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Abstract. A four-dimensional ensemble variational (4D-En- lation and, in addition, statistical information about the un-
Var) data assimilation has been developed for a limited are&ertainty of this background field may be utilized. This was
model. The integration of tangent linear and adjoint mod-realized already bergthorsson and D6§4959, who ap-
els, as applied in standard 4D-Var, is replaced with the useplied a successive correction spatial interpolation to a quasi-
of an ensemble of non-linear model states to estimate fourgeostrophic barotropic forecast model. The successive cor-
dimensional background error covariances over the assimirection interpolation was essentially based on weights given
lation time window. The computational costs for 4D-En-Var to the observation-minus-background deviations being pro-
are therefore significantly reduced in comparison with stan-portional to the distances between the observation positions
dard 4D-Var and the scalability of the algorithm is improved. and the grid points. During the 1960s and 1970s more ad-
The flow dependency of 4D-En-Var assimilation incre- vanced spatial interpolation techniques, for example the sta-
ments is demonstrated in single simulated observation expetistical interpolation or Ol (optimum interpolatioGandin
iments and compared with corresponding increments froml963, were introduced and brought into operational use in
standard 4D-Var and Hybrid 4D-Var ensemble assimilationthree-dimensional versions, including also the idea of balanc-
experiments. Real observation data assimilation experimentmg between mass and wind field informatidRutherford
carried out over a 6-week period show that 4D-En-Var out-1976 Gustafssonl1981; Loreng 1981).
performs standard 4D-Var as well as Hybrid 4D-Var ensem- Variational data assimilatiorsasakj 1958 Le Dimet and
ble data assimilation with regard to forecast quality measuredralagrangd 1986 Lewis and Derber1985 provides an ef-
by forecast verification scores. ficient framework for data assimilation with NWP models,
since the possibility to apply dynamical and physical con-
straints for the data assimilation is introduced. In three-
dimensional variational data assimilation (3D-Var) a cost
1 Introduction function measuring the distance to the observations and the
distance to the background field is minimized. In its simplest
Data assimilation for numerical weather prediction (NWP) form, 3D-Var is equivalent to Ol, with the exception that
is the process of using observations to create initial condithere are no requirements for data selection, while OI gen-
tions for NWP models. The number of observed values aterally has to rely on local data selection schemes to find the
any particular moment of time is generally much smaller observed values to influence each grid point of the model.
than the number of model state variables of the NWP modelOne of the most important reasons of 3D-Var replacing Ol
For this reason, a priori information has to be taken into ac-is that 3D-Var can easily use non-linear observation opera-
count. In most data assimilation schemes, a short-range fordgers such that satellite radiance data can be directly assimi-
cast from the NWP model, valid at the time of the obser- lated. 3D-Var is applied to global NWP modeRafrish and
vations, is used as backgroundfield for the data assimi- Derber1992 Courtier et al.1998 and also to regional NWP
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models Gustafsson et gl2001; Lindskog et al. 2007). In of the model state covariances. One main advantage of the
four-dimensional variational data assimilation (4D-Var) the EnKF is the possibility to describe flow-dependent uncer-
model initial state is found by minimizing a cost function tainties of the background model state. Another advantage
measuring the distance to observations from an assimilatiomf EnKF, as compared with 4D-Var, is that it is no longer
time window (e.g. 6 h) including also the forecast model asnecessary to develop and maintain TL and AD versions of
a strong constraint for the model development over the asthe NWP forecast models. These advantages have the price
similation time window. The concept of incremental 4D-Var of a low rank of the background error covariance for full-
(Courtier et al.1994 made it possible to practically solve the scale NWP data assimilation, due to the necessity to apply a
computational problem of 4D-Var by introducing simplifica- limited number { 10-100) of ensemble members. The low
tion and linearization of the forecast model and the observarank of the background error covariance matrix can be han-
tion operators and by introducing a reduced spatial resolutiordled to some extent by, for example, application of localiza-
for the 4D-Var minimization. Incremental 4D-Var schemes tion to avoid spurious correlations at large distance separa-
have been successfully introduced operationally for globaltions, caused by sampling errors. Additive and multiplicative
NWP models Rabier et al. 2000 as well as for regional inflation techniques can also be used to compensate for the
high-resolution modelsKawabata et al.2007 Gustafsson effects of the low rank.
etal, 2012. The advantages and disadvantages of EnKF, as compared
The application of 4D-Var for operational NWP has beento 4D-Var, were discussed Hyorenc (2003, Kalnay et al.
very successful, but there are a few problems associate(?007), andGustafssoii2007). A synthesis of this discussion
with its further development. Firstly, the application of a is the recognition of the need to develop combinations of the
static background error constraint, similar to those appliedrobust and full rank 4D-Var algorithms and the ensemble-
in 3D-Var, at the start of the assimilation window limits based methods that are able to describe flow dependencies.
the possibilities to describe flow-dependent background erA first step in this direction is the development of hybrid
ror structures, for example those associated with baroclinicvariational ensemble data assimilation methddangil and
ity. This can be alleviated by introduction of longer 4D-Var Snyder 2000 Loreng 2003 Wang et al. 2008a b; Clayton
assimilation time windows, allowing the implicit assimila- et al, 2013 Gustafsson et al2014) that incorporate, for ex-
tion structure functions to develop these flow dependenciesample, ensemble-based error covariances within the frame-
With longer time windows it will, however, be necessary to work of variational data assimilation. A further step is to
treat model errors more efficiently, for example by introduc- replace the TL and AD model integrations in 4D-Var with
ing the weak constraint 4D-Vair(émolet 2006. Secondly, the application of ensembles of non-linear model trajecto-
the incremental 4D-Var necessitates the development of thees over the data assimilation window (4D-En-Vaiy et
tangent linear (TL) and adjoint (AD) versions of the NWP al., 2008 2009 Liu and Xiaq 2013 Buehner et aJ.2010a
forecast models. This requires substantial development ant; Desroziers et al2014). The subject of the present paper is
maintenance efforts and, furthermore, the computational costo present the 4D-En-Var developed for the High Resolution
of incremental 4D-Var is dominated by the costs for the TL Limited Area Model (HIRLAM,Undén et al.2002. A more
and AD model integrations. detailed review of 4D-En-Var developments is provided in
The Kalman filter (KFKalman 1960 provides a frame-  Sect.2. Sections3 and4 focus on the HIRLAM implementa-
work for estimating the uncertainty of forecast model statestion of 4D-En-Var. Sectio® presents results of experiments,
for linear forecast models, and the extended Kalman filterboth with single simulated observations to demonstrate the
(EKF, Kalman and Bucy1961) extends the Kalman filter abilities of the algorithm, and with real observations to show
theory to weakly non-linear models and observation oper-the performance of 4D-En-Var. Sectiérdiscusses the com-
ators. The KF and the EKF cannot be applied directly toputational performance and challenges with the scheme and
large-scale NWP models, due to the huge size of the corthe concluding remarks are presented in Séct.
responding model state covariance matrix to be handled.
The ensemble Kalman filter (EnKEvensen1999 is es-
sentially a Monte Carlo approximation to the Kalman fil-
ter. The model uncertainty is represented through an ense
ble of model states, from which the required forecast er
ror covariances are estimated. The implementation of EnK
can roughly be subdivided into three different approaches:; _ — o+ Jo== (Sx)T ~Lsy
the EnKF with perturbed observations, which samples dif-
ferent sources of uncertaintfgyensen 1994 Houtekamer
and Mitchell 2001), the square-root EnKF, which directly +3 Z (HiMbx —di)” Rk (HiMydx —dy), - (1)
handles covariances involvedigpett et al, 2003 and the =
reduced-rank KFHeemink et al.200%, Cohn and Todling  whereB is the background error covariangg=ro, ..., tx
1996, which focuses on a low-dimensional approximation the data assimilation time window; = y; — Hy (M} (xp))

2 Review of 4D-En-Var developments

Mhe following cost function is minimized with respect to the
'__aSS|m|Iat|0n incremerdx in incremental 4D-Var:
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the innovations withy; being the vector of observations at model with pre-calculated values derived from these non-
timez, xp the model background state valid at timgeM; (.) linear model trajectories in observation space.
denotes integration of the non-linear model from tighentil The background error covariance of this 4D-En-Var for-
time ¢, andM the corresponding tangent linear model inte- mulation has the maximum rank equal to the number of en-
gration. Hy(.) is the non-linear observation operat® is semble members minus IV(— 1) and cannot directly be
the observation error covariance atgthe linearized obser- applied to a full-scale NWP data assimilation problem. For
vation operator, all valid at time. demonstration purposésu et al. (2008 applied the method
The background error covariance ma@ikas such alarge to a low-dimensional shallow-water model, with the degrees
dimension that the invers®—! cannot be obtained directly of freedom of the same order as the number of ensemble
by matrix inversion techniques. Therefore we introduce amembers. They showed that the performance of this 4D-En-
pre-conditioning matrixJ such thaB = UU7, andéx = Uy Var for the low-order problem was very similar to the per-
with x the assimilation control variable. The transformation formance of 4D-Var and other assimilation algorithms like
matrix U is not formulated explicitly but given, for example, EnKF and 3D-Var. An even more important message is that
as a series of simpler transform operators. The cost functiothe computational cost of 4D-En-Var was much lower than
to be minimized and its gradient with respect to the assimila-the corresponding cost of 4D-Var, since the integrations of

tion control variabley are given by the TL and AD models over the assimilation window were
avoided.
J=Jot o= }XTX In a second studyiu et al. (2009 applied 4D-En-Var
2 to observing system simulation experiments (OSSE) with
4 " the WRF (weather research and forecasting) mo8&h{
T3 > HeMUx —do)" RFHMUx —di) ) manock et al.2008. The number of ensemble members is
k=t in this case several orders of magnitude smaller than the
and model dimension, leading to a severe rank deficiency of the

ensemble-based background error covariance matrix. The
T T T el standard techniques in EnKF to counteract this rank defi-
Vil =x+ Z UM, Hi Ry ™ (HiMiUx —di) . (3) ciency are to apply covariance localization and/or to apply
=1 . .
the EnKF algorithm locally, for example by solving separate

The gradient calculatior8f is applied for every iteration dur- filtering problems for each grid point of the model domain.
ing the 4D-Var minimization. A forward integration of the The application of a local EnKF brings us back to the need
tangent linear modeMl, and a backward integration of the for local data selection and will not be further discussed here.

adjoint modeM ! are required for each such iteration. The most common algorithm for covariance localization is
Following Liu et al. (2008 we replace the static error 0 apply an element-by-element multiplication (Schur prod-
covarianceB with a flow-dependent error covarian@e~ uct) of the original low-rank ensemble-based covariance ma-

T . L . .
X, (X’) estimated from an ensemble of background modeltfix Bens= X, (X},)" with a localization correlation matrix
statesX/ is a matrix whose columns are the normalized de-C: constructed such that the final covarian&es: C o Bens

viations of the ensemble background states from their mean@Pplied in the EnKF will be eliminated at long distances
(Houtekamer and MitchelR00Y). Liu et al. (2009 applied

X — 1 (Xb1— FE XoN — D) (@) the correspondence to this covariance localization within the
b= /N—-1 b1~ *b, .- N = IbJ 4D-En-Var formulation with a technique similar to the one
described b8uehne(2005. The pre-conditioning was done
whereN is the number of ensemble members. with the matrixPy, given by
Also following Liu et al. (200§ we may applyX, for
the pre-conditioningx = X} x. Here the control vector will /
have the dimension of the number of ensemble members and® —
we may notice that the assimilation increment is just a linear
combination of the ensemble perturbations. The cost funcwhereC'C'” = C, C'is ann x r matrix withr < n andX{ is
tion and its gradient will have a similar form as abow,(  anr column matrix with every column being equal to thie
will replaceU). We have achieved one of our aims, to utilize columninXj. N is the number of ensemble members and
a flow-dependent background error covariance at the start o the model space dimension. The columns of the transfor-
the 4D-Var assimilation window, but we still need to inte- mation matrixC’ consist of eigenvectors of the correlation
grate the tangent linear model forward in time and the ad-matrix C multiplied by the square root of the eigenvalues.
joint model backward in time over the data assimilation win- In order to make the eigenvector decomposition possible, the
dow. To avoid thisLiu et al. (2009 used an ensemble of €igenvectors are evaluated on a coarser resolution grid, are
non-linear model integrations over the data assimilation win-possibly truncated and are interpolated to the assimilation
dow to replace the forward integration of the tangent lineargrid. It is straightforward to show th& (P’) = CoBegns

/

=(C' o X}y, C o Xpp.....,C o Xpy). (5)
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Liu and Xiao(2013 applied 4D-En-Var including covari- related to the static part of the background error covariance
ance localization developed for WRF to a full-scale datashould preferably be applied for non-linear model initializa-
assimilation experiment over Antarctica. They managed tation at time"’*% in the middle of the data assimilation win-
demonstrate overall superiority and robust performance indow.
comparison with 3D-Var and 3D-Var FGAT (first guess at Pre-conditioning for the two components of the assim-
appropriate time). ilation increment is done separately. The pre-conditioning

Buehner et al(2010a b) implemented a 4D-En-Var sim- for the 3D-Var FGAT componendxsgvar= Ux 3dvar With
ilar to the 4D-En-Var ofLiu et al. (2009 into the Cana-  Bggvar=UU” is done as in the HIRLAM 3D-VarRerrg
dian operational global NWP system. The covariance 10-200Q Gustafsson et al2001). The transform operatod
calization was the same as Buehner(2009. 4D-En-Var includes vertical transforms of the spectral control vector
was compared with 4D-Var and 3D-Var FGAT, both applied xsqvarfrom vertical eigenvector space to model levels, inver-
with static background error covariances as well as withsion of vertical balance operators and projection by Fourier
ensemble-based background error covariances, and was alt@ansforms from spectral space to grid point space. An area
compared with EnKFHoutekamer and MitchelR2001). The  extension is applied to the regional model domain in order
ensemble-based error covariances were all based on the ete make application of fast Fourier transform possilay-
semble of short-range forecasts produced by the EnKF. Comgen and Machenhauel993. For the 4D-En-Var component
parisons were made for single simulated observation impacéxenswe follow Liu et al. (2009, see also Eq5):
experiments Buehner et a).20103 and for full-scale data
assimilation and forecasts over a 1 month periBdehner  8xens=Ppxens= (C' 0 X1, C 0 X, ..., C 0 Xpy) Xens
et al, 2010h. The 4D-En-Var performed as well as 4D-Var N
with a static background error covariance, but slightly worse = ZC’ o Xp (Xen9;
than 4D-Var Hybrid with an ensemble-based background er- 1=1
ror covariance in addition.

Desroziers et al(2014 compared different 4D-En-Var
formulations, including pre-conditioning based on Bima-
trix, the full background error covariance, rather thdB
matrix as suggested Hyiu et al. (2009 and applied in the
present work with the HIRLAM 4D-En-Var. It is argued by N
Desroziers et al2014) that this alternative pre-conditioning SXons= Z a0 ( X} )1 @

=1

wherey ensis the control vector of dimensia¥-r and(x en9;
thelth component of the control vector, corresponding to en-
semble membet. If we introduce a vectot; = C' (xen9;

we can show by substitution into component form that

might provide larger flexibility to implement the localiza-

tion needed in 4D-En-Var. The choice of pre-conditioning

method can also have an influence on the dimension of th@and this is 4D-En-Var in the form of the control vector
assimilation control variable and on the characteristics of theaugmentation method (the-method) suggested hyorenc
minimization problem. (2003. Theea; can be considered as a localized weight field
for the ensemble perturbations of ensemble merHarthe
most general case, and without any truncation of the local-
ization correlation functiong; will be a vector of dimen-
sion K x n. In the first version of HIRLAM 4D-En-Var Hy-
brid, we will assume the same localized ensemble weights
for each observation time window, corresponding to a strong
constraint 4D-Var, and also for each model level, correspond-
ing to application of horizontal localization only. The im-
pact of an additional vertical localization is studied sepa-

and use of theB? for pre-conditioning. Furthermore, the rately, see Sec6.2.3 In the HIRLAM 4D-En-Var Hybrid
HIRLAM 4D-En-Var is a hybrid between 4D-En-Var and e transform matrixC’ is derived from the localization cor-

3D-Var EGAT (first guess at app.ropriate'time), such t'ha}t therelation matrixC in a similar way as for the static back-
assimilation incremendx (z) at time s within the assimi-  44nq error covariance matrix. The localization correlation
lation time windowro < 1 < x is formed as taﬂtnear COM- " matrix C is thus generated in the extended domain with bi-
bination of a 3D-Var FGAT incremerdisavar(“7%) and @ perindic variations, without any loss of generality we may
4D-En-Var incremendxens(k): assume homogeneity and isotropy with regard to the horizon-
to+tx tal localization correlation function and then we may obtain
) +dxens(t) - (6) a correlation spectrum representing the localization correla-
tion in spectral space. Its square root, the transform matrix
According to HIRLAM 3D-Var FGAT experiences, in order C’, consists of horizontal inverse fast Fourier transforms to
to utilize time-averaging effects, the assimilation incrementgrid point space. The transforms are carried out to obtain the

3 Formulation of the HIRLAM 4D-En-Var Hybrid

The 4D-En-Var for the High Resolution Limited Area Model
(HIRLAM, Undén et al. 2002 is an extension of the

HIRLAM Hybrid variational ensemble data assimilation
scheme Gustafsson et gl2014. It builds on the idea of

an augmentation of the control vector hprenc (2003

dx () = 8x3dvar<
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weightsa; for the different ensemble members. By construc- components of the background error constraint, and with al-

tion these weights include the implicit localization of ensem- most full weight given to the ensemble-based background er-

ble perturbationgX});. The same procedure is also applied ror constraint. We will also compare experiments without any

in the HIRLAM hybrid variational ensemble assimilation al- scaling of the ensemble perturbatiors= 1) with experi-

gorithm and is discussed (Bustafsson et a{2014). ments with such a scaling & 4). For sensitivity of the 4D-
For the localization in the horizontal direction we apply Var Hybrid scheme to these tuning parameters,Gestafs-

the power law correlation function with a length scalef son et al(2019).

500 km:

1 .
ole,r) = ————, (8) 4 ETKFre-scaling
14 3(5)?

) _ o ) The 4D-En-Var Hybrid as implemented in HIRLAM pro-
wherer is the distance. In order to limit the negative local- yides an initial state for the ensemble control only. For the
vorticity, divergence, temperature, specific humidity and sur-an ensemble transform KF (ETKF) based re-scaling scheme
face pressure perturbations. A similar localization of stream(gjshop et al, 2001). Essentially this is a low-rank estima-
function and velocity potential was discussed and applied bition of the analysis error variances, preserving also dynam-

Kepert(2009. _ ical structures. Further details on the HIRLAM ETKF re-

The cost function expression for the HIRLAM 4D-En-Var scaling are described and discusseBdjarova et al(2010
Hybrid is given by andGustafsson et a[2014).
J (X 3dvar, Xen9 = Badvar/b,3dvar(X 3dvar

+ Pens/bens(Xens + Jo, ) 5 Results

where the weightgzqvar and Bensfor the two different com-  Data assimilation experiments to validate the performance
ponents of the background error constraint should fulfil of the HIRLAM 4D-En-Var Hybrid and to compare it with

1 1 HIRLAM 4D-Var, as well as with the HIRLAM 4D-Var

4+ — =1 (10) Hybrid data assimilation, were done over the period 17

Padvar ~ Bens January—28 February 2008. Single simulated observation im-

Slightly different from the 4D-En-Var implementation by Pact experiments were carried out in order to illustrate the
tion operatoH, in the observation constraint paf§ of the ~ €nsemble-based background error covariances. The average
cost function to be minimized: effects on forecast quality are illustrated through a data as-

similation and forecast experiment, using real observations,
over the whole data period (43 days). The model domain ap-
plied during the experiments is shown in Fi.the hori-
zontal grid resolution was 11 km and the number of vertical
wheredx () given by Eq. 6) can be expressed in the assim- levels of the forecast model was 40.

1

'K
5 > (Hedx (i) — )" Ry (Hidx (1) —dp), - (11)

Ir=to

J0=

ilation control variables as The forecast model used in the experiments was the
N HIRLAM grid point forecast model. It is hydrostatic and
Sx(t) = UX3dvar+KZ¢¥l o (Xi))l (1) it utilizes a semi-implicit, semi-Lagrangian two time level

integration schemeUndén et al. 2002. The physical pa-

=1
N rameterizations were the CBR turbulence sche@exért
= Uxadvart+k ) (C'(Xend;) o (Xp), (), (12)  etal, 2000, the Kain—Fritsch convection schemksafn,
var ;( end;) o ( b)’ 20049, the Rasch—Kristjansson cloud water scheiRasgch
] ) and Kristjansson1998, the Savijarvi (1990 radiation and
wherex is a tuning factor. the ISBA surface schem@lfilhan and Mahfouf1996.

There are several parameters of the HIRLAM 4D-En-Var
Hybrid that can be considered as tuning parameters — fog.1  Single observation experiments with 4D-Var,
example, the form of the horizontal localization correlation 4D-Var Hybrid, and 4D-En-Var Hybrid
function and its length scale, the weighfisgvan Bens 2SSO-
ciated with the two different components of the backgroundTo illustrate the influence of ensemble based error covari-
error constraint and the tuning facterto scale the ensem- ances on flow dependency, we selected a case with a strong
ble perturbations for estimation of the flow-dependent fore-baroclinic development over the Northern Atlantic south
cast error covariance. Here we will make experiments withof Iceland on 7 February 2008. The 6 h data assimilation
Badvar= Bens= 2, thus with equal weights given to the two window selected was from 6 February 2008, 21:00 UTC,

www.nonlin-processes-geophys.net/21/745/2014/ Nonlin. Processes Geophys., 2178252014
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Figure 1. Model domain for the data assimilation and forecast ex-

periments.

Table 1. Description of experiments carried out with the HIRLAM
4D-Var, the HIRLAM Hybrid 4D-Var ensemble data assimilation
and with the HIRLAM 4D-En-Var for the winter period 17 January—

28 February 2008.

Experiment name

Description

4DVar

4D-Var, no ensemble constraint,
two outer loops, 66 and 44 km
increment resolution.

4DVar-Hyb25-Sc

4D-Var Hybrid,
:BVElI' = 41 ﬂens= 4/3

(25 % ensemble, 75 % static cov.),

two outer loops, 66 and 44 km
increment resolution. Ensemble
perturbations scaled by a factor 4
in the covariance estimation.

4DEnVar-Hyb50-Sc

4D-En-Vafivar = Bens= 2
(50 % ensemble,
50 % 3D-Var FGAT cov.),
one outer loop, 33 km
increment resolution. Ensemble
perturbations scaled by a factor 4
in the covariance estimation.

4DEnVar-Hyb50-NoSc

As 4DEnVar-Hyb50-Sc but
without any scaling of
the ensemble perturbations
in the covariance
calculation.

4DEnVar-Hyb90-NoSc

As 4DEnVar-Hyb50-NoSc
with the exception that
IBVEH = 111 ,36ns= 11/10
(~ 90 % ensemble,
~ 10 % 3D-Var FGAT cov.).

VertLoc

As 4DEnVar-Hyb50-Sc but with
a vertical localization of
ensemble-based

covariances added

Nonlin. Processes Geophys., 21, 74852 2014
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until 7 February, 03:00 UTC. Analysis fields for 7 February
2008, 03:00 UTC, taken from a 4D-En-Var Hybrid assimila-
tion experiment (experiment name 4DEnVar-Hyb50-Sc, see
Tablel), are shown for mean sea level pressure and 700 hPa
temperature in Fig2a and for 500 hPa geopotential height
and wind in Fig2b. Note the strong small-scale surface pres-
sure development south of Iceland, the sharp frontal zones in
the 700 hPa temperature field and the associated small-scale
trough in the 500 hPa geopotential height field.

To investigate how the standard 4D-Var develops implicit
flow-dependent assimilation structure functions, a simulated
wind observation was inserted into the assimilation pro-
cess at 7 February 2008, 02:00UTC, 5h into the assim-
ilation window. The horizontal position of the simulated
observation was 58N, 15 W and the vertical level was
500 hPa. The corresponding observation increment was ap-
proximately southwesterly 12 m$ (10m st in the model
geometryu component and 5nTs in thev component).

500 hPa geopotential height and wind assimilation in-
crements induced by the single simulated observation on
7 February 2008, 02:00 UTC, are presented in Bifpr the
following three assimilation configurations: (1) standard 4D-
Var with a single outer loop; (2) hybrid 4D-Var ensemble as-
similation with a single outer loop, with equal weights given
to the static background error covariance and the ensemble-
based background error covariance and with the tuning fac-
tor « = 4.0; (3) 4D-En-Var Hybrid with a single outer loop,
with equal weights given to the 3D-Var FGAT and the four-
dimensional ensemble parts of the background error covari-
ance and with the tuning factar=4.0 as in the 4D-Var
Hybrid. All experiments applied a horizontal grid resolution
of 33km for the assimilation increments. The 20 ensemble
members from a 4D-En-Var Hybrid experiment (experiment
name 4DEnVar-Hyb50-Sc) were utilized in experiments (2)
and (3). It should also be emphasized that the HIRLAM im-
plementation of the 4D-Var, 4D-Var Hybrid, and 4D-En-Var
Hybrid algorithms are completely consistent and based on
the same computer code.

The single simulated observation impact assimilation in-
crements clearly illustrate the utilization of flow-dependent
structure functions in all three experiments (4D-Var, 4D-Var
Hybrid, and 4D-En-Var Hybrid), in particular with regard
to the sharpening of the small-scale trough in the 500 hPa
geopotential height and wind fields, needed in order satisfy
the simulated single observation. The flow dependency is
more accentuated for the 4D-Var Hybrid and 4D-En-Var Hy-
brid experiments than for the standard 4D-Var experiment.
This result is consistent with application of a static back-
ground error covariance at the start of the assimilation win-
dow in the standard 4D-Var experiment. In contrast, there are
contributions from an ensemble of forecast perturbations to
this background error covariance in the 4D-Var Hybrid and
4D-En-Var Hybrid experiments. Furthermore, in the 4D-En-
Var Hybrid experiment there is an additional contribution
from the ensemble of background error perturbations valid

www.nonlin-processes-geophys.net/21/745/2014/



N. Gustafsson and J. Bojarova: 4D-En-Var for HIRLAM 751

covariance estimated from an ensemble on non-linear model
"GN integrations over the assimilation window.

24 @/g i In order to illustrate the effects on cross-correlations be-

N tween different model variables, assimilation increments of

- surface pressure and 700 hPa temperature due to the single

2Rk

© 500 hPa simulated wind observation are presented indFig.
R / First of all we may notice that the assimilation increments are
0g) more pronounced (amplified) in 4D-En-Var Hybrid experi-

ment. The 4D-Var increments are much weaker and the 4D-
Var Hybrid increments are somewhere in between the 4D-
Var and the 4D-En-Var Hybrid increments. The shape of the
surface pressure increments indicates that the low-pressure
system is forced to move faster when the simulated 500 hPa
wind is assimilated and, in particular in the case of the 4D-
En-Var Hybrid, there is also a stronger deepening of the low.
From the 700 hPa temperature assimilation increment fields
2200 s we can notice a consistent faster propagation of the atmo-
- spheric frontal zones.

5.2 Real observation assimilation experiments

Real observation data assimilation and forecast experiments
were carried out for the period 17 January—28 February 2008
and for the six data assimilation configurations described in
Table 1. The same conventional observations (TEMP, PI-
LOT, SHIP, AIREP, DRIBU, SYNOP) and satellite radiance
data (AMSU-A) were used in all experiments. For each ex-
periment, forecasts up 30 h were produced and verified
against radiosonde and surface observations. The first three
days of the experiment period were excluded from the ver-
ification in order to allow a spin-up of the LAM ensemble
perturbations. We will first describe and discuss forecast ver-
ification scores based on the three data assimilation schemes
Figure 2. Mean sea level pressure and 700 hPa temperdtayre  4D-Var, 4D-Var Hybrid and 4D-En-Var Hybrid. Secondly,
500 hPa geopotential height and wirft), 7 February 2008, we will describe, compare and discuss forecast verification
03:00UTC. Analyses fields are from one of the 4D-En-Var Hybrid scores for three different versions of 4D-En-Var Hybrid with
experiments (experiment name 4DEnVar-Hyb50-Sc). The positionthe aim of checking the sensitivity to two tuning parameters
of the single simuIaFed obse_rvati_on arsg 15° Wisindicated by  of the HIRLAM 4D-En-Var Hybrid. These tuning parame-
a blue square. Isoline spacing is 5hPaKk2and 40m for mean  yorq are the magnitude of the scaling of the ensemble per-
sea level pressure, 700 hPa temperature and 500 hPa geopotentigly ions for estimation of the flow-dependent background
height, respectively. A reference wind arrow is provided to the right . - . )
of the 500 hPa map. error covariances (tuning factef) and the relative weights
given to the ensemble and the 3D-Var FGAT components of
the background error covariance. Finally, we have also car-
ried out a small impact study on the sensitivity of forecast
verification scores to introduction of a very simple vertical
at the time of the simulated observation (7 February 2008Jocalization of the ensemble-based background error covari-
02:00 UTQC). It is satisfactory to notice that the assimilation ance matrix in the HIRLAM 4D-En-Var Hybrid scheme.
increments from 4D-Var Hybrid and the 4D-En-Var Hybrid
are quite similar, taking into account that the derivations of5.2.1 Verification of forecasts based on 4D-Var,
the two sets of increments are quite different. A tangent lin- 4D-Var Hybrid, and 4D-En-Var Hybrid
ear (TL) model integration of the increment over 5h from
the start of the assimilation window is applied in 4D-Var Hy- Standard deviation (STDV) and mean (bias) verification
brid, while in the case of the 4D-En-Var Hybrid there is no scores for forecasts of vertical profiles $fl2 and+24 h
such TL model involved. The time evolution of the incre- wind speed and relative humidity valid at 00:00 UTC are
ments is provided by the four-dimensional background errompresented in Fig5 for the 4D-Var, 4D-Var Hybrid and

(b) 20w Tow
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10.0 ni's

10.0 ni's

10.0 mi's
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Figure 3.500 hPa geopotential height and wind analysis increments (c)
for 7 February 2008, 02:00 UTC, 5h into the assimilation win- _ o
dow between 6 February 2008, 21:00 UTC, and 7 February 2008!:lgure 4. Surface pressure and 700 hPa temperature analysis in-

03:00 UTC. 4D-Var(a), 4D-Var Hybrid (b), and 4D-En-Var Hy- crements for 7 February 2008, 02:00 UTC, 5h into the assimila-
brid (c). Simulated single 500 Pa wind observation, with a 10ths ~ tion window between 6 February 2008, 21:00 UTC, and 7 Febru-

observation increment at 381, 15° W (marked with a blue square) &7 2008, 03:00 UTC. 4D-Va(@), 4D-Var Hybrid (b), and 4D-En-
in the model geometry component and a 5 nT4 observation in- Var Hybrlld (©). SlmL_JIatt_ad single 500 hPa wind observatlo_n, with
crement in they component. Isoline spacing is 5m for the geopo- & 10m S observation increment at 581, 15° W (marked with a

tential height and a reference wind error is provided to the right of °IU€ square) in the model geomeirgomponent and a 5_m_é ob-
the map. servation increment in thecomponent. Isoline spacing is 5 hPa for

the surface pressure andR for the 700 hPa temperature.
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48 stations Selection: EWGLAM background error covariance at the start of the assimilation
Wind speed Period: 20080120-20080228 R . . .
Statistics at 00 UTC At00.12 +1224 window — for a more detailed discussion 8astafsson et
No cases .
0 500 1000 1500 2000 2500 3000 3500 4000 al. (2014. The reasons for the clear improvement of fore-
ol & ' ' R cast scores produced by 4D-En-Var Hybrid in comparison

with standard 4D-Var and 4D-Var Hybrid are less obvious,
and may be even a bit surprising. The main difference is the
; ‘ . replacement of the tangent linear and adjoint models in 4D-
/] s Var and 4D-Var Hybrid with the use of a four-dimensional
' % ensemble of non-linear model integrations (trajectories) over
the data assimilation window. From a computing efficiency
point of view, this result is highly satisfactory, since the com-

200

300 3 . ]

400

500

hPa

600

700

e \ puting time is significantly reduced when the integration of
0 L CA the TL and AD models is avoided (see below for details). The
s 0 s 1 15 2 25 3 a5 4 particularly improved forecast verification scores for relative
Rela‘Weﬁgusrlnaig@spse%i%;O%vl%%ms humidity with 4D-En-Var Hybrid may possibly be explained
Statistcs at 00 UTC At 00,12 +1224 by the too simplified TL and AD models for moist processes
o w0 100 1500 e e soo w50 4000 in HIRLAM 4D-Var (no condensation is included, for exam-
T T T ple).
oA - \ Standard deviation (STDV) and mean (bias) verification
0 1 scores for mean sea level pressure (MSLP) forecasts verified
. S against surface observations are presented in@fgr the
o e 4D-Var, 4D-Var Hybrid and 4D-En-Var Hybrid experiments.
g i 1 il There are two features in these MSLP verification scores that
o0e | : need to be discussed and possibly also further investigated in
e ; > order to arrive at plausible explanations. On one hand, there
50 ‘ /1 is a reduced bias in the MSLP forecasts based on 4D-En-Var
o0 i S Hybrid compared to the MSLP forecasts based on 4D-Var
aprs 5 o 5 0 5 2 and 4D-Var Hybrid. On the other hand, the 4D-En-Var Hy-
* brid forecasts are associated with larger STDV of the forecast

Figure 5. Verification of vertical profiles of wind speed and relative ©€fTOrs for the shortest timescale$ and+12h, while the
humidity forecasts against radiosonde data from stations in a EuroS TDV of the scores are very similar for longer timescales,
pean network. Standard deviation (STDV) and mean (bias) verifica-+18,+24 and+30 h.

tion scores. Average verification scoresfat2 andc4-24 h forecasts Here we will only present an educated guess as to the be-
valid at 00:00 UTC over the period 20 January—28 February 2008haviour of the verification scores for MSLP; further evidence

4D-Var (experiment name 4DVar, red lines), 4D-Var Hybrid (exper- from complementary investigations will be elaborated on be-
iment name 4DVar-Hyb25-Sc, green lines), and 4D-En-Var Hybrid |g.

(experiment name 4DEnVar-Hyb50-Sc, blue lines). The black dot- It is a general experience from the NWP practice that

ted line indicates the number of verification comparisons. MSLP forecast biases are associated with physical incon-
sistencies causing, for example, adjustment processes in the
form of mass fluxes between land and sea surfaces or, in
4D-En-Var Hybrid experiments. With regard to the standardthe case of limited area models, mass fluxes over the lateral
deviation verification scores we can notice a small but con-boundaries. One may thus speculate as to whether the time
sistent improvement of the scores for 4D-Var Hybrid in com- series of non-linear model perturbations, applied as assimila-
parison with the standard 4D-Var, and a further larger im-tion basis functions in 4D-En-Var Hybrid, improves consis-
provement of the scores for 4D-En-Var Hybrid in compari- tency with the non-linear model compared with assimilation
son with 4D-Var Hybrid. These improvements are most sig-increments derived from time integrations with a highly sim-
nificant for tropospheric winds and for relative humidity in plified tangent linear model.
the mid-troposphere (500-700 hPa). Vertical profiles of tem- There may be several reasons behind the degraded MSLP
perature forecasts were also verified against radiosonde dat&TDV verification scores for 4D-En-Var Hybrid for the
The temperature verification scores show an almost neutraghortest forecast timescalesq and+12 h). The HIRLAM
impact from the choice of assimilation method and for the 4D-Var and 4D-Var Hybrid assimilation algorithms include
current ensemble generation methods (results are not showrd. weak digital filter constraint for control of high-frequency
The improvements introduced by 4D-Var Hybrid in com- (gravity wave) oscillations. Such a constraint is not yet
parison with standard 4D-Var are certainly related to the usea part of the 4D-En-Var Hybrid algorithm with increased
of an ensemble-based and flow-dependent component of thieigh frequency oscillations (noise) as a possible effect. This
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Selection: EWGLAM using 288 stations T T T T T T E|
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Figure 6. Verification of mean sea level pressure (MSLP) fore- 5 3 q static E
casts against surface (SYNOP) data from stations in a European E 3
network. Standard deviation (STDV) and mean (bias) verification
scores. Average verification scores over the period 20 January— % E
28 February 2008 as a function of forecast length. 4D-Var (exper- 3
iment name 4DVar, red lines), 4D-Var Hybrid (experiment name g E
4DVar-Hyb25-Sc, green lines) and 4D-En-Var Hybrid (experiment g 3
name 4DEnVar-Hyb50-Sc, blue lines). The black dotted line indi- E
cates the number of verification comparisons. E

3L e
possibility is further explored below. Furthermore, the rather 40 E s - s ' s s s
primitive ETKF re-scaling scheme may also provide noisy 0 0.0005 0.001
surface pressure perturbations that may degrade their useful- (b) kg/kg

ness for assimilation purposes. Another explanation to the _ _ ) ) _

degraded MSLP STDV verification scores for the shortest™19ure 7d- Ve”'cegl pLOf”e(Sj t?f (l:(hmato:joglcal (ftagc)da(;‘d _atr_ea' f

: : averaged ensemble-pase ackgrouna error standar eviations for
timescales may be that the relatively small en_semble of bacane randomly selected case 22 January 2008, 12:00 UTC +6h,
ground states (20 members) does not provide enough Va”-a) U component of wind (ensemble red curve, static green curve)
ab|I|t)|/I to fit Itlhe shp;}ters],t t|mescale|.surface Zre|;su;e|3v3nat;on nd temperature (ensemble blue curve, static pink cufspSpe-
equally well as with the tangent linear model In 4D-Var. In- ¢ific humidity (ensemble red curve, static green curve).
vestigations of the fit between hourly surface pressure obser-

vations and the assimilation model states in the three differ-

ent experiments seem to give some evidence for this hypoth- . . - . .
esis (see below). semble perturbations is efficiently equivalent to changing the

weight given to the ensemble part of the background error
5.2.2 Sensitivity of forecast verification scores to tuning ~ covariance while keeping the weight for the static part un-

parameters of the 4D-En-Var Hybrid scheme changed (neglecting EG0).
In order to understand better the results of these tuning

The HIRLAM 4D-En-Var Hybrid scheme includes several experiments, it is necessary to examine the relative magni-
tuning parameters. Two of the most important ones aretudes of the contributing components of the background error
(2) the relative weights given to the ensemble and the staticovariance in the 4D-En-Var Hybrid experiments. Figdre
3D-Var FGAT components of background error covarianceshows vertical profiles of climatological (static) background
(parametergensandpyar) and (2) the scaling factarapplied  error standard deviations and ensemble-based background
to the ensemble perturbations that are used to estimate therror standard deviations, obtained by horizontal averaging
flow-dependent (ensemble) component of the background emf variances for one randomly selected case, 22 January
ror covariance. Data assimilation and forecast experiment2008, 12:00 UTC5-6 h. It appears that the vertical variations
were carried out over the time period 17 January—28 Februand the magnitudes of these background error standard de-
ary 2008 to test the sensitivity of the forecast verification viations are quite similar. It is encouraging that the simple
scores to different values of these 4D-En-Var Hybrid tuning tuning of the inflation factor in the ETKF re-scaling scheme,
parameters. It needs to be mentioned that the two tuning pabased on innovation®Bgjarova et al.2010, provides sim-
rameters are not completely unrelated. A scaling of the enilar results as a more elaborate tuning of the climatological
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48 stations Selection: EWGLAM
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Figure 8. Histogram of ensemble-based background error standard 0 500 1000 1500 2000 2500 3000 3500 4000
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deviations for temperature on model level 39§00 hPa) for one
randomly selected case, 22 January 2008, 12:00 UTC +6 h.

200

300

background error standard deviations (also based on inno- *® o
vations). One must also keep in mind that the ensemblel s ] \
based background error standard deviations in Figep- ne 6% '
resent horizontal averages — these standard deviations have 7o

significant spatial variationgustafsson et gl2014). To fur- d s \‘ /l
ther illustrate this, we present a histogram of individual grid*= s b s
point background error standard deviations for temperature 1000 | L L " = .
at model level 30 valid on 22 January 2008, 12:00 UF6 h %

in Fig. 8. The standard deviation calculated by horizontal av-

eraging is 0.56 K. The frequency is highest for the interval Eigurde_g.;/erification of_vertic?jl_profilss gf wirfld speed_and _reIatIiEve
0.2-0.4 K, but contributions from much larger standard devi-"tM'dity forécasts against radiosonde data from stations in a Euro-

ations in fewer arid points are sianificant. This result is con- pean network. Standard deviation (STDV) and mean (bias) verifica-
. ith th grid p . h Qll f ) . . tion scores. Average verification scoresfat2 and+-24 h forecasts
sistent with the experience that large forecast uncertainty I,y ot 00:00 UTC over the period 20 January—28 February 2008.

associated with quite narrow zones of dynamical activity, in 4p_gn-var Hybrid with scaling of ensemble perturbations and with
the present case frontal zones in the low tropospheric temgqual weights given to the ensemble and 3D-Var FGAT components
perature field (se&ustafsson et gl2014). of the background error covariance (experiment name 4DEnVar-
Figure 9 illustrates the sensitivity of verification scores Hyb50-Sc, red lines), 4D-En-Var Hybrid without scaling of ensem-
of vertical forecast profiles of wind speed and relative hu-ble perturbations and with equal weights given to the ensemble
midity to the tuning of the scaling of the ensemble pertur- and 3D-Var FGAT components of the background error covariance
bations by comparing the verification results of experiment(éxperiment name 4DEnVar-Hyb50-NoSc, green lines). 4D-En-Var
4DEnVar-Hyb50-NoSc (no scaling) with the verification re- Hybrid without scaling of ensemble perturbations and witB0 %

. ’ ) . . _weight given to the ensemble component of background error co-
sults of experiment 4DEnVar-Hyb50-Sc (scaling with a fac variance (experiment name 4DEnVar-Hyb90-NoSc, blue lines). The

tor 4). T_he res_u_lts indicate th?t the forecast quality is m.oreblack dotted line indicates the number of verification comparisons.
or less insensitive to the scaling of ensemble perturbations

used to estimate the forecast error covariance, see also the

verification scores for MSLP in Fid.0. One may argue that

the HIRLAM ETKF rescaling scheme includes a multiplica-  Figures9 and 10 also illustrate the sensitivity of the ver-
tive inflation scheme and that the background forecast perification scores to the relative weighing between the ensem-
turbations are representative of background erogafova  ble and the 3D-Var FGAT contributions to the background
et al, 2010. Any further scaling is not needed. Furthermore, error covariance by comparing the verification results of ex-
it was shown in experiments with the HIRLAM 4D-Var Hy- periment 4DEnVar-Hyb50-NoSc (equal contributions of the
brid assimilation Gustafsson et gl2014) that therichness  two components) and experiment 4DEnVar-Hyb90-NaSc (
in spatial structures of the ensemble is more important thar®0 % contributions of the ensemble component antl %

the scaling of the amplitude of the ensemble perturbations. of the static 3D-Var FGAT component). The results show
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Figure 10. Verification of mean sea level pressure (MSLP) forecasts r ‘
against surface (SYNOP) data from stations in a European network.25 i ]
Standard deviation (STDV) and mean (bias) verification scores. Av- "

erage verification scores over the period 20 January—28 February [ |
2008 as a function of forecast length. 4D-En-Var Hybrid with scal- I |
ing of ensemble perturbations and with equal weights given to the 3o
ensemble and 3D-Var FGAT components of the background error | |
covariance (experiment name 4DEnVar-Hyb50-Sc, red lines), 4D- | : ‘w
En-Var Hybrid without scaling of ensemble perturbations and with L : ‘\
equal weights given to the ensemble and 3D-Var FGAT components35 | : \
of the background error covariance (experiment name 4DEnVar- | ‘
Hyb50-NoSc, green lines). 4D-En-Var Hybrid without scaling of L ‘\
ensemble perturbations and with90 % weight given to the ensem- I ) ) ) b | ) ) )
ble component of background error covariance (experiment name40_o_3 02 -01 0 01 02 03 04 05 06
4DEnVar-Hyb90-NoSc, blue lines). The black dotted line indicates
the number of verification comparisons.

Figure 11. First five eigenvectors (vertical modes) of the vertical
correlation matrix for large horizontal scale vorticity (wave num-
bers 1-5) background errors, as applied in the HIRLAM variational

that the forecast quality, as given by the forecast verificationdata assimilation: mode 1 (red curve), mode 2 (green curve), mode 3
scores, is consistently degraded when the static component §fark blue curve), mode 4 (pink curve) and mode 5 (light blue
the background error covariance is reduced to 10 % only. OuFurve).

interpretation is that an ensemble of background model states

with 20 members only does not provide variability enough )
(or, in other words, richness in structures enough) for an acfirst eigenvector (mode number 1) represents an average over

curate estimation of the background error covariance. the total atmospheric column, the second eigenvector repre-
sents a separation between the stratosphere and the low tro-
5.2.3 The impact of a very simple vertical covariance posphere, while the third eigenvector has a maximum in the
localization on forecast verification scores middle troposphere. A vertical localization correlation ma-
trix, see Fig.12, was constructed from these three vertical
All results presented so far in this paper have been based omodes by setting eigenvalues of the remaining vertical modes
4D-En-Var Hybrid with a horizontal localization only of the (modes 4—-40 in the present case with 40 vertical model lev-
ensemble-based covariance matrix. In order to avoid spuriousls) to zero and by re-normalizing the vertical correlations
influence of, for example, near-surface observations in thébased on these three first vertical modes.
stratosphere, and vice versa, it is necessary to introduce also One real observation data assimilation experiment
a vertical localization, see Clayton et al. (2013). (4DEnVar-Hyb50-NoSc) was re-run for the whole data pe-
A first trial to introduce a vertical localization has been riod with vertical localization of the ensemble-based covari-
carried out also for the HIRLAM 4D-En-Var Hybrid. We ance added (experiment name Vertloc). Most forecast verifi-
simply started from the climatological background error ver- cation scores were slightly but consistently improved by this
tical correlation matrix for vorticity for the largest horizontal vertical localization, see for example verification scores for
scales (horizontal wave numbers 1-5). The eigenvectors ofmean sea level pressure (MSLP) over a Scandinavian domain
this vertical correlation matrix are presented in Fid. The in Fig. 13. One exception to this positive impact of vertical
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1 Selection: Scandinavia using 312 stations
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0.2 Figure 13. Verification of mean sea level pressure (MSLP) fore-
casts against surface (SYNOP) data from stations in a Scandina-
0.1 vian network. Standard deviation (STDV) and mean (bias) verifica-
tion scores. Average verification scores over the period 17 January—
! o 28 February 2008 as a function of forecast length. 4D-En-Var Hy-
46 85 Wb 2 R A 10 B brid without vertical localization of the ensemble component of the

Wathwal el background error covariance (experiment name 4DEnVar-Hyb50-

Figure 12. Vertical localization correlation matrix applied to NoSc, red lines) and 4D-En-Var with vertical localization of the

ensemble-based background error covariances in the Vertloc assirr‘?—nsembIe ci)/mpionent of tlhe bacl;groglnd ke(;ror c(:jol\_/arlgné:_e (texpt?w”-
ilation experiment. The vertical localization matrix is based on the ment name Vertloc, green lines). The black dotted line indicates the

vertical correlation matrix for vorticity in the HIRLAM variational number of verification comparisons.
data assimilation, truncated to be valid for horizontal wave numbers
1-5 and to the three first vertical modes.
joint model integrations, the application of this weak con-
straint during the data assimilation also efficiently prevents
covariance localization on forecast verification scores washe presence of high-frequency (gravity wave) oscillations
noticed for 700 hPa relative humidity forecasts (results areinduced by the non-linear model during integrations from ini-
not shown). One likely explanation is that the vertical local- tial data created by the assimilatidastafsson et al2012).
ization correlation matrix, derived by truncation from vortic- It is less straightforward to apply a similar digital filter con-
ity background error vertical correlations, does not fit very straint within the framework of 4D-En-Var since there is no
well the vertical variability of humidity background errors. model integration applied during the data assimilation pro-
Specific humidity background error vertical correlation pat- cess. The time resolution of the derived assimilation incre-
terns indicate two main vertical domains of activity, the plan- ments may not be sufficient for application of a digital filter.
etary boundary layer and the tropospheric cloud layers aboveror this reason it is of interest to investigate the level of high-
and these are positioned vertically out of phase with the verfrequency oscillations in non-linear model integrations from
tical correlation patterns seen in FR. initial model states produced by 4D-En-Var.

It need to be emphasized that this should be considered Figure 14 presents time series of the Sundqvist noise pa-
as an ad hoc trial to test the sensitivity of forecast verifi- rameter, i.e. the horizontal average of the absolute value of
cation scores to vertical localization of the ensemble-basedhe surface pressure tendency, for every time step during the
background error covariances. Research is certainly needefitst 12 h of the non-linear model integration, for the assim-
to bring vertical localization, and localization in general, to a ilation control (ensemble member 0) and for 4D-Var Hybrid

more scientifically founded level of development. and 4D-En-Var Hybrid. Figur&4 confirms that 4D-Var Hy-
brid, including a weak digital filter constraint, provides a
5.2.4 Noise characteristics quite noise-free non-linear model integration. It is also seen

that 4D-En-Var Hybrid provides an initial state that causes
A weak digital filter constraint is included in the HIRLAM a slightly increased noise level (from 2.0hPa3h for 4D-
4D-Var to control the level of high-frequency (gravity wave) Var Hybrid to 25hPa3h for 4D-En-Var Hybrid) during the
oscillations during integration of the tangent linear and ad-first 1-2 h of model integration. We may consider that such a
joint models over the data assimilation window. Although modest increase of the noise level hardly can harm the data
applied during the coarse-resolution tangent linear and adassimilation process.
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Figure 14. Time variation of the Sundqvist noise parameter, hori- Figure 15. Time variation of the Sundqvist noise parameter, hori-
zontal average of the absolute value of the surface pressure tendeneggntal average of the absolute value of the surface pressure tendency
(hP&3h), for each time step over the first 12 h of the non-linear (hPg3h), for each time step over the first 12h of the non-linear
model integration (model time step is 6 min). Ensemble control model integration (model time step is 6 min). Ensemble member 2
(mbr000). 4D-En-Var Hybrid (experiment name 4DEnVar-Hyb50- (mbr002). 4D-En-Var Hybrid (experiment name 4DEnVar-Hyb50-
Sc, red curve) and 4D-Var Hybrid (experiment name 4DVar-Hyb25-Sc, red curve), and 4D-Var Hybrid (experiment name 4DVar-
Sc, green curve). Hyb25-Sc, green curve).

For the ensemble members other than the ensemble control
we do not apply data assimilation but rather an ETKF rescal- . ) .
ing of the forecast background perturbations to analysis perYerification scores for the 4D-En-Var Hybrid experiment as
turbations representing analysis errors. The ETKF re-scaling®mPared to the 4D-Var and 4D-Var Hybrid experiments.
may influence the balances of the forecast background moddrUrthermore, it was also noticed that the level of high-

states and increase the noise level in non-linear model intef’®duency oscillations as measured by the surface pressure

gration for these ensemble members. Figieshows one tendency was increased for the 4D-En-Var Hybrid, also com-
example of the Sundquist noise parameter from the time in;Pared with the 4D-Var and 4D-Var Hybrid experiments. In
tegration of ensemble member 2 (mbr002) and for both 4p-order to investigate further the use of surface pressure infor-
Var Hybrid and 4D-En-Var Hybrid. Indeed, the noise level, mation in .the 4D-En-Var Hybrid a55|m|lat|qn, we checked
as measured by the Sundquist parameter, is increased frothe behaviour of the surface pressure contribution to the ob-
~ 2hPa3h for the ensemble control ts 3hPa3h for en- servation part of the cost function during the minimization
semble member 2 during the first few hours of non-linear©r ©n€ assimilation cycle, 22 February 2008, 12:00 UTC (the
model integration in the 4D-Var Hybrid experiment. Further- PEnaviour is similar for every assimilation cycle).
more, it can be seen that the effects in the form of noise add F19ure16shows the SYNOP surface pressure contribution
up due to the imbalances caused by ETKF re-scaling ando the observation cost function, normalized with the number
g Oof surface pressure observations, as a function of observation

the 4D-En-Var Hybrid assimilation algorithm. With regard * - A s .
to possible negative effects of the combined imbalances creliMe wWindow within the 6 h data assimilation window for the

ated by the ETKF re-scaling and the 4D-En-Var Hybrid al- 4D-Var, 4D-Var Hybrid and the 4D-En-Var Hybrid experi-

gorithms, one must keep in mind that the ensemble perturbaMeNts. Separate curves are plotted before- @5, observa-

tions are only applied for estimation of background error co- 110N minus background) and after (OA, observation minus

variances at the start of the next data assimilation cycle, thu&n2lysis) the minimization. We may notice that the behaviour
at+3h. At this forecast lead time model balances appear td)f these observation fit statistics are different for the 4D-En-
have been stabilized through the adjustment processes of thé Hybrid experiment as compared to the 4D-Var and 4D-

high-frequency oscillations. Var Hybrid experimgnt;. o
The (O— BG) statistics indicate that the surface pressure

5.2.5 Observation fit statistics forecasts for the observation windows 1-4 (corresponding
background forecast length in the range 3—6 h) have larger

It was noticed that MSLP forecasts for the shortest time rangesrrors for the 4D-En-Var Hybrid experiment than for the 4D-

(+6h) had slightly degraded Standard Deviation (STDV) Var and 4D-Var Hybrid experiments. This confirms what we
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Normalized observation cost function when observations from the same stations are available for
1.2 every hour. The increased surface pressure biases in longer
: 4D-Var O-BG 3 forecasts for the 4D-Var based experiments and the recovery
1| 4D—£|152:¥g; Hgg 8:38 S of quality of the 4D-En-Var Hybrid forecasts for the longer
: AD-Var O=A 3 forecast may give some support to this hypothesis. Further
08 E 4D-Var Hyb O-A ———— 3 investigations are needed to establish a better understanding.

4D-En-Var Hyb O-A --------

Jo/NOBS

6 Computational issues
r~~f—f——————v— The computing cost in 4D-En-Var Hybrid is quite different
: from the computing cost in 4D-Var. 4D-Var is dominated
00—t e L by heavy CPU utilization in the TL and AD models, while

1 2 3 _ f" 5 6 4D-En-Var Hybrid is more dominated by input and handling
Observation window of the ensemble of model trajectories needed for the estima-

Figure 16. The contribution of SYNOP surface pressure observa- _tlon of the background error covariances. This can be seen

tions to the observation cost functiodof, normalized with the 'n Table2, Wh'Fh ShOWS. the measured Wf"'! Cl_OCK computing
number of contributing observations (NOBS), as a function of the fimes from a single assimilation cycle (minimization only) of
observation time window~3, —2, —1, 0, +1, and+2h). As- 4D-Var, 4D-Var Hybrid and 4D-En-Var Hybrid. The comput-
similation cycle 22 February 2008, 12:00 UTC. Before minimiza- ing times were measured from assimilation runs with 32 MPI
tion (O— BG) and after minimization (G A). 4D-Var (experiment  tasks on a single compute node in an IBM Power 6-575 sys-
name 4DVar), 4D-Var Hybrid (experiment name 4DVar-Hyb25-Sc), tem. Since 4D-En-Var Hybrid is utilizing background error
and 4D-En-Var (experiment name 4DEnVar-Hyb50-Sc). covariances based on non-linear model trajectories, 4D-En-
Var Hybrid is using a single outer loop, while 4D-Var and
4D-Var Hybrid are using two outer loops in order to improve
already have noticed with the forecast verification scores (se¢he linearization for the TL and AD models. Re-linearization
above). for the observation operators could be motivated also for 4D-
The fit of the analysis to the surface pressure observaEn-Var Hybrid, but the possibility for this has not yet been
tions at the main observation hour (12:00 UTC, observationintroduced in HIRLAM 4D-En-Var Hybrid.
window 4) is closer for the 4D-En-Var Hybrid experiment  The measured wall clock computing times of different
as compared to the 4D-Var and 4D-Var hybrid experiments,components of 4D-En-Var Hybrid in TabRshow that half
while the fit is significantly worse for the 4D-En-Var Hybrid of the wall clock time is spent in reading the ensemble of
experiment for the other observation windows. non-linear model trajectories over the data assimilation win-
The cause of the different behaviour of surface pressurelow (full model states for 20 ensemble members and for six
variations at short timescale in the different experimentsobservation time windows). In order to fully utilize the reduc-
is not obvious. At first sight, the increased level of high- tion in computing time that comes with avoiding the tangent
frequency oscillations (measured by surface pressure terinear and adjoint models in 4D-En-Var Hybrid, the reading
dencies) could possibly explain the worse surface pressuref the model trajectories needs to be improved by making it
scores for the 4D-En-Var Hybrid experiment at short time parallel. This has not yet been implemented in the present
range. However, this effect of imbalances in the initial 4D- version of HIRLAM 4D-En-Var Hybrid. Furthermore, the
En-Var Hybrid mainly affects forecasts in the range 1-2 h,storing in memory of the ensemble of non-linear model tra-
while forecasts in the range 3-8 h, when the initial adjust-jectories has to be reduced by packing in fewer computer
ments have already occurred, are applied as backgrounohemory bits than occupied by double precision floating point
states in the 4D-En-Var Hybrid. numbers, taking the needs of higher model resolutions into
Another possible explanation may be that the ensembleccount, both with regard to resolution in space and with re-
of 20 non-linear model trajectories in 4D-En-Var Hybrid gard to an increased number of observation time windows.
does not provide the needed temporal variations to describe The longer computing time spent in reading and writing
surface pressure variations with a timescale of 1 h, as proef observations, as well as in writing of field data, in 4D-
vided by the observations, while the tangent linear model inVar and 4D-Var Hybrid, as compared to 4D-En-Var Hybrid,
4D-Var is able to provide solutions that fit the observationsis explained by the two outer loops in 4D-Var and 4D-Var
more closely. This is not necessarily an advantage for theHybrid, while a single outer loop is applied in 4D-En-Var
TL and AD model based HIRLAM 4D-Var. With a lack of Hybrid. The total number of inner loop minimization itera-
a proper handling of biases and other representativity errorgjons is the same in all runs, as can be seen in the computing
the HIRLAM 4D-Var may over-fit the surface pressure datatime for the observation operators.
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Table 2.Wall clock computing time of different components of 4D- ground error covariance is applied at the start of the assim-
Var, 4D-Var Hybrid and 4D-En-Var Hybrid with one assimilation ilation window only. The real observation data assimilation
cycle, 22 February 2008, 12:00 UTC. 4D-Var and 4D-Var Hybrid experiments indicate that the 4D-En-Var Hybrid outperforms
are run with two outer loops, while 4D-En-Var Hybrid is run with @ gtandard 4D-Var as well as 4D-Var Hybrid with regard to ver-
ﬁ'”,gle outer "?ipé;r':/lep‘iomi““”g times l""ere meas”re(? from af’BSI'\;l"ification scores for forecasts based on initial data from the re-
llation runs wit tasks on a single compute node in an 1BM ¢ iye assimilation method. In particular, relative humidity
Power 6-575 system (OpenMP was not utilized). e S .

verification scores are significantly improved by 4D-En-Var
Hybrid, and this is likely to be linked to the too simplified
tangent linear model applied in the HIRLAM 4D-Var.

Assimilation component  4D-Var 4D-Var  4D-En-Var

Hybrid Hybrid ; ima i
In contrast to 4D-Var and 4D-Var Hybrid, no time integra-
Total 693s  846s 418s tion of tangent linear and adjoint models is needed in 4D-En-
Read field data 46s 56 216s  var Hybrid. This results in a significant reduction of com-
'\Rﬂqu obs. data | 37215 33;15 9i3s puting time, and possibilities for better scalability, for 4D-
inimization, tota s s s En-Var Hybrid. The handling of the ensemble of non-linear
TL model 141s 109s - del traiectori th imilati ind ds to b
AD model 191s 146s _ model trajectories over the assimilation window needs to be
Observation operators 20s 20s 20s designed carefully,.however. )
Write field data 118s 107 s 53s Thg successful_ |mpIementat|qn of HIRLAM 4D-En-Var
Write obs. data 44s 30s 15s Hybrid for synoptic-scale numerical weather prediction has

encouraged us to develop a 4D-En-Var Hybrid also for
numerical weather prediction at the convection permitting
scales with model grid resolutions of a few km. The increased
importance of moist processes and non-linearities at these
7 Discussion and concluding remarks smaller scales should be an advantage for 4D-En-Var since
the assimilation increments are formed as localized combi-
A four-dimensional ensemble variational (4D-En-Var) data nations of non-linear model forecast perturbations rather than
assimilation scheme has been developed for the HIRLAMderived from time integrations with a simplified tangent lin-
forecasting system. The scheme is a hybrid between 4Dear model.
En-Var, with a flow-dependent background error covariance There are certainly many scientific uncertainties associ-
component estimated from an ensemble of non-linear modehted with the development of 4D-En-Var Hybrid, and data
trajectories over the data assimilation window, and 3D-Varassimilation in general, for the convection permitting scales.
FGAT (first guess at appropriate time) with a static back- Which spatial scales are described by present and future ob-
ground error covariance component applied in the middle ofserving systems, and which spatial scales are meaningful to
the data assimilation window. The HIRLAM 4D-En-Var Hy- assimilate for convection permitting models? For synoptic-
brid is applied to the ensemble control only; initial states for scale 4D-Var data assimilation, the application of incremen-
other ensemble members are obtained by a basic ETKF (ental data assimilation with tangent linear model grid reso-
semble transform Kalman filter) re-scaling scheme. In ordedutions increased by a factor of 3-5 as compared to the
to prevent negative effects of the low rank of the ensemble-non-linear model grid resolution, has been quite successful
based background error covariance matrix, a localization o{Gustafsson et gl20129. Does this also apply to the data as-
the ensemble covariance matrix based on a Schur produdimilation at convection permitting scales? In 4D-En-Var for
with a localization correlation matrix is applied. example, do we need an ensemble generated from full reso-
Single simulated observation data assimilation experi-lution non-linear model integrations in order to derive the ap-
ments have been carried out to demonstrate the effects giropriate background error covariances for data assimilation
flow dependency of the ensemble-based background errcat convection-permitting scales? Since such a full resolution
covariances. These experiments show an increased level @bnvection-permitting ensemble of model integrations would
realistic flow dependency, both for 4D-Var Hybrid in com- be computational demanding, it might be tempting to derive
parison with standard 4D-Var and for 4D-En-Var Hybrid in the ensemble needed for 4D-En-Var with a slightly reduced
comparison with 4D-Var Hybrid. The experiments also give non-linear model resolution.
support to the hypothesis that the ETKF re-scaling algorithm The 4D-En-Var method described here can easily be gen-
provides initial perturbations with a rich and physically rele- eralized to a simple method for nowcasting by extending the
vant variability. same weighting of ensemble background forecast perturba-
Real observation experiments over a period of 6 weeks tdions beyond the data assimilation window.
demonstrate the effects of the assimilation on forecast quality Most results presented here were based on HIRLAM 4D-
have also been carried out. Comparison is made with stanEn-Var Hybrid using horizontal localization of ensemble-
dard HIRLAM 4D-Var and with HIRLAM Hybrid 4D-Var  based background error covariances only. The results from
ensemble data assimilation, where the ensemble based backn ad hoc trial with a simple vertical localization have
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encouraged us to continue research on horizontal as well aSourtier, P., Andersson, E., Heckley, W., Pailleux, J., Vasiljevic, D.,

vertical localization and, in order to permit a weak constraint Hamrud, M., Hollingsworth, A., Rabier, F., and Fisher, M.: The

formulation, also on temporal localization. ECMWEF implementation of three dimensional variational assim-
ilation (3D-Var). Part I: Formulation, Q. J. Roy. Meteorol. Soc.,
124,1783-1808, 1998.

Cuxart, J., Bougeault, P., and Redelsperger, J.-L.: A turbulence
scheme allowing for mesoscale and large-eddy simulations, Q. J.
Roy. Meteorol. Soc., 126, 1-30, 2000.

Desroziers, G., Camino, J.-T., and Berre, L.: 4DEnVar: link
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