non-linear model from timet0 until
time tk andM k the corresponding tangent linear model inte-
gration.Hk(.) is the non-linear observation operator,Rk is
the observation error covariance andHk the linearized obser-
vation operator, all valid at timetk.

The background error covariance matrixB has such a large
dimension that the inverseB−1 cannot be obtained directly
by matrix inversion techniques. Therefore we introduce a
pre-conditioning matrixU such thatB = UUT , andδx = Uχ

with χ the assimilation control variable. The transformation
matrix U is not formulated explicitly but given, for example,
as a series of simpler transform operators. The cost function
to be minimized and its gradient with respect to the assimila-
tion control variableχ are given by

J =Jb + Jo =
1

2
χT χ

+
1

2

tK∑
tk=t0

(HkM kUχ − dk)
T R−1

k (HkM kUχ − dk) (2)

and

∇χJ = χ +

tK∑
tk=t0

UT MT
k HT

k R−1
k (HkM kUχ − dk) . (3)

The gradient calculation (3) is applied for every iteration dur-
ing the 4D-Var minimization. A forward integration of the
tangent linear modelM k and a backward integration of the
adjoint modelMT

k are required for each such iteration.
Following Liu et al. (2008) we replace the static error

covarianceB with a flow-dependent error covarianceB ≈

X′

b

(
X′

b

)T estimated from an ensemble of background model
states.X′

b is a matrix whose columns are the normalized de-
viations of the ensemble background states from their mean:

X′

b =
1

√
N − 1

(xb1− xb, . . . ,xbN − xb) , (4)

whereN is the number of ensemble members.
Also following Liu et al. (2008) we may applyX′

b for
the pre-conditioningδx = X′

bχ . Here the control vector will
have the dimension of the number of ensemble members and
we may notice that the assimilation increment is just a linear
combination of the ensemble perturbations. The cost func-
tion and its gradient will have a similar form as above (X′

b
will replaceU). We have achieved one of our aims, to utilize
a flow-dependent background error covariance at the start of
the 4D-Var assimilation window, but we still need to inte-
grate the tangent linear model forward in time and the ad-
joint model backward in time over the data assimilation win-
dow. To avoid this,Liu et al. (2008) used an ensemble of
non-linear model integrations over the data assimilation win-
dow to replace the forward integration of the tangent linear

model with pre-calculated values derived from these non-
linear model trajectories in observation space.

The background error covariance of this 4D-En-Var for-
mulation has the maximum rank equal to the number of en-
semble members minus 1 (N − 1) and cannot directly be
applied to a full-scale NWP data assimilation problem. For
demonstration purposesLiu et al. (2008) applied the method
to a low-dimensional shallow-water model, with the degrees
of freedom of the same order as the number of ensemble
members. They showed that the performance of this 4D-En-
Var for the low-order problem was very similar to the per-
formance of 4D-Var and other assimilation algorithms like
EnKF and 3D-Var. An even more important message is that
the computational cost of 4D-En-Var was much lower than
the corresponding cost of 4D-Var, since the integrations of
the TL and AD models over the assimilation window were
avoided.

In a second studyLiu et al. (2009) applied 4D-En-Var
to observing system simulation experiments (OSSE) with
the WRF (weather research and forecasting) model (Ska-
marock et al., 2008). The number of ensemble members is
in this case several orders of magnitude smaller than the
model dimension, leading to a severe rank deficiency of the
ensemble-based background error covariance matrix. The
standard techniques in EnKF to counteract this rank defi-
ciency are to apply covariance localization and/or to apply
the EnKF algorithm locally, for example by solving separate
filtering problems for each grid point of the model domain.
The application of a local EnKF brings us back to the need
for local data selection and will not be further discussed here.
The most common algorithm for covariance localization is
to apply an element-by-element multiplication (Schur prod-
uct) of the original low-rank ensemble-based covariance ma-
trix Bens= X′

b

(
X′

b

)T with a localization correlation matrix
C, constructed such that the final covariancesB = C ◦ Bens
applied in the EnKF will be eliminated at long distances
(Houtekamer and Mitchell, 2001). Liu et al. (2009) applied
the correspondence to this covariance localization within the
4D-En-Var formulation with a technique similar to the one
described byBuehner(2005). The pre-conditioning was done
with the matrixP′

b given by

P′

b =
(
C′

◦ X′

b1,C′
◦ X′

b2, . . . ,C′
◦ X′

bN

)
, (5)

whereC′C′T
= C, C′ is ann×r matrix withr ≤ n andX′

bl is
anr column matrix with every column being equal to thelth
column inX′

b. N is the number of ensemble members andn

is the model space dimension. The columns of the transfor-
mation matrixC′ consist of eigenvectors of the correlation
matrix C multiplied by the square root of the eigenvalues.
In order to make the eigenvector decomposition possible, the
eigenvectors are evaluated on a coarser resolution grid, are
possibly truncated and are interpolated to the assimilation
grid. It is straightforward to show thatP′

b

(
P′

b

)T
= C ◦ Bens.
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Liu and Xiao(2013) applied 4D-En-Var including covari-
ance localization developed for WRF to a full-scale data
assimilation experiment over Antarctica. They managed to
demonstrate overall superiority and robust performance in
comparison with 3D-Var and 3D-Var FGAT (first guess at
appropriate time).

Buehner et al.(2010a, b) implemented a 4D-En-Var sim-
ilar to the 4D-En-Var ofLiu et al. (2009) into the Cana-
dian operational global NWP system. The covariance lo-
calization was the same as inBuehner(2005). 4D-En-Var
was compared with 4D-Var and 3D-Var FGAT, both applied
with static background error covariances as well as with
ensemble-based background error covariances, and was also
compared with EnKF (Houtekamer and Mitchell, 2001). The
ensemble-based error covariances were all based on the en-
semble of short-range forecasts produced by the EnKF. Com-
parisons were made for single simulated observation impact
experiments (Buehner et al., 2010a) and for full-scale data
assimilation and forecasts over a 1 month period (Buehner
et al., 2010b). The 4D-En-Var performed as well as 4D-Var
with a static background error covariance, but slightly worse
than 4D-Var Hybrid with an ensemble-based background er-
ror covariance in addition.

Desroziers et al.(2014) compared different 4D-En-Var
formulations, including pre-conditioning based on theB ma-
trix, the full background error covariance, rather than

√
B

matrix as suggested byLiu et al. (2009) and applied in the
present work with the HIRLAM 4D-En-Var. It is argued by
Desroziers et al.(2014) that this alternative pre-conditioning
might provide larger flexibility to implement the localiza-
tion needed in 4D-En-Var. The choice of pre-conditioning
method can also have an influence on the dimension of the
assimilation control variable and on the characteristics of the
minimization problem.

3 Formulation of the HIRLAM 4D-En-Var Hybrid

The 4D-En-Var for the HIgh Resolution Limited Area Model
(HIRLAM, Undén et al., 2002) is an extension of the
HIRLAM Hybrid variational ensemble data assimilation
scheme (Gustafsson et al., 2014). It builds on the idea of
an augmentation of the control vector byLorenc (2003)

and use of theB
1
2 for pre-conditioning. Furthermore, the

HIRLAM 4D-En-Var is a hybrid between 4D-En-Var and
3D-Var FGAT (first guess at appropriate time), such that the
assimilation incrementδx(tk) at time tk within the assimi-
lation time windowt0 ≤ tk ≤ tK is formed as a linear com-
bination of a 3D-Var FGAT incrementδx3dvar

(
t0+tK

2

)
and a

4D-En-Var incrementδxens(tk):

δx (tk) = δx3dvar

(
t0 + tK

2

)
+ δxens(tk) . (6)

According to HIRLAM 3D-Var FGAT experiences, in order
to utilize time-averaging effects, the assimilation increment

related to the static part of the background error covariance
should preferably be applied for non-linear model initializa-
tion at time t0+tK

2 in the middle of the data assimilation win-
dow.

Pre-conditioning for the two components of the assim-
ilation increment is done separately. The pre-conditioning
for the 3D-Var FGAT componentδx3dvar= Uχ3dvar with
B3dvar= UUT is done as in the HIRLAM 3D-Var (Berre,
2000; Gustafsson et al., 2001). The transform operatorU
includes vertical transforms of the spectral control vector
χ3dvar from vertical eigenvector space to model levels, inver-
sion of vertical balance operators and projection by Fourier
transforms from spectral space to grid point space. An area
extension is applied to the regional model domain in order
to make application of fast Fourier transform possible (Hau-
gen and Machenhauer, 1993). For the 4D-En-Var component
δxenswe follow Liu et al. (2009), see also Eq. (5):

δxens=P′

bχens=
(
C′

◦ X′

b1,C′
◦ X′

b2, . . . ,C′
◦ X′

bN

)
χens

=

N∑
l=1

C′
◦ X′

bl (χens)l ,

whereχensis the control vector of dimensionN ·r and(χens)l
thelth component of the control vector, corresponding to en-
semble memberl. If we introduce a vectorαl = C′ (χens)l
we can show by substitution into component form that

δxens=

N∑
l=1

αl ◦
(
X′

b

)
l

(7)

and this is 4D-En-Var in the form of the control vector
augmentation method (theα-method) suggested byLorenc
(2003). Theαl can be considered as a localized weight field
for the ensemble perturbations of ensemble memberl. In the
most general case, and without any truncation of the local-
ization correlation function,αl will be a vector of dimen-
sionK × n. In the first version of HIRLAM 4D-En-Var Hy-
brid, we will assume the same localized ensemble weights
for each observation time window, corresponding to a strong
constraint 4D-Var, and also for each model level, correspond-
ing to application of horizontal localization only. The im-
pact of an additional vertical localization is studied sepa-
rately, see Sect.5.2.3. In the HIRLAM 4D-En-Var Hybrid
the transform matrixC′ is derived from the localization cor-
relation matrixC in a similar way as for the static back-
ground error covariance matrix. The localization correlation
matrix C is thus generated in the extended domain with bi-
periodic variations, without any loss of generality we may
assume homogeneity and isotropy with regard to the horizon-
tal localization correlation function and then we may obtain
a correlation spectrum representing the localization correla-
tion in spectral space. Its square root, the transform matrix
C′, consists of horizontal inverse fast Fourier transforms to
grid point space. The transforms are carried out to obtain the
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weightsαl for the different ensemble members. By construc-
tion these weights include the implicit localization of ensem-
ble perturbations(X′

b)l . The same procedure is also applied
in the HIRLAM hybrid variational ensemble assimilation al-
gorithm and is discussed inGustafsson et al.(2014).

For the localization in the horizontal direction we apply
the power law correlation function with a length scalec of
500 km:

ρ(c,r) =
1

1+
1
2( r

c
)2

, (8)

wherer is the distance. In order to limit the negative local-
ization effects on model balances, we perform localization on
vorticity, divergence, temperature, specific humidity and sur-
face pressure perturbations. A similar localization of stream
function and velocity potential was discussed and applied by
Kepert(2009).

The cost function expression for the HIRLAM 4D-En-Var
Hybrid is given by

J (χ3dvar,χens) = β3dvarJb,3dvar(χ3dvar)

+ βensJb,ens(χens) + Jo, (9)

where the weightsβ3dvar andβens for the two different com-
ponents of the background error constraint should fulfil

1

β3dvar
+

1

βens
= 1. (10)

Slightly different from the 4D-En-Var implementation by
Liu et al. (2009) we apply explicitly the linearized observa-
tion operatorHk in the observation constraint partJo of the
cost function to be minimized:

Jo =
1

2

tK∑
tk=t0

(Hkδx(tk) − dk)
T R−1

k (Hkδx(tk) − dk) , (11)

whereδx(tk) given by Eq. (6) can be expressed in the assim-
ilation control variables as

δx(tk) = Uχ3dvar+ κ

N∑
l=1

αl ◦
(
X′

b

)
l
(tk)

= Uχ3dvar+ κ

N∑
l=1

(
C′ (χens)l

)
◦

(
X′

b

)
l
(tk), (12)

whereκ is a tuning factor.
There are several parameters of the HIRLAM 4D-En-Var

Hybrid that can be considered as tuning parameters – for
example, the form of the horizontal localization correlation
function and its length scale, the weightsβ3dvar, βens asso-
ciated with the two different components of the background
error constraint and the tuning factorκ to scale the ensem-
ble perturbations for estimation of the flow-dependent fore-
cast error covariance. Here we will make experiments with
β3dvar= βens= 2, thus with equal weights given to the two

components of the background error constraint, and with al-
most full weight given to the ensemble-based background er-
ror constraint. We will also compare experiments without any
scaling of the ensemble perturbations (κ = 1) with experi-
ments with such a scaling (κ = 4). For sensitivity of the 4D-
Var Hybrid scheme to these tuning parameters, seeGustafs-
son et al.(2014).

4 ETKF re-scaling

The 4D-En-Var Hybrid as implemented in HIRLAM pro-
vides an initial state for the ensemble control only. For the
generation of the perturbed ensemble members we apply
an ensemble transform KF (ETKF) based re-scaling scheme
(Bishop et al., 2001). Essentially this is a low-rank estima-
tion of the analysis error variances, preserving also dynam-
ical structures. Further details on the HIRLAM ETKF re-
scaling are described and discussed inBojarova et al.(2010)
andGustafsson et al.(2014).

5 Results

Data assimilation experiments to validate the performance
of the HIRLAM 4D-En-Var Hybrid and to compare it with
HIRLAM 4D-Var, as well as with the HIRLAM 4D-Var
Hybrid data assimilation, were done over the period 17
January–28 February 2008. Single simulated observation im-
pact experiments were carried out in order to illustrate the
flow-dependent assimilation increments due to the use of
ensemble-based background error covariances. The average
effects on forecast quality are illustrated through a data as-
similation and forecast experiment, using real observations,
over the whole data period (43 days). The model domain ap-
plied during the experiments is shown in Fig.1; the hori-
zontal grid resolution was 11 km and the number of vertical
levels of the forecast model was 40.

The forecast model used in the experiments was the
HIRLAM grid point forecast model. It is hydrostatic and
it utilizes a semi-implicit, semi-Lagrangian two time level
integration scheme (Undén et al., 2002). The physical pa-
rameterizations were the CBR turbulence scheme (Cuxart
et al., 2000), the Kain–Fritsch convection scheme (Kain,
2004), the Rasch–Kristjánsson cloud water scheme (Rasch
and Kristjánsson, 1998), the Savijärvi (1990) radiation and
the ISBA surface scheme (Noilhan and Mahfouf, 1996).

5.1 Single observation experiments with 4D-Var,
4D-Var Hybrid, and 4D-En-Var Hybrid

To illustrate the influence of ensemble based error covari-
ances on flow dependency, we selected a case with a strong
baroclinic development over the Northern Atlantic south
of Iceland on 7 February 2008. The 6 h data assimilation
window selected was from 6 February 2008, 21:00 UTC,

www.nonlin-processes-geophys.net/21/745/2014/ Nonlin. Processes Geophys., 21, 745–762, 2014
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 10W   0  10E  20E  30E  40E

Figure 1. Model domain for the data assimilation and forecast ex-
periments.

Table 1.Description of experiments carried out with the HIRLAM
4D-Var, the HIRLAM Hybrid 4D-Var ensemble data assimilation
and with the HIRLAM 4D-En-Var for the winter period 17 January–
28 February 2008.

Experiment name Description

4DVar 4D-Var, no ensemble constraint,
two outer loops, 66 and 44 km
increment resolution.

4DVar-Hyb25-Sc 4D-Var Hybrid,
βvar = 4, βens= 4/3
(25 % ensemble, 75 % static cov.),
two outer loops, 66 and 44 km
increment resolution. Ensemble
perturbations scaled by a factor 4
in the covariance estimation.

4DEnVar-Hyb50-Sc 4D-En-Var,βvar = βens= 2
(50 % ensemble,
50 % 3D-Var FGAT cov.),
one outer loop, 33 km
increment resolution. Ensemble
perturbations scaled by a factor 4
in the covariance estimation.

4DEnVar-Hyb50-NoSc As 4DEnVar-Hyb50-Sc but
without any scaling of
the ensemble perturbations
in the covariance
calculation.

4DEnVar-Hyb90-NoSc As 4DEnVar-Hyb50-NoSc
with the exception that
βvar = 11,βens= 11/10
(≈ 90 % ensemble,
≈ 10 % 3D-Var FGAT cov.).

VertLoc As 4DEnVar-Hyb50-Sc but with
a vertical localization of
ensemble-based
covariances added

until 7 February, 03:00 UTC. Analysis fields for 7 February
2008, 03:00 UTC, taken from a 4D-En-Var Hybrid assimila-
tion experiment (experiment name 4DEnVar-Hyb50-Sc, see
Table1), are shown for mean sea level pressure and 700 hPa
temperature in Fig.2a and for 500 hPa geopotential height
and wind in Fig.2b. Note the strong small-scale surface pres-
sure development south of Iceland, the sharp frontal zones in
the 700 hPa temperature field and the associated small-scale
trough in the 500 hPa geopotential height field.

To investigate how the standard 4D-Var develops implicit
flow-dependent assimilation structure functions, a simulated
wind observation was inserted into the assimilation pro-
cess at 7 February 2008, 02:00 UTC, 5 h into the assim-
ilation window. The horizontal position of the simulated
observation was 58◦ N, 15◦ W and the vertical level was
500 hPa. The corresponding observation increment was ap-
proximately southwesterly 12 m s−1 (10 m s−1 in the model
geometryu component and 5 m s−1 in thev component).

500 hPa geopotential height and wind assimilation in-
crements induced by the single simulated observation on
7 February 2008, 02:00 UTC, are presented in Fig.3 for the
following three assimilation configurations: (1) standard 4D-
Var with a single outer loop; (2) hybrid 4D-Var ensemble as-
similation with a single outer loop, with equal weights given
to the static background error covariance and the ensemble-
based background error covariance and with the tuning fac-
tor κ = 4.0; (3) 4D-En-Var Hybrid with a single outer loop,
with equal weights given to the 3D-Var FGAT and the four-
dimensional ensemble parts of the background error covari-
ance and with the tuning factorκ = 4.0 as in the 4D-Var
Hybrid. All experiments applied a horizontal grid resolution
of 33 km for the assimilation increments. The 20 ensemble
members from a 4D-En-Var Hybrid experiment (experiment
name 4DEnVar-Hyb50-Sc) were utilized in experiments (2)
and (3). It should also be emphasized that the HIRLAM im-
plementation of the 4D-Var, 4D-Var Hybrid, and 4D-En-Var
Hybrid algorithms are completely consistent and based on
the same computer code.

The single simulated observation impact assimilation in-
crements clearly illustrate the utilization of flow-dependent
structure functions in all three experiments (4D-Var, 4D-Var
Hybrid, and 4D-En-Var Hybrid), in particular with regard
to the sharpening of the small-scale trough in the 500 hPa
geopotential height and wind fields, needed in order satisfy
the simulated single observation. The flow dependency is
more accentuated for the 4D-Var Hybrid and 4D-En-Var Hy-
brid experiments than for the standard 4D-Var experiment.
This result is consistent with application of a static back-
ground error covariance at the start of the assimilation win-
dow in the standard 4D-Var experiment. In contrast, there are
contributions from an ensemble of forecast perturbations to
this background error covariance in the 4D-Var Hybrid and
4D-En-Var Hybrid experiments. Furthermore, in the 4D-En-
Var Hybrid experiment there is an additional contribution
from the ensemble of background error perturbations valid
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Fig. 2. Mean sea level pressure and 700 hPa temperature (top), 500
hPa geopotential height and wind (bottom). 7 February 2008 03
UTC. Analyses fields are from one of the 4D-En-Var Hybrid ex-
periments (experiment name 4DEnVar-Hyb50-Sc). The position of
the single simulated observation at 58◦N, 15◦W is indicated by a
blue square. Isoline spacing is 5 hPa, 2◦K and 40 meters for mean
sea level pressure, 700 hPa temperature and 500 hPa geopotential
height, respectively. A reference wind arrow is provided to the left
of the 500 hPa map.

Figure 2. Mean sea level pressure and 700 hPa temperature(a),
500 hPa geopotential height and wind(b), 7 February 2008,
03:00 UTC. Analyses fields are from one of the 4D-En-Var Hybrid
experiments (experiment name 4DEnVar-Hyb50-Sc). The position
of the single simulated observation at 58◦ N, 15◦ W is indicated by
a blue square. Isoline spacing is 5 hPa, 2◦K and 40 m for mean
sea level pressure, 700 hPa temperature and 500 hPa geopotential
height, respectively. A reference wind arrow is provided to the right
of the 500 hPa map.

at the time of the simulated observation (7 February 2008,
02:00 UTC). It is satisfactory to notice that the assimilation
increments from 4D-Var Hybrid and the 4D-En-Var Hybrid
are quite similar, taking into account that the derivations of
the two sets of increments are quite different. A tangent lin-
ear (TL) model integration of the increment over 5 h from
the start of the assimilation window is applied in 4D-Var Hy-
brid, while in the case of the 4D-En-Var Hybrid there is no
such TL model involved. The time evolution of the incre-
ments is provided by the four-dimensional background error

covariance estimated from an ensemble on non-linear model
integrations over the assimilation window.

In order to illustrate the effects on cross-correlations be-
tween different model variables, assimilation increments of
surface pressure and 700 hPa temperature due to the single
500 hPa simulated wind observation are presented in Fig.4.
First of all we may notice that the assimilation increments are
more pronounced (amplified) in 4D-En-Var Hybrid experi-
ment. The 4D-Var increments are much weaker and the 4D-
Var Hybrid increments are somewhere in between the 4D-
Var and the 4D-En-Var Hybrid increments. The shape of the
surface pressure increments indicates that the low-pressure
system is forced to move faster when the simulated 500 hPa
wind is assimilated and, in particular in the case of the 4D-
En-Var Hybrid, there is also a stronger deepening of the low.
From the 700 hPa temperature assimilation increment fields
we can notice a consistent faster propagation of the atmo-
spheric frontal zones.

5.2 Real observation assimilation experiments

Real observation data assimilation and forecast experiments
were carried out for the period 17 January–28 February 2008
and for the six data assimilation configurations described in
Table 1. The same conventional observations (TEMP, PI-
LOT, SHIP, AIREP, DRIBU, SYNOP) and satellite radiance
data (AMSU-A) were used in all experiments. For each ex-
periment, forecasts up to+30 h were produced and verified
against radiosonde and surface observations. The first three
days of the experiment period were excluded from the ver-
ification in order to allow a spin-up of the LAM ensemble
perturbations. We will first describe and discuss forecast ver-
ification scores based on the three data assimilation schemes
4D-Var, 4D-Var Hybrid and 4D-En-Var Hybrid. Secondly,
we will describe, compare and discuss forecast verification
scores for three different versions of 4D-En-Var Hybrid with
the aim of checking the sensitivity to two tuning parameters
of the HIRLAM 4D-En-Var Hybrid. These tuning parame-
ters are the magnitude of the scaling of the ensemble per-
turbations for estimation of the flow-dependent background
error covariances (tuning factorκ) and the relative weights
given to the ensemble and the 3D-Var FGAT components of
the background error covariance. Finally, we have also car-
ried out a small impact study on the sensitivity of forecast
verification scores to introduction of a very simple vertical
localization of the ensemble-based background error covari-
ance matrix in the HIRLAM 4D-En-Var Hybrid scheme.

5.2.1 Verification of forecasts based on 4D-Var,
4D-Var Hybrid, and 4D-En-Var Hybrid

Standard deviation (STDV) and mean (bias) verification
scores for forecasts of vertical profiles of+12 and+24 h
wind speed and relative humidity valid at 00:00 UTC are
presented in Fig.5 for the 4D-Var, 4D-Var Hybrid and

www.nonlin-processes-geophys.net/21/745/2014/ Nonlin. Processes Geophys., 21, 745–762, 2014



752 N. Gustafsson and J. Bojarova: 4D-En-Var for HIRLAM14 Gustafsson and Bojarova: 4D-En-Var for HIRLAM

-15

-10

-5

5

5

10.0 m/s  

 50N

 20W  10W

-20
-15

-10

-5

5

10

10.0 m/s  

 50N

 20W  10W

-25

-20

-15

-10

-5

5

10.0 m/s  

 50N

 20W  10W 

(a)

  

(b)

  (c)

Fig. 3. 500 hPa geopotential height and wind analysis increments
for 7 February 2008 02 UTC, 5 hours into the assimilation win-
dow between 6 February 2008 21 UTC and 7 February 2008 03
UTC. 4D-Var (top), 4D-Var Hybrid (middle) and 4D-En-Var Hy-
brid (bottom). Simulated single 500 hPa wind observation, with a
10 m/s observation increment at58

◦N,15
◦W (marked with a blue

square) in the model geometry u-component and a 5 m/s observa-
tion increment in the v-component. Isoline spacing is 5 meters for
the geopotential height and a reference wind error is provided to the
left of the map.
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Fig. 4. Surface pressure and 700 hPa temperature analysis incre-
ments for 7 February 2008 02 UTC, 5 hours into the assimilation
window between 6 February 2008 21 UTC and 7 February 2008 03
UTC. 4D-Var (top), 4D-Var Hybrid (middle) and 4D-En-Var Hy-
brid (bottom). Simulated single 500 hPa wind observation, with a
10 m/s observation increment at58

◦N,15
◦W (marked with a blue

square) in the model geometry u-component and a 5 m/s observa-
tion increment in the v-component. Isoline spacing is 5 hPa for the
surface pressure and and 2◦K for the 700 hPa temperature.

Figure 3.500 hPa geopotential height and wind analysis increments
for 7 February 2008, 02:00 UTC, 5 h into the assimilation win-
dow between 6 February 2008, 21:00 UTC, and 7 February 2008,
03:00 UTC. 4D-Var(a), 4D-Var Hybrid (b), and 4D-En-Var Hy-
brid (c). Simulated single 500 Pa wind observation, with a 10 m s−1

observation increment at 58◦ N, 15◦ W (marked with a blue square)
in the model geometryu component and a 5 m s−1 observation in-
crement in thev component. Isoline spacing is 5 m for the geopo-
tential height and a reference wind error is provided to the right of
the map.
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Fig. 4. Surface pressure and 700 hPa temperature analysis incre-
ments for 7 February 2008 02 UTC, 5 hours into the assimilation
window between 6 February 2008 21 UTC and 7 February 2008 03
UTC. 4D-Var (top), 4D-Var Hybrid (middle) and 4D-En-Var Hy-
brid (bottom). Simulated single 500 hPa wind observation, with a
10 m/s observation increment at58

◦N,15
◦W (marked with a blue

square) in the model geometry u-component and a 5 m/s observa-
tion increment in the v-component. Isoline spacing is 5 hPa for the
surface pressure and and 2◦K for the 700 hPa temperature.
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Figure 4. Surface pressure and 700 hPa temperature analysis in-
crements for 7 February 2008, 02:00 UTC, 5 h into the assimila-
tion window between 6 February 2008, 21:00 UTC, and 7 Febru-
ary 2008, 03:00 UTC. 4D-Var(a), 4D-Var Hybrid(b), and 4D-En-
Var Hybrid (c). Simulated single 500 hPa wind observation, with
a 10 m s−1 observation increment at 58◦ N, 15◦ W (marked with a
blue square) in the model geometryu component and a 5 m s−1 ob-
servation increment in thev component. Isoline spacing is 5 hPa for
the surface pressure and 2◦K for the 700 hPa temperature.

Nonlin. Processes Geophys., 21, 745–762, 2014 www.nonlin-processes-geophys.net/21/745/2014/



N. Gustafsson and J. Bojarova: 4D-En-Var for HIRLAM 753

Gustafsson and Bojarova: 4D-En-Var for HIRLAM 15

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000
-0.5  0  0.5  1  1.5  2  2.5  3  3.5  4

 0  500  1000  1500  2000  2500  3000  3500  4000

hP
a

m/s

  48 stations Selection: EWGLAM
 Wind speed  Period: 20080120-20080228

 Statistics at 00 UTC  At 00,12 + 12 24

No cases

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000
-10 -5  0  5  10  15  20

 0  500  1000  1500  2000  2500  3000  3500  4000

hP
a

%

  49 stations Selection: EWGLAM
 Relative Humidity  Period: 20080120-20080228

 Statistics at 00 UTC  At 00,12 + 12 24

No cases

Fig. 5. Verification of vertical profiles of wind speed and relative
humidity forecasts against radiosonde data from stations in an Eu-
ropean network. Standard Deviation (STDV) and mean (bias) veri-
fication scores. Average verification scores for +12h and +24h fore-
casts valid at 00UTC over the period 20 January - 28 February 2008.
4D-Var (experiment name 4DVar, red lines), 4D-Var Hybrid (exper-
iment name 4DVar-Hyb25-Sc, green lines), and 4D-En-Var Hybrid
(experiment name 4DEnVar-Hyb50-Sc, blue lines). The black dot-
ted line indicates the number of verification comparisons.
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Fig. 6. Verification of Mean Sea Level Pressure (MSLP) fore-
casts against surface (SYNOP) data from stations in an European
network. Standard Deviation (STDV) and mean (bias) verification
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February 2008 as a function of forecast length. 4D-Var (experiment
name 4DVar, red lines), 4D-Var Hybrid (experiment name 4DVar-
Hyb25-Sc, green lines) and 4D-En-Var Hybrid (experiment name
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number of verification comparisons.

Figure 5. Verification of vertical profiles of wind speed and relative
humidity forecasts against radiosonde data from stations in a Euro-
pean network. Standard deviation (STDV) and mean (bias) verifica-
tion scores. Average verification scores for+12 and+24 h forecasts
valid at 00:00 UTC over the period 20 January–28 February 2008;
4D-Var (experiment name 4DVar, red lines), 4D-Var Hybrid (exper-
iment name 4DVar-Hyb25-Sc, green lines), and 4D-En-Var Hybrid
(experiment name 4DEnVar-Hyb50-Sc, blue lines). The black dot-
ted line indicates the number of verification comparisons.

4D-En-Var Hybrid experiments. With regard to the standard
deviation verification scores we can notice a small but con-
sistent improvement of the scores for 4D-Var Hybrid in com-
parison with the standard 4D-Var, and a further larger im-
provement of the scores for 4D-En-Var Hybrid in compari-
son with 4D-Var Hybrid. These improvements are most sig-
nificant for tropospheric winds and for relative humidity in
the mid-troposphere (500–700 hPa). Vertical profiles of tem-
perature forecasts were also verified against radiosonde data.
The temperature verification scores show an almost neutral
impact from the choice of assimilation method and for the
current ensemble generation methods (results are not shown).

The improvements introduced by 4D-Var Hybrid in com-
parison with standard 4D-Var are certainly related to the use
of an ensemble-based and flow-dependent component of the

background error covariance at the start of the assimilation
window – for a more detailed discussion seeGustafsson et
al. (2014). The reasons for the clear improvement of fore-
cast scores produced by 4D-En-Var Hybrid in comparison
with standard 4D-Var and 4D-Var Hybrid are less obvious,
and may be even a bit surprising. The main difference is the
replacement of the tangent linear and adjoint models in 4D-
Var and 4D-Var Hybrid with the use of a four-dimensional
ensemble of non-linear model integrations (trajectories) over
the data assimilation window. From a computing efficiency
point of view, this result is highly satisfactory, since the com-
puting time is significantly reduced when the integration of
the TL and AD models is avoided (see below for details). The
particularly improved forecast verification scores for relative
humidity with 4D-En-Var Hybrid may possibly be explained
by the too simplified TL and AD models for moist processes
in HIRLAM 4D-Var (no condensation is included, for exam-
ple).

Standard deviation (STDV) and mean (bias) verification
scores for mean sea level pressure (MSLP) forecasts verified
against surface observations are presented in Fig.6 for the
4D-Var, 4D-Var Hybrid and 4D-En-Var Hybrid experiments.
There are two features in these MSLP verification scores that
need to be discussed and possibly also further investigated in
order to arrive at plausible explanations. On one hand, there
is a reduced bias in the MSLP forecasts based on 4D-En-Var
Hybrid compared to the MSLP forecasts based on 4D-Var
and 4D-Var Hybrid. On the other hand, the 4D-En-Var Hy-
brid forecasts are associated with larger STDV of the forecast
errors for the shortest timescales+6 and+12 h, while the
STDV of the scores are very similar for longer timescales,
+18,+24 and+30 h.

Here we will only present an educated guess as to the be-
haviour of the verification scores for MSLP; further evidence
from complementary investigations will be elaborated on be-
low.

It is a general experience from the NWP practice that
MSLP forecast biases are associated with physical incon-
sistencies causing, for example, adjustment processes in the
form of mass fluxes between land and sea surfaces or, in
the case of limited area models, mass fluxes over the lateral
boundaries. One may thus speculate as to whether the time
series of non-linear model perturbations, applied as assimila-
tion basis functions in 4D-En-Var Hybrid, improves consis-
tency with the non-linear model compared with assimilation
increments derived from time integrations with a highly sim-
plified tangent linear model.

There may be several reasons behind the degraded MSLP
STDV verification scores for 4D-En-Var Hybrid for the
shortest forecast timescales (+6 and+12 h). The HIRLAM
4D-Var and 4D-Var Hybrid assimilation algorithms include
a weak digital filter constraint for control of high-frequency
(gravity wave) oscillations. Such a constraint is not yet
a part of the 4D-En-Var Hybrid algorithm with increased
high frequency oscillations (noise) as a possible effect. This

www.nonlin-processes-geophys.net/21/745/2014/ Nonlin. Processes Geophys., 21, 745–762, 2014
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Figure 6. Verification of mean sea level pressure (MSLP) fore-
casts against surface (SYNOP) data from stations in a European
network. Standard deviation (STDV) and mean (bias) verification
scores. Average verification scores over the period 20 January–
28 February 2008 as a function of forecast length. 4D-Var (exper-
iment name 4DVar, red lines), 4D-Var Hybrid (experiment name
4DVar-Hyb25-Sc, green lines) and 4D-En-Var Hybrid (experiment
name 4DEnVar-Hyb50-Sc, blue lines). The black dotted line indi-
cates the number of verification comparisons.

possibility is further explored below. Furthermore, the rather
primitive ETKF re-scaling scheme may also provide noisy
surface pressure perturbations that may degrade their useful-
ness for assimilation purposes. Another explanation to the
degraded MSLP STDV verification scores for the shortest
timescales may be that the relatively small ensemble of back-
ground states (20 members) does not provide enough vari-
ability to fit the shortest timescale surface pressure variations
equally well as with the tangent linear model in 4D-Var. In-
vestigations of the fit between hourly surface pressure obser-
vations and the assimilation model states in the three differ-
ent experiments seem to give some evidence for this hypoth-
esis (see below).

5.2.2 Sensitivity of forecast verification scores to tuning
parameters of the 4D-En-Var Hybrid scheme

The HIRLAM 4D-En-Var Hybrid scheme includes several
tuning parameters. Two of the most important ones are
(1) the relative weights given to the ensemble and the static
3D-Var FGAT components of background error covariance
(parametersβensandβvar) and (2) the scaling factorκ applied
to the ensemble perturbations that are used to estimate the
flow-dependent (ensemble) component of the background er-
ror covariance. Data assimilation and forecast experiments
were carried out over the time period 17 January–28 Febru-
ary 2008 to test the sensitivity of the forecast verification
scores to different values of these 4D-En-Var Hybrid tuning
parameters. It needs to be mentioned that the two tuning pa-
rameters are not completely unrelated. A scaling of the en-
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Fig. 9. Verification of vertical profiles of wind speed and relative
humidity forecasts against radiosonde data from stations in an Eu-
ropean network. Standard Deviation (STDV) and mean (bias) veri-
fication scores. Average verification scores for +12h and +24h fore-
casts valid at 00UTC over the period 20 January - 28 February 2008.
4D-En-Var Hybrid with scaling of ensemble perturbations and with
equal weights given to the ensemble and 3D-Var FGAT components
of the background error covariance (experiment name 4DEnVar-
Hyb50-Sc, red lines), 4D-En-Var Hybrid without scaling of ensem-
ble perturbations and with equal weights given to the ensemble
and 3D-Var FGAT components of the background error covariance
(experiment name 4DEnVar-Hyb50-NoSc, green lines). 4D-En-Var
Hybrid without scaling of ensemble perturbations and with≈ 90 %
weight given to the ensemble component of background error co-
variance (experiment name 4DEnVar-Hyb90-NoSc, blue lines). The
black dotted line indicates the number of verification comparisons.

Figure 7. Vertical profiles of climatological (static) and area-
averaged ensemble-based background error standard deviations for
one randomly selected case 22 January 2008, 12:00 UTC + 6 h.
(a) U component of wind (ensemble red curve, static green curve)
and temperature (ensemble blue curve, static pink curve).(b) Spe-
cific humidity (ensemble red curve, static green curve).

semble perturbations is efficiently equivalent to changing the
weight given to the ensemble part of the background error
covariance while keeping the weight for the static part un-
changed (neglecting Eq.10).

In order to understand better the results of these tuning
experiments, it is necessary to examine the relative magni-
tudes of the contributing components of the background error
covariance in the 4D-En-Var Hybrid experiments. Figure7
shows vertical profiles of climatological (static) background
error standard deviations and ensemble-based background
error standard deviations, obtained by horizontal averaging
of variances for one randomly selected case, 22 January
2008, 12:00 UTC,+6 h. It appears that the vertical variations
and the magnitudes of these background error standard de-
viations are quite similar. It is encouraging that the simple
tuning of the inflation factor in the ETKF re-scaling scheme,
based on innovations (Bojarova et al., 2010), provides sim-
ilar results as a more elaborate tuning of the climatological
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Figure 8. Histogram of ensemble-based background error standard
deviations for temperature on model level 30 (≈ 800 hPa) for one
randomly selected case, 22 January 2008, 12:00 UTC + 6 h.

background error standard deviations (also based on inno-
vations). One must also keep in mind that the ensemble
based background error standard deviations in Fig.7 rep-
resent horizontal averages – these standard deviations have
significant spatial variations (Gustafsson et al., 2014). To fur-
ther illustrate this, we present a histogram of individual grid
point background error standard deviations for temperature
at model level 30 valid on 22 January 2008, 12:00 UTC,+6 h
in Fig. 8. The standard deviation calculated by horizontal av-
eraging is 0.56 K. The frequency is highest for the interval
0.2–0.4 K, but contributions from much larger standard devi-
ations in fewer grid points are significant. This result is con-
sistent with the experience that large forecast uncertainty is
associated with quite narrow zones of dynamical activity, in
the present case frontal zones in the low tropospheric tem-
perature field (seeGustafsson et al., 2014).

Figure 9 illustrates the sensitivity of verification scores
of vertical forecast profiles of wind speed and relative hu-
midity to the tuning of the scaling of the ensemble pertur-
bations by comparing the verification results of experiment
4DEnVar-Hyb50-NoSc (no scaling) with the verification re-
sults of experiment 4DEnVar-Hyb50-Sc (scaling with a fac-
tor 4). The results indicate that the forecast quality is more
or less insensitive to the scaling of ensemble perturbations
used to estimate the forecast error covariance, see also the
verification scores for MSLP in Fig.10. One may argue that
the HIRLAM ETKF rescaling scheme includes a multiplica-
tive inflation scheme and that the background forecast per-
turbations are representative of background errors (Bojarova
et al., 2010). Any further scaling is not needed. Furthermore,
it was shown in experiments with the HIRLAM 4D-Var Hy-
brid assimilation (Gustafsson et al., 2014) that therichness
in spatial structures of the ensemble is more important than
the scaling of the amplitude of the ensemble perturbations.

16 Gustafsson and Bojarova: 4D-En-Var for HIRLAM
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Fig. 7. Vertical profiles of climatological (static) and area aver-
aged ensemble based background error standard deviations for one
randomly selected case 22 January 2008 12UTC+06h. Top: U-
component of wind (ensemble red curve, static green curve) and
temperature (ensemble blue curve, static pink curve). Bottom: Spe-
cific humidity (ensemble red curve, static green curve).
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Fig. 8.Histogram of ensemble based background error standard de-
viations for temperature on model level 30 (≈ 800 hPa) for one
randomly selected case 22 January 2008 12UTC+06h.
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Fig. 9. Verification of vertical profiles of wind speed and relative
humidity forecasts against radiosonde data from stations in an Eu-
ropean network. Standard Deviation (STDV) and mean (bias) veri-
fication scores. Average verification scores for +12h and +24h fore-
casts valid at 00UTC over the period 20 January - 28 February 2008.
4D-En-Var Hybrid with scaling of ensemble perturbations and with
equal weights given to the ensemble and 3D-Var FGAT components
of the background error covariance (experiment name 4DEnVar-
Hyb50-Sc, red lines), 4D-En-Var Hybrid without scaling of ensem-
ble perturbations and with equal weights given to the ensemble
and 3D-Var FGAT components of the background error covariance
(experiment name 4DEnVar-Hyb50-NoSc, green lines). 4D-En-Var
Hybrid without scaling of ensemble perturbations and with≈ 90 %
weight given to the ensemble component of background error co-
variance (experiment name 4DEnVar-Hyb90-NoSc, blue lines). The
black dotted line indicates the number of verification comparisons.

Figure 9. Verification of vertical profiles of wind speed and relative
humidity forecasts against radiosonde data from stations in a Euro-
pean network. Standard deviation (STDV) and mean (bias) verifica-
tion scores. Average verification scores for+12 and+24 h forecasts
valid at 00:00 UTC over the period 20 January–28 February 2008.
4D-En-Var Hybrid with scaling of ensemble perturbations and with
equal weights given to the ensemble and 3D-Var FGAT components
of the background error covariance (experiment name 4DEnVar-
Hyb50-Sc, red lines), 4D-En-Var Hybrid without scaling of ensem-
ble perturbations and with equal weights given to the ensemble
and 3D-Var FGAT components of the background error covariance
(experiment name 4DEnVar-Hyb50-NoSc, green lines). 4D-En-Var
Hybrid without scaling of ensemble perturbations and with≈ 90 %
weight given to the ensemble component of background error co-
variance (experiment name 4DEnVar-Hyb90-NoSc, blue lines). The
black dotted line indicates the number of verification comparisons.

Figures9 and10 also illustrate the sensitivity of the ver-
ification scores to the relative weighing between the ensem-
ble and the 3D-Var FGAT contributions to the background
error covariance by comparing the verification results of ex-
periment 4DEnVar-Hyb50-NoSc (equal contributions of the
two components) and experiment 4DEnVar-Hyb90-NoSc (≈

90 % contributions of the ensemble component and≈ 10 %
of the static 3D-Var FGAT component). The results show
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Fig. 10. Verification of Mean Sea Level Pressure (MSLP) fore-
casts against surface (SYNOP) data from stations in an European
network. Standard Deviation (STDV) and mean (bias) verification
scores. Average verification scores over the period 20 January -
28 February 2008 as a function of forecast length. 4D-En-Var Hy-
brid with scaling of ensemble perturbations and with equal weights
given to the ensemble and 3D-Var FGAT components of the back-
ground error covariance (experiment name 4DEnVar-Hyb50-Sc,red
lines), 4D-En-Var Hybrid without scaling of ensemble perturbations
and with equal weights given to the ensemble and 3D-Var FGAT
components of the background error covariance (experiment name
4DEnVar-Hyb50-NoSc, green lines). 4D-En-Var Hybrid without
scaling of ensemble perturbations and with≈ 90 % weight given
to the ensemble component of background error covariance (exper-
iment name 4DEnVar-Hyb90-NoSc, blue lines). The black dotted
line indicates the number of verification comparisons.

Fig. 11.First five eigenvectors (vertical modes) of the vertical corre-
lation matrix for large horizontal scale vorticity (wave numbers 1-5)
background errors, as applied in the HIRLAM variational data as-
similation. Mode 1 (red curve), Mode 2 (green curve), Mode 3 (dark
blue curve), Mode 4 (pink curve) and Mode 5 (light blue curve).

Fig. 12. Vertical localization correlation matrix applied to
ensemble-based background error covariances in theVertloc assim-
ilation experiment. The vertical localization matrix is based on the
vertical correlation matrix for vorticity in the HIRLAM variational
data assimilation, truncated to be valid for horizontal wave numbers
1 - 5 and to the three first vertical modes.

Figure 10.Verification of mean sea level pressure (MSLP) forecasts
against surface (SYNOP) data from stations in a European network.
Standard deviation (STDV) and mean (bias) verification scores. Av-
erage verification scores over the period 20 January–28 February
2008 as a function of forecast length. 4D-En-Var Hybrid with scal-
ing of ensemble perturbations and with equal weights given to the
ensemble and 3D-Var FGAT components of the background error
covariance (experiment name 4DEnVar-Hyb50-Sc, red lines), 4D-
En-Var Hybrid without scaling of ensemble perturbations and with
equal weights given to the ensemble and 3D-Var FGAT components
of the background error covariance (experiment name 4DEnVar-
Hyb50-NoSc, green lines). 4D-En-Var Hybrid without scaling of
ensemble perturbations and with≈ 90 % weight given to the ensem-
ble component of background error covariance (experiment name
4DEnVar-Hyb90-NoSc, blue lines). The black dotted line indicates
the number of verification comparisons.

that the forecast quality, as given by the forecast verification
scores, is consistently degraded when the static component of
the background error covariance is reduced to 10 % only. Our
interpretation is that an ensemble of background model states
with 20 members only does not provide variability enough
(or, in other words, richness in structures enough) for an ac-
curate estimation of the background error covariance.

5.2.3 The impact of a very simple vertical covariance
localization on forecast verification scores

All results presented so far in this paper have been based on
4D-En-Var Hybrid with a horizontal localization only of the
ensemble-based covariance matrix. In order to avoid spurious
influence of, for example, near-surface observations in the
stratosphere, and vice versa, it is necessary to introduce also
a vertical localization, see Clayton et al. (2013).

A first trial to introduce a vertical localization has been
carried out also for the HIRLAM 4D-En-Var Hybrid. We
simply started from the climatological background error ver-
tical correlation matrix for vorticity for the largest horizontal
scales (horizontal wave numbers 1–5). The eigenvectors of
this vertical correlation matrix are presented in Fig.11. The
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Figure 11. First five eigenvectors (vertical modes) of the vertical
correlation matrix for large horizontal scale vorticity (wave num-
bers 1–5) background errors, as applied in the HIRLAM variational
data assimilation: mode 1 (red curve), mode 2 (green curve), mode 3
(dark blue curve), mode 4 (pink curve) and mode 5 (light blue
curve).

first eigenvector (mode number 1) represents an average over
the total atmospheric column, the second eigenvector repre-
sents a separation between the stratosphere and the low tro-
posphere, while the third eigenvector has a maximum in the
middle troposphere. A vertical localization correlation ma-
trix, see Fig.12, was constructed from these three vertical
modes by setting eigenvalues of the remaining vertical modes
(modes 4–40 in the present case with 40 vertical model lev-
els) to zero and by re-normalizing the vertical correlations
based on these three first vertical modes.

One real observation data assimilation experiment
(4DEnVar-Hyb50-NoSc) was re-run for the whole data pe-
riod with vertical localization of the ensemble-based covari-
ance added (experiment name Vertloc). Most forecast verifi-
cation scores were slightly but consistently improved by this
vertical localization, see for example verification scores for
mean sea level pressure (MSLP) over a Scandinavian domain
in Fig. 13. One exception to this positive impact of vertical
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Figure 12. Vertical localization correlation matrix applied to
ensemble-based background error covariances in the Vertloc assim-
ilation experiment. The vertical localization matrix is based on the
vertical correlation matrix for vorticity in the HIRLAM variational
data assimilation, truncated to be valid for horizontal wave numbers
1–5 and to the three first vertical modes.

covariance localization on forecast verification scores was
noticed for 700 hPa relative humidity forecasts (results are
not shown). One likely explanation is that the vertical local-
ization correlation matrix, derived by truncation from vortic-
ity background error vertical correlations, does not fit very
well the vertical variability of humidity background errors.
Specific humidity background error vertical correlation pat-
terns indicate two main vertical domains of activity, the plan-
etary boundary layer and the tropospheric cloud layers above,
and these are positioned vertically out of phase with the ver-
tical correlation patterns seen in Fig.12.

It need to be emphasized that this should be considered
as an ad hoc trial to test the sensitivity of forecast verifi-
cation scores to vertical localization of the ensemble-based
background error covariances. Research is certainly needed
to bring vertical localization, and localization in general, to a
more scientifically founded level of development.

5.2.4 Noise characteristics

A weak digital filter constraint is included in the HIRLAM
4D-Var to control the level of high-frequency (gravity wave)
oscillations during integration of the tangent linear and ad-
joint models over the data assimilation window. Although
applied during the coarse-resolution tangent linear and ad-
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Figure 13. Verification of mean sea level pressure (MSLP) fore-
casts against surface (SYNOP) data from stations in a Scandina-
vian network. Standard deviation (STDV) and mean (bias) verifica-
tion scores. Average verification scores over the period 17 January–
28 February 2008 as a function of forecast length. 4D-En-Var Hy-
brid without vertical localization of the ensemble component of the
background error covariance (experiment name 4DEnVar-Hyb50-
NoSc, red lines) and 4D-En-Var with vertical localization of the
ensemble component of the background error covariance (experi-
ment name Vertloc, green lines). The black dotted line indicates the
number of verification comparisons.

joint model integrations, the application of this weak con-
straint during the data assimilation also efficiently prevents
the presence of high-frequency (gravity wave) oscillations
induced by the non-linear model during integrations from ini-
tial data created by the assimilation (Gustafsson et al., 2012).
It is less straightforward to apply a similar digital filter con-
straint within the framework of 4D-En-Var since there is no
model integration applied during the data assimilation pro-
cess. The time resolution of the derived assimilation incre-
ments may not be sufficient for application of a digital filter.
For this reason it is of interest to investigate the level of high-
frequency oscillations in non-linear model integrations from
initial model states produced by 4D-En-Var.

Figure14 presents time series of the Sundqvist noise pa-
rameter, i.e. the horizontal average of the absolute value of
the surface pressure tendency, for every time step during the
first 12 h of the non-linear model integration, for the assim-
ilation control (ensemble member 0) and for 4D-Var Hybrid
and 4D-En-Var Hybrid. Figure14 confirms that 4D-Var Hy-
brid, including a weak digital filter constraint, provides a
quite noise-free non-linear model integration. It is also seen
that 4D-En-Var Hybrid provides an initial state that causes
a slightly increased noise level (from≈ 2.0hPa/3h for 4D-
Var Hybrid to 2.5hPa/3h for 4D-En-Var Hybrid) during the
first 1–2 h of model integration. We may consider that such a
modest increase of the noise level hardly can harm the data
assimilation process.
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Figure 14. Time variation of the Sundqvist noise parameter, hori-
zontal average of the absolute value of the surface pressure tendency
(hPa/3h), for each time step over the first 12 h of the non-linear
model integration (model time step is 6 min). Ensemble control
(mbr000). 4D-En-Var Hybrid (experiment name 4DEnVar-Hyb50-
Sc, red curve) and 4D-Var Hybrid (experiment name 4DVar-Hyb25-
Sc, green curve).

For the ensemble members other than the ensemble control
we do not apply data assimilation but rather an ETKF rescal-
ing of the forecast background perturbations to analysis per-
turbations representing analysis errors. The ETKF re-scaling
may influence the balances of the forecast background model
states and increase the noise level in non-linear model inte-
gration for these ensemble members. Figure15 shows one
example of the Sundqvist noise parameter from the time in-
tegration of ensemble member 2 (mbr002) and for both 4D-
Var Hybrid and 4D-En-Var Hybrid. Indeed, the noise level,
as measured by the Sundqvist parameter, is increased from
≈ 2hPa/3h for the ensemble control to≈ 3hPa/3h for en-
semble member 2 during the first few hours of non-linear
model integration in the 4D-Var Hybrid experiment. Further-
more, it can be seen that the effects in the form of noise add
up due to the imbalances caused by ETKF re-scaling and
the 4D-En-Var Hybrid assimilation algorithm. With regard
to possible negative effects of the combined imbalances cre-
ated by the ETKF re-scaling and the 4D-En-Var Hybrid al-
gorithms, one must keep in mind that the ensemble perturba-
tions are only applied for estimation of background error co-
variances at the start of the next data assimilation cycle, thus
at +3 h. At this forecast lead time model balances appear to
have been stabilized through the adjustment processes of the
high-frequency oscillations.

5.2.5 Observation fit statistics

It was noticed that MSLP forecasts for the shortest time range
(+6 h) had slightly degraded Standard Deviation (STDV)
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Figure 15. Time variation of the Sundqvist noise parameter, hori-
zontal average of the absolute value of the surface pressure tendency
(hPa/3h), for each time step over the first 12 h of the non-linear
model integration (model time step is 6 min). Ensemble member 2
(mbr002). 4D-En-Var Hybrid (experiment name 4DEnVar-Hyb50-
Sc, red curve), and 4D-Var Hybrid (experiment name 4DVar-
Hyb25-Sc, green curve).

verification scores for the 4D-En-Var Hybrid experiment as
compared to the 4D-Var and 4D-Var Hybrid experiments.
Furthermore, it was also noticed that the level of high-
frequency oscillations as measured by the surface pressure
tendency was increased for the 4D-En-Var Hybrid, also com-
pared with the 4D-Var and 4D-Var Hybrid experiments. In
order to investigate further the use of surface pressure infor-
mation in the 4D-En-Var Hybrid assimilation, we checked
the behaviour of the surface pressure contribution to the ob-
servation part of the cost function during the minimization
for one assimilation cycle, 22 February 2008, 12:00 UTC (the
behaviour is similar for every assimilation cycle).

Figure16shows the SYNOP surface pressure contribution
to the observation cost function, normalized with the number
of surface pressure observations, as a function of observation
time window within the 6 h data assimilation window for the
4D-Var, 4D-Var Hybrid and the 4D-En-Var Hybrid experi-
ments. Separate curves are plotted before (O− BG, observa-
tion minus background) and after (O− A, observation minus
analysis) the minimization. We may notice that the behaviour
of these observation fit statistics are different for the 4D-En-
Var Hybrid experiment as compared to the 4D-Var and 4D-
Var Hybrid experiments.

The (O− BG) statistics indicate that the surface pressure
forecasts for the observation windows 1–4 (corresponding
background forecast length in the range 3–6 h) have larger
errors for the 4D-En-Var Hybrid experiment than for the 4D-
Var and 4D-Var Hybrid experiments. This confirms what we

Nonlin. Processes Geophys., 21, 745–762, 2014 www.nonlin-processes-geophys.net/21/745/2014/



N. Gustafsson and J. Bojarova: 4D-En-Var for HIRLAM 759

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1  2  3  4  5  6

Jo
/N

O
B

S

Observation window

Normalized observation cost function

4D−Var O−BG
4D−Var Hyb O−BG

4D−En−Var Hyb O−BG
4D−Var O−A

4D−Var Hyb O−A
4D−En−Var Hyb O−A

Figure 16. The contribution of SYNOP surface pressure observa-
tions to the observation cost function (Jo), normalized with the
number of contributing observations (NOBS), as a function of the
observation time window (−3, −2, −1, 0, +1, and +2 h). As-
similation cycle 22 February 2008, 12:00 UTC. Before minimiza-
tion (O− BG) and after minimization (O− A). 4D-Var (experiment
name 4DVar), 4D-Var Hybrid (experiment name 4DVar-Hyb25-Sc),
and 4D-En-Var (experiment name 4DEnVar-Hyb50-Sc).

already have noticed with the forecast verification scores (see
above).

The fit of the analysis to the surface pressure observa-
tions at the main observation hour (12:00 UTC, observation
window 4) is closer for the 4D-En-Var Hybrid experiment
as compared to the 4D-Var and 4D-Var hybrid experiments,
while the fit is significantly worse for the 4D-En-Var Hybrid
experiment for the other observation windows.

The cause of the different behaviour of surface pressure
variations at short timescale in the different experiments
is not obvious. At first sight, the increased level of high-
frequency oscillations (measured by surface pressure ten-
dencies) could possibly explain the worse surface pressure
scores for the 4D-En-Var Hybrid experiment at short time
range. However, this effect of imbalances in the initial 4D-
En-Var Hybrid mainly affects forecasts in the range 1–2 h,
while forecasts in the range 3–8 h, when the initial adjust-
ments have already occurred, are applied as background
states in the 4D-En-Var Hybrid.

Another possible explanation may be that the ensemble
of 20 non-linear model trajectories in 4D-En-Var Hybrid
does not provide the needed temporal variations to describe
surface pressure variations with a timescale of 1 h, as pro-
vided by the observations, while the tangent linear model in
4D-Var is able to provide solutions that fit the observations
more closely. This is not necessarily an advantage for the
TL and AD model based HIRLAM 4D-Var. With a lack of
a proper handling of biases and other representativity errors,
the HIRLAM 4D-Var may over-fit the surface pressure data

when observations from the same stations are available for
every hour. The increased surface pressure biases in longer
forecasts for the 4D-Var based experiments and the recovery
of quality of the 4D-En-Var Hybrid forecasts for the longer
forecast may give some support to this hypothesis. Further
investigations are needed to establish a better understanding.

6 Computational issues

The computing cost in 4D-En-Var Hybrid is quite different
from the computing cost in 4D-Var. 4D-Var is dominated
by heavy CPU utilization in the TL and AD models, while
4D-En-Var Hybrid is more dominated by input and handling
of the ensemble of model trajectories needed for the estima-
tion of the background error covariances. This can be seen
in Table2, which shows the measured wall clock computing
times from a single assimilation cycle (minimization only) of
4D-Var, 4D-Var Hybrid and 4D-En-Var Hybrid. The comput-
ing times were measured from assimilation runs with 32 MPI
tasks on a single compute node in an IBM Power 6-575 sys-
tem. Since 4D-En-Var Hybrid is utilizing background error
covariances based on non-linear model trajectories, 4D-En-
Var Hybrid is using a single outer loop, while 4D-Var and
4D-Var Hybrid are using two outer loops in order to improve
the linearization for the TL and AD models. Re-linearization
for the observation operators could be motivated also for 4D-
En-Var Hybrid, but the possibility for this has not yet been
introduced in HIRLAM 4D-En-Var Hybrid.

The measured wall clock computing times of different
components of 4D-En-Var Hybrid in Table2 show that half
of the wall clock time is spent in reading the ensemble of
non-linear model trajectories over the data assimilation win-
dow (full model states for 20 ensemble members and for six
observation time windows). In order to fully utilize the reduc-
tion in computing time that comes with avoiding the tangent
linear and adjoint models in 4D-En-Var Hybrid, the reading
of the model trajectories needs to be improved by making it
parallel. This has not yet been implemented in the present
version of HIRLAM 4D-En-Var Hybrid. Furthermore, the
storing in memory of the ensemble of non-linear model tra-
jectories has to be reduced by packing in fewer computer
memory bits than occupied by double precision floating point
numbers, taking the needs of higher model resolutions into
account, both with regard to resolution in space and with re-
gard to an increased number of observation time windows.

The longer computing time spent in reading and writing
of observations, as well as in writing of field data, in 4D-
Var and 4D-Var Hybrid, as compared to 4D-En-Var Hybrid,
is explained by the two outer loops in 4D-Var and 4D-Var
Hybrid, while a single outer loop is applied in 4D-En-Var
Hybrid. The total number of inner loop minimization itera-
tions is the same in all runs, as can be seen in the computing
time for the observation operators.
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Table 2.Wall clock computing time of different components of 4D-
Var, 4D-Var Hybrid and 4D-En-Var Hybrid with one assimilation
cycle, 22 February 2008, 12:00 UTC. 4D-Var and 4D-Var Hybrid
are run with two outer loops, while 4D-En-Var Hybrid is run with a
single outer loop. The computing times were measured from assim-
ilation runs with 32 MPI tasks on a single compute node in an IBM
Power 6-575 system (OpenMP was not utilized).

Assimilation component 4D-Var 4D-Var 4D-En-Var
Hybrid Hybrid

Total 693 s 846 s 418 s
Read field data 46 s 56 s 216 s
Read obs. data 61 s 71 s 23 s
Minimization, total 373 s 339 s 91 s
TL model 141 s 109 s –
AD model 191 s 146 s –
Observation operators 20 s 20 s 20 s
Write field data 118 s 107 s 53 s
Write obs. data 44 s 30 s 15 s

7 Discussion and concluding remarks

A four-dimensional ensemble variational (4D-En-Var) data
assimilation scheme has been developed for the HIRLAM
forecasting system. The scheme is a hybrid between 4D-
En-Var, with a flow-dependent background error covariance
component estimated from an ensemble of non-linear model
trajectories over the data assimilation window, and 3D-Var
FGAT (first guess at appropriate time) with a static back-
ground error covariance component applied in the middle of
the data assimilation window. The HIRLAM 4D-En-Var Hy-
brid is applied to the ensemble control only; initial states for
other ensemble members are obtained by a basic ETKF (en-
semble transform Kalman filter) re-scaling scheme. In order
to prevent negative effects of the low rank of the ensemble-
based background error covariance matrix, a localization of
the ensemble covariance matrix based on a Schur product
with a localization correlation matrix is applied.

Single simulated observation data assimilation experi-
ments have been carried out to demonstrate the effects of
flow dependency of the ensemble-based background error
covariances. These experiments show an increased level of
realistic flow dependency, both for 4D-Var Hybrid in com-
parison with standard 4D-Var and for 4D-En-Var Hybrid in
comparison with 4D-Var Hybrid. The experiments also give
support to the hypothesis that the ETKF re-scaling algorithm
provides initial perturbations with a rich and physically rele-
vant variability.

Real observation experiments over a period of 6 weeks to
demonstrate the effects of the assimilation on forecast quality
have also been carried out. Comparison is made with stan-
dard HIRLAM 4D-Var and with HIRLAM Hybrid 4D-Var
ensemble data assimilation, where the ensemble based back-

ground error covariance is applied at the start of the assim-
ilation window only. The real observation data assimilation
experiments indicate that the 4D-En-Var Hybrid outperforms
standard 4D-Var as well as 4D-Var Hybrid with regard to ver-
ification scores for forecasts based on initial data from the re-
spective assimilation method. In particular, relative humidity
verification scores are significantly improved by 4D-En-Var
Hybrid, and this is likely to be linked to the too simplified
tangent linear model applied in the HIRLAM 4D-Var.

In contrast to 4D-Var and 4D-Var Hybrid, no time integra-
tion of tangent linear and adjoint models is needed in 4D-En-
Var Hybrid. This results in a significant reduction of com-
puting time, and possibilities for better scalability, for 4D-
En-Var Hybrid. The handling of the ensemble of non-linear
model trajectories over the assimilation window needs to be
designed carefully, however.

The successful implementation of HIRLAM 4D-En-Var
Hybrid for synoptic-scale numerical weather prediction has
encouraged us to develop a 4D-En-Var Hybrid also for
numerical weather prediction at the convection permitting
scales with model grid resolutions of a few km. The increased
importance of moist processes and non-linearities at these
smaller scales should be an advantage for 4D-En-Var since
the assimilation increments are formed as localized combi-
nations of non-linear model forecast perturbations rather than
derived from time integrations with a simplified tangent lin-
ear model.

There are certainly many scientific uncertainties associ-
ated with the development of 4D-En-Var Hybrid, and data
assimilation in general, for the convection permitting scales.
Which spatial scales are described by present and future ob-
serving systems, and which spatial scales are meaningful to
assimilate for convection permitting models? For synoptic-
scale 4D-Var data assimilation, the application of incremen-
tal data assimilation with tangent linear model grid reso-
lutions increased by a factor of 3–5 as compared to the
non-linear model grid resolution, has been quite successful
(Gustafsson et al., 2012). Does this also apply to the data as-
similation at convection permitting scales? In 4D-En-Var for
example, do we need an ensemble generated from full reso-
lution non-linear model integrations in order to derive the ap-
propriate background error covariances for data assimilation
at convection-permitting scales? Since such a full resolution
convection-permitting ensemble of model integrations would
be computational demanding, it might be tempting to derive
the ensemble needed for 4D-En-Var with a slightly reduced
non-linear model resolution.

The 4D-En-Var method described here can easily be gen-
eralized to a simple method for nowcasting by extending the
same weighting of ensemble background forecast perturba-
tions beyond the data assimilation window.

Most results presented here were based on HIRLAM 4D-
En-Var Hybrid using horizontal localization of ensemble-
based background error covariances only. The results from
an ad hoc trial with a simple vertical localization have
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encouraged us to continue research on horizontal as well as
vertical localization and, in order to permit a weak constraint
formulation, also on temporal localization.
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