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Abstract. Experimental investigations of turbulent velocity
fields often invoke Taylor’s hypothesis (also known as frozen
turbulence approximation) to evaluate the spatial structure
based on time-resolved single-point measurements. A cru-
cial condition for the validity of this approximation is that the
turbulent fluctuations are small compared to the mean veloc-
ity, in other words, that the turbulence intensity must be low.
While turbulence intensity is a well-controlled parameter in
laboratory flows, this is not the case in many geo- and astro-
physical settings. Here we explore the validity of Taylor’s
hypothesis based on a simple model for the wavenumber-
frequency spectrum that has recently been introduced as a
generalization of Kraichnan’s random sweeping hypothesis.
In this model, the fluctuating velocity is decomposed into a
large-scale random sweeping velocity and small-scale fluc-
tuations, which allows for a precise quantification of the in-
fluence of large-scale flow variations. For turbulence with
a power-law energy spectrum, we find that the wavenum-
ber spectrum estimated by Taylor’s hypothesis exhibits the
same power-law as the true spectrum, yet the spectral energy
is overestimated due to the large-scale flow variation. The
magnitude of this effect, and specifically its impact on the
experimental determination of the Kolmogorov constant, are
estimated for typical turbulence intensities of laboratory and
geophysical flows.

1 Introduction

One of the central results from Kolmogorov’s celebrated phe-
nomenology (Kolmogorov, 1941) is that the turbulence en-
ergy spectrum function takes the form

E(k) = CK ε2/3k−5/3 (1)

in the inertial range of scales, that is, the range of scales
which is clearly separated from the large, energy-containing
scales and the small, dissipative scales. Hereε is the mean
rate of energy dissipation andCK is often called the Kol-
mogorov constant. The energy spectrum (Eq.1) and its one-
dimensional counterparts have been observed in many labo-
ratory, atmospheric and oceanic flows. Consequently, there
is a strong theoretical and practical interest in determin-
ing the value ofCK , which is assumed to be a universal
constant, especially from atmospheric turbulence data (see,
e.g.,Sreenivasan, 1995).

To measure the energy spectrum without invoking addi-
tional hypotheses, multi-point measurements of the turbulent
velocity field are necessary. True instantaneous multi-point
measurements, however, turn out to be a severe challenge for
various reasons. Field measurement techniques, such as par-
ticle image velocimetry (PIV), are usually limited to small
ranges of resolved scales that do not allow reliable calcu-
lation of the energy spectra. For point measurement tech-
niques, such as laser Doppler velocimetry (LDV), acoustic
Doppler velocimetry (ADV), ultrasonic anemometry or hot-
wire anemometry (HWA), many probes have to be used si-
multaneously to measure the true spectrum, which requires
not only high capital investment, but also tedious alignment,
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calibration and maintenance. For intrusive techniques such
as HWA, installing many probes in the flow could even re-
sult in large disturbances that render the measurements in-
valid. Moreover, optical-based techniques (PIV and LDV) re-
quire uniformly seeded tracer particles for best performance,
which is difficult to achieve in geophysical flow measure-
ments. Recent advances in remote sensing provide valuable
data on large-scale mean flow fields. The spatial resolutions
of these data, however, are still too low to allow quantitative
measurement of the energy spectra. Therefore, to date, the
energy spectra of geophysical flows are almost exclusively
measured with a single probe, and Taylor’s frozen turbulence
hypothesis is used to reconstruct the spatial variation of the
velocity field, which assumes that turbulent fluctuations are
carried with the mean flow in a quasi-frozen manner (Taylor,
1938). In other words, instead of spatial variations, experi-
ments usually measure temporal signals that are then mapped
to the spatial domain. For the energy spectrum this means
that the frequencyω is related to the streamwise wavenum-
berkz by the simple relationω = kz U , whereU is the mean
velocity of the flow.

The validity of this approximation has widely been stud-
ied in various geophysical field and laboratory experiments;
some examples include oceanic and surface-water turbulence
(MacMahan et al., 2012), atmospheric turbulence (Lappe and
Davidson, 1963; Mizuno and Panofsky, 1975; Castro et al.,
2011), precipitation field distributions in meteorology (Li
et al., 2009), wall turbulence (Uddin et al., 1997), and wind
tunnel experiments (LeBoeuf and Mehta, 1995).

Taylor’s hypothesis is limited by the fact that the turbulent
fluctuations also evolve in time, which means they usually
cannot be regarded as frozen-in. This limitation becomes es-
pecially apparent when the turbulent fluctuations are compa-
rable to the mean flow, such as at high turbulence intensities.
Moreover, the fluctuations of the velocity field contain large-
scale variations, sometimes termed random sweeping veloc-
ity (Kraichnan, 1964; Tennekes, 1975), which are difficult to
discriminate from the mean velocity due to their large-scale
nature. The aim of this paper is to focus on the latter effect
and to quantify the influence of these large-scale flow vari-
ations on the energy spectrum as it is usually measured in
experiments.

This idea has been discussed in prior literature, for ex-
ample byLumley (1965) who studied the effects of ran-
dom sweeping by keeping only the first two terms in the
series expansion of the characteristic function of the large-
scale velocity fluctuations. His work later was picked up
by Wyngaard and Clifford(1977) and compared to the case
of a Gaussian large-scale random sweeping velocity. They
found that the Gaussian random sweeping assumption agrees
well with Lumley’s two-term expansion for low to moder-
ate turbulence intensities. Based on their model calculations
they were able to show that random sweeping effects lead to
systematic deviations in many statistical quantities inferred

from single-point measurements using Taylor’s hypothesis,
including the spectral energy levels.

In this note, we make use of a simple theoretical model
recently introduced for the wavenumber-frequency spectrum
by Wilczek and Narita(2012). This model spectrum can be
regarded as the result of a generalized Taylor’s hypothesis,
which takes into account the advection of turbulent fluctua-
tions not only by a mean flow, but also by a random large-
scale velocity field and is essentially based on Kraichnan’s
ideas of random sweeping (Kraichnan, 1964). Based on the
same mathematical approach also used by Wyngaard and
Clifford for their model calculations, our results are in line
with their findings. Here, we will however focus the discus-
sion on the impact of large-scale random sweeping on the
determination of the Kolmogorov constant. In particular, we
obtain a closed-form analytical expression that quantifies the
effect of large-scale random sweeping on the Kolmogorov
constant determined using Taylor’s hypothesis.

The procedure is the following: given an energy spec-
trum function in wavenumber space, our theoretical model
makes an estimate for the wavenumber-frequency spectrum
parametrized by the mean and the sweeping velocity. This
wavenumber-frequency spectrum serves as an “ideal” refer-
ence spectrum, which then can be reduced to the frequency
spectrum. In the next step, Taylor’s hypothesis, as used in ex-
periments, is applied to the frequency spectrum to obtain an
expression for the energy spectrum function in wavenumber
space, here called the Taylor spectrum. By comparing this ap-
proximate spectrum to the “true” Kolmogorov energy spec-
trum function, the influence of large-scale flow variations can
be systematically tested. It especially allows discussing cor-
rections to the experimental measurement of the Kolmogorov
constant due to random sweeping effects.

2 Wavenumber-frequency spectrum

As detailed inWilczek and Narita(2012), we make a num-
ber of simplifying assumptions to obtain an analytical model
for the wavenumber-frequency spectrum. We assume that the
large-scale random sweeping velocity and the small-scale ve-
locity fluctuations are statistically independent initially. Fur-
thermore, we assume the random advection to be isotropic
and Gaussian distributed and the small scales to be isotropic
with a given energy spectrum function. We then essentially
consider a linear advection problem in which the turbulent
fluctuations are advected by a mean velocityU (assumed in
z direction) and the random advection velocity (characterized
by the rms of each component,V ). This eventually leads to
an analytical expression for the energyE(k, ω) dk dω con-
tained in an infinitesimal wave vector and frequency vol-
ume. In this model, the mean velocity leads to a Doppler
shift of frequencies, whereas the random sweeping leads to
a Doppler broadening. Specifically, the expression obtained
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is a product of a wavenumber spectrum with a Gaussian fre-
quency distribution:

E(k, ω)dkdω =
E(k)

4π k2
√

2π k2V 2

exp

[
−

(ω − kz U)2

2k2V 2

]
dkdω. (2)

Here, E(k) is the energy spectrum function of the small-
scale velocity fluctuations. In the following, we will re-
strict ourselves to a power-law spectrum, which follows
Kolmogorov’s phenomenology, cf. Eq. (1). The mean of
the Gaussian distributionkz U describes the Doppler shift,
whereas the standard deviationkV describes the Doppler
broadening. Note that both effects become more important
with increasing wavenumbers.

It is worthwhile to note that in the limit of vanishing
sweeping velocity, Taylor’s hypothesis again becomes valid.
This can be seen by

lim
V →0

E(k,ω)dkdω =
E(k)

4π k2
δ (ω − kz U) dkdω, (3)

where the delta function simply indicates that the frequency
can be relabeled with the streamwise wavenumber. As the
standard deviation of the Gaussian distribution of the model
spectrum iskV , the rate of convergence to a delta function
decreases with increasingk.

By integrating the model (Eq.2) over the wave vector do-
main, the energy in the frequency domain can be obtained as
(Wilczek and Narita, 2012)

E(ω)dω = CF(U, V )CK ε2/3ω−5/3dω, (4)

whereCF denotes the coefficient

CF(U, V ) =

∞∫
0

dx

[
erf

(
x + U
√

2V

)
− erf

(
x − U
√

2V

)]
x2/3

2U
. (5)

Here we have assumed an infinitely extended inertial range.
Note that while the frequencyω in Eq. (2) can take both pos-
itive and negative values, we consider only positive frequen-
cies in Eq. (4) since positive and negative frequencies can-
not be discriminated by a single-point measurement. Con-
sequently, a factor of two is included into Eq. (5) in order
to conserve the total energy. Given an Eulerian wavenum-
ber spectrum with index−5/3, also the Eulerian frequency
spectrum will exhibit this power-law index, independent
of mean flow and sweeping velocity. The prefactor, how-
ever, depends onU and V . This implies that the observa-
tion of a frequency spectrum consistent with Kolmogorov’s
phenomenology does not guarantee the validity of Taylor’s
hypothesis.

3 Implications for the measurement of the Kolmogorov
constant

We now come to the main part of this paper and discuss the
implications of our model on the measurement of the Kol-
mogorov constant. To this end, we derive an expression for
the energy spectrum function obtained with the help of Tay-
lor’s hypothesis. This will be referred to as the Taylor energy
spectrum function, which then can be compared to the Kol-
mogorov energy spectrum function. We start by stressing that
the quantityE(ω) dω represents the energy contained in an
infinitesimal frequency interval dω. This quantity is exper-
imentally accessible by measuring time series of all veloc-
ity components, for example by anemometry with an X-wire
configuration. To apply Taylor’s hypothesis, the frequency is
simply related to the wavenumber in the streamwise direction
by ω = kz U , which upon insertion into Eq. (4) leads to

Ẽ (kz) dkz = E(ω)
dω

dkz

dkz

= CF(U, V )U−2/3CK ε2/3k
−5/3
z dkz. (6)

This spectrum describes the energy density of the turbu-
lent fluctuations resolved with respect to the streamwise
wavenumberkz and thus is related to the one-dimensional
spectra (Pope, 2000)

Eij (kz) =
1

π

∞∫
−∞

dz
〈
ui(x)uj (x + zez)

〉
exp

[
−i kz z

]
(7)

by

Ẽ (kz) =
1

2
Eii (kz) . (8)

For power-law spectra of Kolmogorov type, as considered
here, a simple relation between the one-dimensional spectra
and the energy spectrum function exists in the inertial range
(Pope, 2000),

1

2
Eii(k) =

3

5
E(k). (9)

Together with Eq. (6), this leads to the Taylor energy spec-
trum function:

ET(k) = CT(U, V )CK ε2/3k−5/3 (10)

with

CT(U, V ) =
5

3
U−2/3CF(U, V ), (11)

where the subscript T is introduced to discriminate the en-
ergy spectrum function based on our model under application
of Taylor’s hypothesis from the “true” Kolmogorov energy
spectrum function.
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The interesting point about this result is that the energy
spectrum measured with Taylor’s hypothesis takes the form
of the original Kolmogorov energy spectrum function (Eq.1)
multiplied by a factor that depends on the mean and random
sweeping velocities.CT(U, V ) is a non-dimensional prefac-
tor that depends only on the ratioξ =V/U . ξ can be iden-
tified with the turbulence intensity in good approximation,
because the kinetic energy in the small-scale velocity field is
small compared to the fluctuations of the random sweeping
field. To explicitly see that, we substitute Eq. (5) into Eq. (11)
and obtain

CT(ξ) =
5

6

∞∫
0

dy

[
erf

(
y + 1
√

2ξ

)
− erf

(
y − 1
√

2ξ

)]
y2/3. (12)

This result stresses the importance of the turbulence inten-
sity for the validity of Taylor’s hypothesis. In the limit of
vanishing turbulence intensity (corresponding toξ → 0) the
“true” Kolmogorov energy spectrum function has to be re-
covered. In this case the error functions in the integrand re-
duce to sharp Heaviside cutoffs, which leads to

lim
ξ→0

CT(ξ) =
5

3

1∫
0

dy y2/3
= 1. (13)

For non-vanishing turbulence intensities, however, these cut-
offs are smoothed out. A closer inspection of the expression
shows thatCT ≥ 1. This can be seen by appreciating that
the error-function term represents a bump-shaped function
which preserves its area irrespective of the turbulence inten-
sity. Compared to the zero-turbulence intensity case, the am-
plitude of the bump is decreased fory < 1, but almost sym-
metrically we now get contributions fory > 1. As this error
function term in the integrand is weighed by the monoton-
ically increasingy2/3, the correction has to be positive and
increasing with the turbulence intensity.

A graphical evaluation of the coefficientCT as a function
of turbulence intensity is presented in Fig.1. It is evident
that the influence for moderate turbulence intensities below
25 %, as they are usually met in experimental setups, is quite
small. For example, in conventional passive grid turbulence
in a wind tunnel, the turbulence intensityξ is typically below
5 %. Hence the correction toCK expected from our theory
is negligible. In more recent active grid turbulence in a wind
tunnel, the turbulence intensity is usually below 20 %, which
leads to corrections of around 2 % or less. For turbulent jets,
ξ in the centerline can reach about 25 %. Even in this case the
correction toCK is still small, approximately 3.5 % only. If,
however, the large-scale fluctuations exceed the mean flow,
significant errors occur.

As summarized inSreenivasan(1995), experimentally
measuredCK for 50< Rλ / 2× 104 lie within the range
1.62± 0.17. These values are in general agreement with
DNS results, but the scatter of data is significant.Sreenivasan
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Figure 1. CoefficientCT of the Taylor spectrum (Eq.10) as a func-
tion of the (approximate) turbulence intensityξ = V

U
.

(1995) argued that neither the stability nor the large-scale
shear in the atmospheric surface layer caused large varia-
tions of CK ; each of the two mechanisms affectsCK by a
few percent. The results discussed here, in line with those of
Wyngaard and Clifford, provide an additional source which
adds to the experimental scatter in measuredCK values in
geophysical flows, which are featured with strong fluctua-
tions at large scales.

It would also be interesting to extend our analysis to
plasma turbulence, in which a−5/3 spectrum in the fre-
quency domain has been reported by various in situ space-
craft observations of the magnetic field in solar wind tur-
bulence, for example, ranging over nearly three orders of
magnitude as measured by the WIND spacecraft (Podesta
et al., 2007). Naively speaking, the use of Taylor’s hypoth-
esis seems to be justified in this case since the fluctuation of
the flow velocity is of the order of 10 % of the mean flow
(about 400 km s−1). However, the magnetic field fluctuation
may reach 100 % of the mean field (which is in the range 1 to
10 nT). Thus the effect of the Alfvén waves needs to be in-
cluded for a quantitative estimate of Taylor’s hypothesis in
the solar wind.

4 Conclusions

To summarize, we have used a simple model for the
wavenumber-frequency spectrum to systematically quantify
the influence of large-scale sweeping velocities on wavenum-
ber spectra that are experimentally accessible using Taylor’s
hypothesis. While the application of Taylor’s hypothesis for
power-law spectra yields the correct scaling behavior, we
have found that random sweeping effects lead to a system-
atic overestimation of the Kolmogorov constant. For mod-
erate turbulence intensities, as usually met in laboratory ex-
periments, the corrections are of the order of a few percent.
In geophysical and astrophysical situations, where the flow
is usually is not as well controlled as in the laboratory, the
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turbulence intensities can reach high levels where significant
corrections to the measurement have to be taken into account.
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