Nonlin. Processes Geophys., 21, 852014
www.nonlin-processes-geophys.net/21/61/2014/
doi:10.5194/npg-21-61-2014

© Author(s) 2014. CC Attribution 3.0 License.

$s920y uadQ

Stochastic electron motion driven by space plasma waves

G. V. KhazanoW, A. A. Tel'nikhin 2, and T. K. Kronberg 2

INASA Goddard Space FlightCenter, Greenbelt, MD, USA
2Altai State University, Department of Physics and Technology, Barnaul, Russia

Correspondence td5. V. Khazanov (george.v.khazanov@nasa.gov)

Received: 22 July 2013 — Revised: 19 November 2013 — Accepted: 21 November 2013 — Published: 10 January 2014

Abstract. Stochastic motion of relativistic electrons under determine the value of the control parameter at which the sys-
conditions of the nonlinear resonance interaction of parti-tem exhibits chaotic motion in the form of a strange attractor.
cles with space plasma waves is studied. Particular attenk this case, every particle can explore the entire phase space
tion is given to the problem of the stability and variability energetically accessible to it; as a result, the upper bound
of the Earth’s radiation belts. It is found that the interaction of the strange attractor can be put on a one-to-one corre-
between whistler-mode waves and radiation-belt electrons ispondence with the upper boundary of an energy spectrum
likely to involve the same mechanism that is responsible forwhose value depends parametrically on the spectral power of
the dynamical balance between the accelerating process arile wave. The chaotic motion on the strange attractor is er-
relativistic electron precipitation events. We have also con-godic with mixing and as a consequence, the evolution of
sidered the efficiency of the mechanism of stochastic surfinghe distribution function and all means obeys the Fokker—
acceleration of cosmic electrons at the supernova remnar®lanck—Kolmogorov equation. As the wave power increases
shock front, and the accelerating process driven by a Langabove some critical value, the phase space structure under-
muir wave packet in producing cosmic ray electrons. The dy-goes a change in topology called intermittency. The behavior
namics of cosmic electrons is formulated in terms of a dis-is more complex, exhibiting random transitions between reg-
sipative map involving the effect of synchrotron emission. ular and stochastic motion. In this regime, diffusion in en-
We present analytical and numerical methods for studyingergy is realized through the drift of orbits in phase space.
Hamiltonian chaos and dissipative strange attractors, and fofhe generic Hamiltonian model is extended to include the ef-
determining the heating extent and energy spectra. fect of dissipation of energy associated with the synchrotron
emission of relativistic electrons. It also proves possible to
represent the dynamics of the system in the form of a dissi-
pative map. For a dissipative system, the topology of attrac-
1 Introduction tors on which the motion appeared chaotic has the proper-
ties of fractional dimensionality. Another interesting effect

In this study, we treat the stochastic motion of charged parin the Hamiltonian system occurs when an extrinsic noise is
ticles resonantly interacting with nonlinear electromagneticpresent. Numerical computations are presented to illustrate
space plasma wave fields. Particular attention is given tGhe methods and to give insight, and, also, to verify analytical
the problem of nonlinear interaction between whistler modeyesyits. We believe that acceleration mechanisms due to the

waves _and Earth’s radiation .belt eIectrqns. Another prob-nonlinear wave-particle interactions are capable of produc-
lem of interest is the stochastic acceleration of cosmic waveng relativistic radiation belt electrons and galactic cosmic

electrons by space plasma waves at galactic shocks. We usgy particles.

a Hamiltonian formalism to treat these two problems. The First, we will apply the model to the dynamics of Earth’s
Hamiltonian’s equations of multiperiodical motion are as- radiation belts (RBs). It is suggested that wave-particle inter-
signed a measure-preserving map, the explicit form of whichactions, which are well correlated with the solar wind, may
is defined by the closed set of nonlinear difference equationspe responsible for the RB electrons. Energy diffusion due
The map is parameterized by some quantity, the control pato resonance with chorus waves can be a viable mechanism

rameter, having a hard dependence on the structure of th@yr generating RB electrons, and the cyclotron resonances
wave packet and its power. Using topological arguments, we
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62 G. V. Khazanov et al.: Stochastic electron motion

between electrons and chorus near the magnetic equator aig the Hamiltonian associated with the problem, and [ , ]
thought to result in particles being scattered into the lossstand for the Poisson brackets. We have employed here, and
cone, forming bursts of precipitation. We show that signif- throughout this paper, the system of units in which the speed
icant heating rates and pitch angle diffusion occur for the RBof light ¢ = 1 and the electron chardel = 1.

electrons with energies from a few keV up to a few MeV, and  For the field variablest and ¢, which are explicit func-

the calculated timescales and the total energy input to the ations of coordinates and time, we have to specify the coordi-
mosphere from relativistic electrons are in reasonable agreaiate system. We have chosen a Cartesian spatial coordinate
ment with experimental data. This is the subject of Séct. system whose axis is directed along the external magnetic
We deal with the problem of acceleration of cosmic rays infield, and the plane perpendicular to the external magnetic
Sect.5. High-energy particles observed in cosmic rays canfield direction is spanned by the orthogonal coordinates
be regarded as tails of the particle distribution in space plasandy. Now our manifold looks locally like a linear real space
mas. The energy relations show that collective plasma proR®, ¢* = (x, y,z) € R3, Pu = (Px, Dy, Pz) € R3,i.e., the lo-
cesses can play an important role in the evolution of the en€al topology ofM is identical to that of the space. We make
ergy spectra of cosmic rays. The observations of synchrotromse of the Lorentz gauge, assuming

emission from shell supernova remnants (SNRs) have shown

that most cosmic rays are produced by SNRs. We show thadlivA}' =0, A = (—By — At,0,0), (5)
eleptrons can be accglerated up tq high energies by the Langgt —rotAy, Ei=—0A,/0t, E; = Vo, (6)

muir and upper-hybrid electrostatic waves at the foot of the

front of gala}ctic ShOCkS' We follow up by, applying th? model where the subscripts t and | denote the transverse and lon-
to StOCh.aS“C surfing elec_tron acceleration at galacgc .ShOCkaitudinaI components of the electromagnetic wave field, and
o take |nt(_) account _the impact of synchrotron emission On—By is the vector potential for constant external magnetic
the dynamics and to interpret the synchrotron emission SPeCheld B (Landau and Lifshitz 1980. Then we write the

trum. wave field in the form of a transverse longitudinal wave with
slowly varying amplitude
2 Dynamics of particles

A
— (UEZ : Z; ) oStk z + ki y — wt). @)

Ay
We will consider the dynamics of a charged particle reso—( @ )
nantly interacting with space plasma wave fields. Hamilto-
nian formalism is applied to describe the dynamics in colli- The functionsA(et, ez) and U(et, ez) describe the repeti-
sionless space plasmas. As known, the Hamiltonian formaltive space—time structure of the envelope of the wave. Let
ism is based on the theory of smooth manifolds and differ-the shape of the envelope be given by a smooth periodical
ential geometry $chutz 1982 Arnold, 1988 1989. In this function f (et), such that
approach any state of a dynamic system is given by a point
in phase space. Let 2n-D (dimensional) smooth maniféld  f(++7,z+L) = f(t, 2), (8)
on which the Hamilton functioi# (¢, p) is defined,

1 2 n
9 9 b b EARA ) = b 9 1 8 1 8 1
(q q q", p1. p2 Pn) (q.p) 1) L ~ @T)L, af' ~ kL)L, ©)
Z

are canonical coordinates, be the phase space of a system. of kf

Then dynamics is determined by the Hamiltonian vector fieldwheree is a small parameter, the ratio of the oscillation pe-
9H 3 9H 9 riod 27 /w (or 2r/k) to the time (space) scal&( L), over

Ve T Ban 3y (2)  which the envelope varies. Thisalso serves as an ordering
P04 4" oPu parameter. Thus we assume the ambient magnetic field varies

whered/dq andd/dp are the basis vector fields, which act slowly over one wavelengtt? = £91In B/dz, and the wave

as linear differential operators on smooth functions. Equa-field is sufficiently smallA/m, U/m =¢.

tions ) are equivalent to the phase flow given by the differ- We now take into account the axial symmetry of the non-

ential equations perturbative problem, and introduce the new variables, an ac-

) tion (I), and an anglé9), by the canonical transformation,
¢"=[q" . H]=0H/dp,,

pu=|pu. H|=—-0H/dgq", (3) y=rsind, py = (mrwp)cos; (10)
H(q,p:t):\/(pM—A“)(p“—A,L)+m2+<p, (4) r=+2mwpl/mwp,wp = B/m, (11)

where p is the canonical momentum the vector poten- where r is the gyroradius, andvp is the angular gy-
tial, ¢ the scalar (electrostatic) potential of the wave fiéfd, rofrequency, respectively Sagdeev et al. 1988. The
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Hamiltonian @) in this representation becomes R?>xRxS,(p.,]) € R? 7€ R,0 mod2r € S. Because of
the explicit symmetries of time translation and rotation of the
H(z, pz;0,1;t) = Ho(p;, I) phase, the phase space representation offers significant sim-

» ) plifications in treating the problem. Indeed, the Hamiltonian
+|V2mopl HytAY  Jy(kr)+U Y Jukir) [cosy,  (12) (18 is invariant under the transformatior® énd (L0),

Ho(pz,1)=\/m2+p3+2mw31, (13) H=Hexpiy), Ht+T)=H(), (24)

Y =k,z +nb — wt, (14) consequently, the phase flow conserves the invariant of mo-
tion,

where Hyo(p;, I) is the Hamiltonian of the non-perturbative

system, andy is the phase of the particle in the wave field. sp, — k,I = const, (25)

In deriving (L2), the representation
where const. is a constant independent of time, determined

ethir o — Zjn(k,r)ei"9 (15) by the initial condition. This leads to the restriction of dy-

n namics onto a reduced phase space, acceptable coordinates
of which appear to be a canonically conjugated [géiru),
wherey is the phase variable, andis a new action vari-

. ) ) able. With these simplifications we can reduce this motion
is the set of all integers. We consider the case of resonanc

. 0 quadratures only if the perturbation has a trivial form
between the Doppler-shifted wave frequency and the gyro- . : o
motion of monochromatic wave propagating along the direction of

the ambient magnetic field. In the general case this non-
W = k3 +nb —w=0. (16) autonomous nonlinear dynamical system is non-integrable,
and the measure of its regular motions is equal to zero.
Resonant wave-particle interaction occurs whenever®)y. ( Consider the expanded phase space of the Hamiltonian
holds, which is satisfied for a seriesofalues for particles ~ System. Such a space has a natural structure of the bundle,
with different momentum and energy. Sufficiently close to athe base of which is the discrete timge=nT, n € Z, and
resonancey is slowly varying; thereforg. and/ are also  the fiber is theR x S space $chutz 19832. In this case,

has been employed, whevg(-) are Bessel functiong,, are
their derivatives with respect to the argument, and Z, Z

slowly varying variables: it is sufficient to describe the motion on some time inter-
. ‘ val (19,10 + T), for example,g' (o, uo) = (1, u1), where
e=v/oy, I/wl, p,/op,. a7 (Yo, ug) is the initial state of the system, agd is the map

at one period Arnold, 1989. In this way we have defined
This condition means that the adiabatic approach to thes map of the phase plane onto itself R x S — R x S.
problem of resonant wave-particle interaction is applicable.The map is a diffeomorphism, which forms a one-parameter
Choosing a particular resonanees s, we can transformthe  groupg” = (g1)" of diffeomorphisms of the phase plane, and

Hamiltonian (2) as follows: preserves the phase volume. This statement follows from Li-
ouville’s theorem. This bundle and the grogipacting on it
H(z,p:;0,1;t) = Ho(pz, I) are shown in Figl.
+[ /zmwBlyo—l.A(gt) T (k,,)+U(gt)JS(kt,)} cosy, (18) For the Hamiltonian8) and its invariant of motion25),
this group can be written in the form of a set of nonlinear
Ho(p,, 1) = \/m2+p§+2mw31, (19)  difference equations,
U =k.z+ 50 —wt, (20) U1 =y + OSINY, Yni1 = Yn + Fluns1) mod 2z, (26)

where all of the perturbation terms average to zero except fOOvhereQ is the control parameter, which defines the intensity
n=s. Agcor(_jingly, we write the equations associated with ¢ wave-particle interaction, and the functigfu, 1) de-
the Hamiltonian £8) in the form scribes the shift of phase acquired by a particle. The system
] 1 , ) (26) exhibits a rich variety of chaotic phenomena in various
p:=k; (V 2mwpl Hy ™ - AJg(kr) + U Jg (kt")> siny, (21)  parameter regimes. This kind of dynamics is typically related
. _ , . to the appearance of a strange attractor (SA), which repre-
I=s ( 2mwpl Hy Lo AT (k) + U U (ktr)) sing, (22)  gents persistent chaotic motion over a global domain of phase
z=p,/Ho, 6 = wgm/Ho. (23) space. In Fhat sense, the SA is to be a parad'igr_n for ob'_tain-
ing some information about the dynamics. This information
We retain in these equations only the leading terms, wherés primarily geometrical and statistical, such as the fractal
the small parameter automatically keeps track of the or- dimensions, spectrum of Liapunov exponents of the under-
dering. Now our manifold looks locally like the real space lying SA and the invariant distribution on the SA. Any SA
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exited state of a nonlinear medium, which emerges due to
the competition between dispersion and nonlinearity. Such a
wave represents in itself the bound state of a large number
of harmonics. It is worthwhile emphasizing that these are not
true modes of the nonlinear system, and thus interchange of
energy among these quasimodes will occur even in the ab-
sence of external noise. There exists a num¥ehat actu-

ally truncates the wave spectrum exponentially, and Ahis

is, in fact, the constant of coupling for stationary nonlinear
waves Sagdeev et g/19889.

Another approach to describing wave fields consists of the
proper choice of basis wave models in the standard form
of nonlinear wave equations. For instance, the applicability
of the Korteweg—de Vriez equation for describing nonlinear
space plasma phenomena is well established. In that case, the
nonlinear dispersion relation, which includes the main part of
Fig. 1. Map at one period (aftekrnold, 198§. information about wave dynamics, is what we chiefly need
(Bernstein et a).1957 Lutomirski and Sudarn966. A gen-
eral approach for deriving nonlinear dispersion relations has

is known to be both ergodic and mixinérnold and Avez

1968, and for many dynamical systems of interest, the phasc%ieen devellgp;ed in c(ijif;erent teghﬁiquezls,l\ggithgrrr?(lﬂ 9,
variable randomizes much more rapidly than the action vari- arpman(1975, andKaup and Newel(197§. They have

able u, allowing kinetic description in terms of a standard shown that any nonlinear dispersion relation conserves its

Fokker—Planck—Kolmogorov (FPK) equation for the distri- own form evendif theklvvave propagates ind_a we%l](.ly.inho—
butionw (1) alone. For area-preserving maps, the distributionMgeneous and weaxly nonstationary medium. This impor-

on any SA is trivially a constant. A common procedure for Itgnt conclusion kaILOVﬁ’] frgm .the stdro?? Stab'lolltyl Tj non-
finding w(u) consists of iterating an initial state, or of solv- linéar wave packet. 1he basic model for modulated waves
ing an FPK equation. Applying the invariant distribution, we na qlsper3|ve medium appears to be the familiar nonlinear
may replace time averages by phase-space averages in Calc%(_:hrodmger (NLS) equation,

lating the steady state value of a physical observabt& (i i (acD/at + vgad>/8z) + Mazq)/azz + (vg/Zko) AL

is an observable function in phase space, then the phase av- )
erage —gld°|® =0, (28)

for the complex wave amplitud® (Karpman 1975. Here
(G)= /d”w(”)G(”) @) the group velocityyg of the wave packet, and the parameters

. . i of dispersionu and nonlinearity are determined entirely by
is independent ofig (for almost all initial values:g in the a nonlinear dispersion relatian= w(kz, |¢|2) in the usual

basin of a given SA). We are obliged to say strange attracy, .

tor; now we should wish to prove that these kinds of objects
are common in the problem of interest, so we will try in the 1 2

. ' . = (0w/dk);,, u= = (dvg/dk), , g=(0w/0|P . (29
subsequent sections to develop all the proofs as explicitly as’ (F0/K)iq 2( vo/ )ko & ( /0P| )ko (29)

possible. The subscript denotes that we have to put these values at

k = ko, wherekg is the characteristic wavenumber. The ba-
3 Dynamics of wave fields sic nonlinear mechanism in this case is the ponderomotive

force that arises through the coupling of the high- and the
We are going to inspect the problem of dynamics of parti-low-frequency oscillations, and numerous possibilities of the
cles in space plasma wave fields. The first question of coursearametric decay and the process of modulation instabilities
is how to describe these wave fields. A common techniqugSagdeev et 311988. Equation 28), involving the effects
in studying the behavior of wave fields is to Fourier analyze of self-focusing and self-compressing, describes specifically
transform into mode amplitudes, to obtain an equation of mo-the dynamics of Langmuir, upper-hybrid mode and whistler
tion for each mode. If only thé&/ most important modes are mode waves, i.e., the very waves that usually are detected
kept, this motion is given by a set of ordinary differential (or inferred) in space plasmas and are likely to play a ma-
equations describing the evolution in time of the mode am-jor role in stochastic heating of particles. For application
plitude components. This procedure of Fourier analysis fol-purposes we discuss the relevance of the representations to
lowed by truncation is called the Galerkin approximation. the whistler wave events in the Earth’s magnetosphere. The
Any stationary nonlinear wave is known to be a strongly spatio—temporal structure chorus will need to describe the
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interaction and compare obtained results with experimentaivhich determines the spectral poweiw)/(2r). Substitut-
data. We will rely on the data represented by the CLUS-ing Eq. 31) in the expression3g), we obtain

TER mission §antolik et al, 2003, which provided tem-

porally high-resolution measurements of the wave events. InP = 2a%/F = 2F/G, (38)
this work, chorus emissions have been measured at a radial . .

distance of 4.4 Earth radii within a 2000 km region located and, a Fourier transform of EcBY) gives

cllose. to the Equator. The wave vgctor direction in this re-bz(w)/(zﬂ) — (wP/AF)sck (rw/2F) . (39)
gion is nearly parallel to the field lines, and the waveforms

of the packet show a fine structure consisting of subpackThe spectral representation means that the nonlinear wave
ets with amplitudes above 300 pT. In each wave packet, th@an be interpreted as a nonlinear wave packet whose ampli-
frequency changes with a typical rate of a few kHZsand  tude and widthAw = 4F/, unlike a usual wave packet, are
the spectrum is organized into two bands between 2 angyound with the coupling. It is known that any spatially local-

6 kHz. The spectral powef of the wave has its peak value jzed perturbations to an NLS equation will convert eventually
P ~107*nT?Hz ! at the frequency 3.8kHz, close to the into a set of solitons. This result has been proved by the tech-
half-gyrofrequencyv /2. The chorus emission, being a co- njque of inverse scattering transform (ISNewell, 1985.
herent whistler mode, has a slowly varying amplitude (en-According to the IST, solitons of the NLS equations play the
velope), with the time period” = 200ms determining the  role of harmonic waves in linear systems, and the representa-
repetitive temporal structure of the chorus. tion of solutions in the form of a set of solitons corresponds

In order to interpret these results, we will use solutions oftg a Fourier transform in linear equations. So esoliton
a nonlinear Schrédinger (NLS) equation, the applicability of so|ution of the NLS equation is
which to whistler mode waves is well grounddtagpman

1979. In the wave frame, Eq.26), for quasi-plane waves, Ns

takes the form b(z,1) = ZaiSCh(QiZ —Ft), (40)
i=1

i®+pd,. — gDl =0, (30) a?=F2/G, (41)

with ® = bexpiS, where b = BY/B is the wave ampli-

tude, normalized to the external magnetic fi#dand s is where Ng determines the total number of solitons. The IST

the eikonal of the wave. It is knowrkarpman 1975 that involves quasi-classical quantization, and solutictd pe-
Jdong to the discrete spectrum of values ofand F. The

an NLS equation has several different classes of solutions.” ; : A
Of these, the most stable solutions are the so-called wwosolitons of the NLS equation conserve physically significant

parameter envelope solitons properties, so the total spectral power is the sum of spectral
powers of the single solitons,

b(z —vt) =asch(Qz — Ft), (31)
a?> = F?/G, (32) PZXI_:PI'ZZAF/G’ AF:ZE’, (42)
F=Qv, G=uwog, (33)

_ _ _ ) where AF is the half-width of a power spectrum. To inter-
which are parameterlzed by the soliton Velomtﬁnd by the pret the Spatio_tempora| wave structure measureﬁ&n‘o_

soliton spacescale =1/0. We will assume the value of ik et al. (2003, we apply the results of theoretical analy-
to be clc_:se tayg. These solutions describe a nonlinear wave sjs to these data. We have approximated the temporal struc-
with a dispersion law ture of chorus presented I8antolik et al.(2003 in Fig. 2

w(k) = wolk) + ga?/2, (34) by the N-soliton solution of the type&™ =", E;sch(t/T;)

. _ _ . _ . with T; = (14.37,1.18,0.89, 1.03,0.84) ms, whereT; are the
wherewo(k) is the linear dispersion relation for whistlers  timescales of each subpacket. The fitted values of the wave-
forms were obtained from the CLUSTER data as shown in
Fig. 2. Figure2 has been added to identify the wave's fine
25 . : _structure. There is an apparent correspondence between the
andga®/2 is the nonlinear frequency shift. The NLS equa- | ot0me described by the envelope soliton solutions and
fuon 'S completgly integrable and possesses an entire set (\#ue experimental data. This gives us confidence to assume
integrals of motion. One of them, that those signals are at least close to the waveforms hav-

_ 2 ing the N-soliton envelope. As a result, we will assume the
P = | b“ds, (36) ! : .
representationd() is adequate for the waveform of a single
wave packet, where we have to accomplish the substitution
t — t —nT, to describe the quasi-periodical structure of the
p— (1/271)/b2(a))dw, (37) chorus emission. The ph)_/sical rt_aason_for the chirp effect_is
supposed to be the nonlinear dispersion of phase velocity.

wo(k) = wpk®c?/ (a)lz, + kzcz> , (3%)

is physically significant in virtue of the relation
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45 help of Eq. é1), then puts together the empiric daBaftolik

w0 etal, 2003; we evaluatga?/2 ~ 200Hz,F ~ 1, 2kHz, and

therefore, (@) ~2kHzs ! and @max~ 100kHzs 1. Thus

we explicitly show that the conditior44) holds. Note that
longitudinal inhomogeneities of the ambient magnetic field

‘ B(z) and particle densitWe(z) do not influence the effect

} because the fundamental moee= wpk?c?/w? is propor-

}. tional to B/ Ne, and this ratio is in fact a constant along a

35 *

30

25

20

15 force line near the equatorial plane. The rising tone of cho-

10 \ rus is observed in the region of generation and formation of
‘/r\ "/ J(‘..‘ waveforms due to self-modulation and, due to the propaga-
s M ., tion of waves away from this region when the modulation in-
stability is stabilized, this effect may vanish, as was noted by
Cully et al.(2008 andWilson et al.(2011). The spectral gap

0
(@ o 10 20 30 40 50 60 70 8 90

as is likely due to just the same competition between nonlin-
40 earity and dispersion under conditions of the exact cyclotron
. and Landau resonance at= wg/2, vy =vp. Presumably
/ \ the chirp-effect and spectral gap are rather the manifestation

30 of intrinsic properties of the typical nonlinear whistler mode
2 wave rather than a new type of emission.
2 7/ \ The effect of diffraction on wave propagation is described
. / \ by the third term of the NLS equatio2§). Let AD be the

/ \ angle of diffraction, AD= 2/ kd, whered is the perpendicu-
1o / \ lar size of the region of wave generation, an the wave

5

number. In accordance witlséntolik et al.2003, AD ~ 0.1
o and these waves propagate from their source nearly paral-
(b) 5o s s se s e @ e lel to the field line. Putting AD=0.1, k = 0.25knm1, we

Fig. 2. (a) Single wave packet with the envelope approximated by Will have an estimate of, 4 ~ 100km, and the lengthscale

N-soliton solution(b) Smooth curve given by sch/(L.18ms) cor-  of the wave field/; = kd?/2, I, ~2000km, which is com-

responds to the 2th subpacket. parable with the spacescale of the envelopezAtO the
wave beam has a plane phase front and a Gaussian distri-
bution of amplitudeb(r) = b(0) exp(—r?/d?). The solution

Indeed, it can be shown, any gradients of physical fields willof the equation shows that the width of the packet grows as

lead to the change of wave vecték/dr = —dw/dz. Con-  42(z) = d? (1+ (Z/zd)Z), and the radius of curvature grows

sidering this expression and the nonlinear wave dispersiog g — z+12/z. As z/13>> 1; the originally plane wave

(34), we can obtain the equation of transfer of wave informa-pecomes spherically divergent, its amplitude decreases as
tion kd?b(0)/2z, and its width grows ad(z) ~ 2z/kd. For ex-

P 5 ample, if the wave was generated at a lakgand traveled a
<§ + Uga—z> w=0 (43) great distance to reach Polar, this effect will lead to a lower

intensity at PolarTsurutani et a].2011).

As a consequence, we conclude that the nonlinear dispersion AS noted above, the impact of the inhomogeneity of the
relation is always the same along the group velocity vector@mbient magnetic field and density fields on the wave prop-
(%, Uga%)7 even if the frequency (and wavenumber) changesadation is negligible because of a constancy of the ratio

slowly over the time period of the waver 2w, such that B/Ne. The solutions of an NLS equation, in particular with
a parabolic profile of perturbations, are well knowe(vell,
w2 /w K lo=0w/dt. (44) 1985. According toNewell (1989, the wave power spec-

trum and shape remain unchanged if the envelope’s size (in-
Then taking into account the nonlinear wave dispers8),(  trinsic spacescale) is less than the spacescale of an exter-
one computes the wave drift rate= (g/2)da?/dt. Apply-  nal field. Typically, this condition is easy satisfied. Another
ing to this the soliton-like solution for an envelope, the de- source of perturbations can be the spacecraft itself. As long
tailed evolution of the wave frequency (exponential growth as the size of the spacecraft is much less than the wavelength,
of frequency on the initial stage, nonlinear dependence on theéne effect of imperfection of the wave can be described as
wave amplitude, etc.) can be studied. The mean and maximahe scattering of a soliton-like packet on this defect. This ef-
rates are evaluated as~ ga?/T ~ F?/(oT), andomax~  fect is local, therefore it immediately appears in the wave
ga’F /3~ F3/(3w). One calculates” = /ga2w, with the
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measurementsHastings and Garrettl996. It is possible  whereAg is the characteristic amplitude of the wave, and

that it helps explain the modification of waveforms in wave is the width of the frequency spectrum. In the ligkt — O,

events Santolik et al. 2003. expression§1) can be transformed into
Another powerful tool, especially when the explicit shape

of a nonlinear wave is unknown, is spectral representatiorf\ (61, 62) = AerW/T —n).

in the so-called form of time- and space-like wave packets nez

(Sagdeev et g11988. Let f () be a periodic functionf (s + There is a time-like representation (TLR) of a wide wave

(52)

T) = f(¢), given by the convergent Fourier series packet. In deriving it we have used the relation
FO =" fae™ " w, =2mn/T, @5) > ™ =21 8(x—27n), (53)
ez o ) ) ) wheres(+) is the Dirac delta function. Carrying out the same
whose coefficienty, satisfy the Parceval identity, procedure with respect to Ecp), in another limitsew —
T 0, the expression takes the form of a space-like (SL) wave
2 2 o 1 2 packet
DE=(20), (2= o | o (46)
n o Alet,e2)=Ar Y _8(z/L—n). (54)
nezZ

Let f(¢) correspond to a certain realization of a physical pro-

cess. Then the measurable quantity €), and/or its spec- ) ) o o

tral densityy" | f,|2. One assumes this function character- 4 Whistler-electron interaction in the Earth's radiation
" .

izes the intensity of a nonlinear wave packet. As mentioned ~ belts

above, each packet is a bound stateNofjuasimodes, and W ficle int . ith ch is believed to be th
N takes part a constant of coupling. The implication of this ave-particie interaction with chorus 1s befieved to be the

is that as interchange of energy among these quasimodéga'n mechanism for the acce!e.rayon of 1.0_100 kgv radlg—

occurs, the constant wave power, proportional £8), will _t|on belt (RB) electrong to relativistic energies, amajor tqplc

share evenly among the quasimodes. In virtue of B), ( in space weather physics today. In the area of investigations,

we obtainy_ | f,1? ~ N f2 ~ const., and consequentl V% progress is related to highly resolved wave measurements of
n n r " {

fo//N. where the value offp would have to be extracted intensive chorus3antolik et al.2003 Tsurutani et al.2011)

from a measured physical quantity, for instance, the spectra?nd oblique large amplitude whistleS4ttell et al, 2009 as

. . . ; ~~well as observations of relativistic electron microburst pre-
density. A more rigorous result, obtained in the theory of d|s-Ci itation eventsBlake et al, 1997. These results show that
tributions, states the followingRichtmyer 1978. Let () P iy '

X ; the usual quasilinear models of electron energizations and
be a generalized function such that : . . :
scattering via small amplitude incoherent wav8sirfimers

f@+1=f(v), g"27”f(f) = f(r), t=t/T, (47) et al, 2007) may be inadequate for understanding radiation
. o belt dynamics. There is a need to develop a new theory for
then, this function is found to be wave-particle interaction between RB electrons and coher-

(48) ent whistler mode waves. Some aspects of the problem have
been treated biraith et al (1997, Roth et al.(1999, Wykes
et al. (2001), andAlbert (2002, who showed that the non-
The wide wavepacket approach follows from these stateqinear coupling between a monochromatic whistler wave and
ments and the physical meaning of the theory of nonlineaspe bouncing motion of RB electrons may lead to a random
waves Gagdeev et al1988. Taking the structure of a wide alk in energy and pitch angle. In this case, as shown by

f(r)= const.Z(S(r —n), const.= f;.

neZ

wave packet to be of the form Faith et al (1997, an electron gains energy only chaotically,
: hen the wave field exceeds a threshold value. These results
A (et, = A, Sin(nékz —néwt), 49 w . . L
(61, £2) Xn: (nokz = ndwt) (49) hinted that this mechanism may be promising in the many ap-

plications where the efficiency of particle heating is of prime
importance. In particular, these resonant random processes
Sk=2mn/L, S0 =21)T, (50)  May contribute to the 10- to 100-fold increase in the rela-
tivistic electron fluxes in the RBs, as well as constitute an
L, T are the length and time scales of the problem. Theninteresting relation between wave activity and enhancements
we suppose that all spectral characteristigs are equal- in fluxes during geomagnetic storms and other active periods
amplitude, and write the envelope of wave packet in the form(Roth et al, 1999. Finally, the concept of a strange attractor
(SA) was introduced b¥hazanov et al(2007 and Khaz-
anov et al(20083 in order to describe chaotic motion of RB
electrons under the conditions of nonlinear resonant interac-
Ar=Ao/vVN, N = AT, (51) tion with chorus. Strange attractors, which embody the idea

where

Alet,e7) = Ay Zsin(nakz —néwt),
n
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of deterministic chaos, the statistical aspects of SAs haveAv is about 1 kHz,T is no less than 100 ms, and therefore
come under explicit study. The method has proved fruitful in N ~ AvT (~ 10%). On the other handAv ~ , which indi-
describing the dynamics of electrons in the Earth and Joviarcates that AN ~ ¢, the small parameter given by E®)(
radiation belts. Thus we determine that the representati®) {s reasonable,
so the results obtained in these approaches either coincide or

4.1 Chaotic motion of the RB electrons driven by chorus  differ only slightly.

. ) L To understand the physical nature of these results, we ex-
We are concerned with the dynamics of nonrelativistic elec-5ine the dynamics of a particle resonantly interacting with

trons in the whistler mode chorus, which accelerates particleg e quasimode of the wave packet. According to E@),
to relativistic energies through the resonance the motion is governed by the pair of closed equations

—k.|v;] + wp — = 0. CORNNS (w3/20) von (/YN ) siny,

Taking into account the relatiang I = mv?/2, we write the ; 2 2
A o t U = (k%/20wp ) v?2.
invariant of Hamiltonian flow25) as

(56) Settingv; = vec + Av, whereu, is the value ofv; in the reso-
nance state, and linearizing this equation, we derive the equa-

where vy = vph (wp — w) /w is the resonance speed of an tions
electron, andy, is the perpendicular (t@) velocity of an

vt2 =2(wp/w) vph (vr — [vz]),

.. 2
electron. Then the equations of motid@1)—(23) can be rep- ¥ +oj,siny =0,
resented in the form w2 = wwgb /N (ve/2vp),
v = (a)%/Za)) Uph (b/x/ﬁ) T siny Z(S (t —nT), which describes the small (bounce) oscillations of the par-
neZ ticle with the frequencysp. Now we apply the overlapping
. . A .. ~ -1 .
V= 0 ) = 5 — ©— kv + (k2/2a)3> w2, (57)  criterion (Chirikov, 1979, wp > (Sa)_(_ T-1), to obtain the
condition of the onset of stochasticity,
We have also employed the invariant of motion, the value Of(vc/vp) > (2w/wp) VN /bw?T2. 61)

the Bessel functiow; (0) = 1/2 and the relationships
Note that the criterion can be rewritten in the foiip< T,
where Ty (~ a)gl) is the bounce period of the particle in

After integrating these equations, the problem is formulatedthe wave field. In amplitude—time terms, this relation deter-
in terms of aG" map, given by a closed pair of nonlinear mines the condition for parametric resonance between the

A/m = (wp/w) vpnb, b= By/B. (58)

difference equations, slow variations in the wave field and the proper oscillations
_ of a particle in the field. Thus the basic resonan&ss éand
n . Unt1=up+ QSINYy, (59) their interaction through parametric resonance play a crucial
CVYnt1=Yn+ %wTuﬁHSigm mod 2z, role in the appearance of stochastic motion.

. Our interest now is to inspect the motion of relativistic
where the new variable and the control parametg? have electrons, driven by chorus. By integrating Eqa1)((23)

been introduced by the relations along with invariant of motion25), we derive in the usual
b way theg” map,
u=uv /vy, Q=<w%/2a))vTP=a)BT(@)—, (60) .
2w \/N n. Upi1 = Uy + QSINYy,,

: —2/3 62
and P is the wave power normalized 2. The map §9) Yn1=vn + (3/2)K”n+/1 ©2
acts as the group” = (G1)" of diffeomorphisms of phase
space, hence the pdié/, G"), together with the invariant of
motion is equivalent to the periodic flov@)—(23). Khaz-  p_/m = p,u = p¥? andK = vgwpT. (63)
anov et al(20083 andKhazanov et al(2011) have shown

that the representatiors?) is tantamount to that given by Here the control parameter is given by

a solution of nonlinear wave Eg4@). The physical expla- 12 1o

nation of this somewhat surprising result is quite clear. Any Q = 3(@pvpn/20) ™ “vgwp(PT) 2,

periodic, nonlinear wave can be described as wave packep — ,2/Av, b= B,/B. (64)
consisting of some numbey of quasimodes with the fre-

quency spacingw ~ 1/ T, whereT is the time period of the  Solutions of that map have been discussed in detail by the
envelope. In the situation to which we refer, the half-width authors Khazanov et a).2008a 2011). Let us consider a

signu mod 2r,

written in the notations
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pair (M, ¢g"), where M is a smooth manifold, ang” is a 40
diffeomorphism. Denote by
_ 9Qunt1, Y1) (65) 20
9 (un, ¥n)

the Jacobi matrix of the map, the eigenvalues of which are = 0 ‘
given by the relations y

det/ =A1-r0=1,
trJ =A1+Ais=2+KQu >3, (66)

where det/ and trJ denote the determinant and the trace of
the matrix, respectively. The Jacobian 65)is equal to one,
and thereforeg” has the structure of a differentiable area- T . T T . T T

preserving map an@/, u) is the canonical pair of variables. 60
It is known (Arnold and Avez 1968 that the the geometri- =
cal structure of\f and dynamics 0" on M are intimately 30

closed, and that the condition
trJ| =3 (67)

corresponds to a topological modification at which the dy- -30
namics of the system becomes chaotic. In this situation, a sin-

gle phase trajectory investigates all accessible phase space -60 | )
Whiph is cglled _the strange attractor (SA). 'I_'he strange attrac- 3 2 1 0 1 2 3
tor is the invariant seg”SA = SA, n — oo tightly embed- (b) v

ded in phase space. The motion on any SA is random over

a wide range ofQ due to the global stability of the SA, on Fig. 3. Phase space for the maf§ after 2x 108 iterations with
which all means (observables) are stable indifferent of any@) Q = 0.5 and(b) Q =0.98.

(reasonable) initial conditions. Then we apply the condition

of Eqg. (67) to the relation §6) to obtain the upper bound of

{u) The phase space of the m@&f is shown in Fig4. The over-
all picture of the phase space is quite different ok uc
up = (K 0)%°. (68)  andu > uc. In the first case, the motion is regular. Figdre
o indicates the existence of a threshold for the initial particle

Shown in Fig.3 is the strange attractor of the p&i/,¢").  yelocity above which the trajectory becomes chaotic. We as-
Figure3 shows that the stochastic region extends to the val-yme that nonlinear electron acceleration by a wave packet
ues ofu predicted by Eq.G8). __ ofwhistler mode waves is always a stochastic process.

Finally, using the relation$5@) and 68) along with invari- Now using the invariant of motior56) and resonance con-

ant of motion 5), we find theQ dependence of the upper ition (55), we have the relationship
boundary of energy spectrufy,

Ep=m(KQ)%°. (69) e= (1+ u2/4)2, (71)

At typical values of parametergg/w =2, wg/2m =8 x
10°Hz, P =10"%nT?Hz !, B=300nT, T =2x10"'s
(Santolik et al. 2003, the expression6Q) yields Ep >~ "
8MeV. In this way as above, we can say the same about th?n
pair (M, G™), just changing the order of words a little. In-
deed, in this case, the conditioi7j proves to determine the
lower bound of{u},

uc="4/w3T~PT, (70) ~ and evaluate®?) asE¢ ~ 25keV, Eg ~ 100keV. Lastly, the
expressionq?2) is taken as a criterion that stochastic motion
which is in good agreement with the numerical solutions andoccurs, making available reliable information about the in-
results of qualitative analysis. With the values of the parame-+ensity of wave fields. Setting; be vt/v;, wherevt is the
ters as given above, the expressidf)fyieldsuc ~ 1x 10-3. thermal velocity, and considering the lower boufd@)(and

wheree = E/E; is the particle energy normalized to that at
exact resonancé >~ 25keV). Putting in the expressionl)

= uc andug = /2wp/w, we determine the range of heat-
ge € (ec, eg), Where

ec21+u§/2, eo=(1+a)3/260)2, (72)

www.nonlin-processes-geophys.net/21/61/2014/ Nonlin. Processes Geophys., 28562014



70 G. V. Khazanov et al.: Stochastic electron motion
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Fig. 4. Phase space for the mag at 0 = 2 x 10-3. (a) A sin- Fig. 5. Intermittent chaotic behavior of mapg) with Q = 5x 1CP.
gle trajectory of length & 105 The initial point (104, 3x 10-1). (@)t = 2 x 103 and(b) ¢ = 2- 10% iterations of a single initial con-

(b) A single trajectory of length & 103. The initial point (1674, dition.
1075).
we write
u? < 1, we evaluate the available wave intensity, _ 2/3
sinyo = 0, <3K/2uo ) — 27, uo = up, (74)

P> 10"8nT?Hz %, By > 1pT. (73)

h . ¢ hich th . I whereuy is given by expression6@). These equations are
The equations from which the SA arises are usually parameg i<fie provided) takes the value

terized by some control parameter, whose variation changes
the character of the dynamics. The control paraméer 0=0c Oc=(3K/4m)52K1L. (75)
as a rule, depends directly on the intensity of the wave

field. First, we consider the dynamics gf under condi-  The test does predict the phase modification rather well. We
tions when the wave perturbation is larger than that observedind this behavior numerically and can give an interpretation
Figure 5 shows the evolution of the system over time at in terms of the theory developed Bhazanov et al(2008H.

0 =5x 10°. The picture indicates that the system demon'SubstitutingQC in Egs. 69) and (74), we obtainig ~ 3x 103,
strates both chaotic and regular dynamics, a so-called chaotignd therefore£y ~ 100MeV. Finally, Eq. 75) yields Q¢ ~
intermittent behavior. This behavior is more complex, ex- 103, which is three orders of magnitude larger than typical
hibiting random transitions between regular and stochastig/alues ofQ(~ 0.5— 1). The explicit expression foP, the
motion. In this regime, stochastic diffusion governed by theya|ue of the wave power at which pronounced intermittent

SA is realized through the drift of orbits in phase space anddynamics occur, results immediately from E64;
can be expressed in terms of a FPK equation that describes

an increment in entropy rather than the diffusion in action p, = (2/9)(3/47)%(wT)?(B?/w), Pc ~ 10°nT2Hz L. (76)
(Khazanov et a).2008h. The phase modification is associ-

ated with the appearance of fixed elliptic points, which occurThe results show that the intermittent chaotic motion is possi-
when an initial saddle point of the attractor changes to a stable only in extremely strongBy,/B ~ 1) wave fields. Under
ble elliptic point as the control paramet@rincreases above typical conditions, the long-term evolution of the system is
the appropriate critical valug.. To determine these points, dominated by diffusion induced by stochasticity.
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4.2 Statistical properties of the dynamics
0.04

The dynamics of the system exhibits a random walk, and all
points of the phase trajectory tend to a certain strange at-
tractor (SA) atz — oco. The appearance of such an SA repre-
sents persistent chaotic motion over a global domain of phase
space, as shown in Fi§. There the joint probability density 0F
oY, u,t) is proportional to the number of phase points in the
element of phase space. We see that after a few iterations the a
action distribution remains localized while phase randomiza-
tion occurs, and that the final distribution is random. Thus,

we have good evidence for statistical properties in the re-
gion for which the system exhibits chaotic motion. Once the
phase variable becomes rapidly varying, the evolution of the 0.01
coarse-graining function

b4 0.005

1
Wi 1) = E/pw,u,r)dw, @ P
i oFr

obeys the Fokker—Planck—Kolmogorov (FPK) equation for

theu variable alone. In this case, the nature of the evolution -40
to the steady state is so-called deterministic diffuslaoht-

enberg and Liebermana992. As the canonical status of the

phase variables has been demonstrated above, the distribu-
tion function (probability density (u; ¢) is governed by the

FPK equation in the standard form 0.0008
ow(u;t) 10 Jw
———==-—D—. 78
ot 20u  du (78) 0.0004
Here D is the conventional diffusion coefficient in phase
space, 0
D =< (ups1—un)® > T~ = Q?/2T, (79) 2
where(u,+1 — u,) is substituted from eithey” or G", <->
denotes the phase average, &nid the timescale of the prob-
lem. The functionw(u,t) is a differentiable function sup-
ported in{U} with the norming Fig. 6. Joint distributiono (v, u) computed numerically vig" at
several different numbers of stefga) 102, (b) 103, and(c) 2 x 10°.
/ wu, du =1, (80) The parameters are the same as in Big.
ue{U}
where{U} is a range of the variable. The restriction onu is needed because the spectrum is

First, by means of" (or G") we calculate the diffusion ~bounded from above. Then, by means of ) @long with
coefficient and evaluate the characteristic time for redistribu-EQ. (72), we calculate by formulas7) and 81) the diffu-

tion of u over the spectrum sion coefficientD, ~ 1s™! and the time of diffusion in,
5 ) tq ~ 16s. For the functiomw (u) restricted tduc, ug], the in-

ta = 2up, /D =T 2um/Q)". (81)  variant distribution can be given by

We exploit the FPK equation witly(x) and its derivative w() = (o — ue) L. (83)

dw/ou vanishing at the upper and lower boundaries. We in-
troduce the moment u? >= (" _duu?w(u), multiply equa-  This means that the random variahlés evenly distributed
tion (78) by 2, and integrate the resulting equation oveo on [uc, uo]. Now we evaluate the energy distribution func-

obtain tion, w(g), in the range of non-relativistic energies. Consid-
) ering u? = 4( /e — 1), we note that the particle energy
d<u®>/dr=D, ue{Ulu<un} 82) isa specified function ofi. Thus the measure-preserving
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transformationw(e)de = w(u)du determines this problem energy distributionw(e,?), and taking into account the
completely, subject to appropriate boundary conditions. Thenvariant of motion and the relatioa= E/m and E =

corresponding solution far(e) is found to be \/mz + p2+2mwp1, we find, after appropriate transforma-
1/2 i i i '
w(e) = w(u)/z[e (JE— 1)] / e € (ec€0). (84) tions, that the following equation fao (e, ¢) results in
By means of Eq.&4) we find the mean energy) ~ 0.5e¢o. dw(e, 1) _ 31(6) Je) = Dy (ii B i) wie.1). (89)
This solution relates directly to the behavior of the system  d¢ de” 2 \9ede 9e2 T
near the order—chaos bifurcation transition. Equati®?) ( . ) . )
may be written as Then it may be possible to find the heating rate
d<v?> /dt = D,v7. 85 E 2 E 4e}
<vt>/ ulr (85) (jj—t’_vg(e—b> -t—b,tdz Q—g T, (90)
Then considering Eq.86) we find the rate of change of ¢ d

magnetic momeni, i = v?D, /2B, and the heating rate

. . . . wherezt,; is the relaxation time to the steady-state distribu-
E ~ Eg/t, (~ 6keV3‘1). This result is nontrivial, because d y

tion. It is worth noting that the injection mechanism at low

chaotic motion in the u, v)-phase space leads to nonadi- . . o . .
. . ) ! ergies, which may be intimately related to particle heating
abatic magnetic moment changes and stochastic heating o . . )
is the important aspect of space physics. Since the rate of

plasma particles. The gyroradius is a direct measure of th%lectron cyclotron resonance heating is proportionat t@

pgrpendlcular elegtron velocny. Thl.JS the sto_chas'gc heatmqhis is, indeed the case. We put the characteristic values of
will be accompanied by a radial drift of particles in space. " . .
these quantities at typical conditionsg/w = 2, wg /27 =

Indeed, considering the relatien= v, /wp, via (85), we get 8x 10°Hz, P — 10-4nT2Hz-L, B — 300nT,T — 2x 10-1s,

the following expression to determine, with the help of Eq$669) and Q0), the upper

d<r2> ) 5 o . bpundary energy spectruy, ~ 8MeV, the time of diffu-

- Dy, D; = D,/ /w5, (N 10%cn?s ) , sionty ~ 2x 10%s, and the heating rate ~ 4keVs 1, which
are all in reasonable agreement with experimental daga (

where D; is the coefficient of collisionless diffusion across lesnick et al. 1997 Selesnick 2006. These results lead to

the ambient magnetic field. two important observations:

Now we describe the effects associated with stochastic
heating of high-energy particles. Due to one-to-one corre- 1. Nonlinear electron acceleration by a whistler wave

spondencey = p¥2, and usingdp = 2du/3pY/2, one ob- is always a stochastic process when the wave power
tains the coefficient of diffusion ip, D, = 4D, /9p. Then of the wave exceeds the threshold value given by
the measure-preserving transformatiop = w, |du/dp| re- Eq. (73).

sults in the probability density ip, w, = 3ﬁ/2p§/2. There
is an important relationshipy? D, = w?D,. Furthermore,

u

one can easily prove the invariant relation

2. In this case the related quantities have the following
dependencies on the wave power,

1/5 ~2/5 £ p3/5
w2D, = w2D, = inv.,inv. = 1/2t4 (86) Ep o< PY°, 14 0c P7#° E o P¥/°, (91)
takes place for any(x), and depends smoothly anthe co- with the power law indices determined by the type of
ordinate on the SA, whose distribution functien = w(v) nonlinearity in the phase advance equation.

relates withw, through a measure-preserving transforma- o L
tion, with D, given by a quadratic form of its variation. We Bursty relativistic electron precipitation (REP) events dur-

see that the invariant is given by the rate of diffusion on thel’d geomagnetic storms appears to be the most striking
SA. We come to know as well that the FPK equation for phenomenon in the dynamics of the Earth’s radiation belt.
w(v, 1) can be written in divergent form The chorus—electron coupling has been closely identified

with REP eventsGreen et al.2004 O’Brien et al, 2004,
dw(v, 1) 9 1 andKhazanov et al(2011) have shown that the process of
ar ﬁj(v)’ J) = 2 < stochastic electron heating followed by the pitch-angle scat-
tering is actually a viable mechanism for these REP events.

Dvi—i-d,,) w(v,1), (87)
v

where the transport coefficients are given by The authors have investigated the problem, finding, in partic-
1 ular, that the energy flux in the Earth’'s atmosphere is directly
Dy = D, (9v/0u)?, d, = EDua/av(av/au)z. (88)  proportional to the heating rate of a single electron. That is

why the enhancement of the flux is often observed during the
The above equations have important consequences in denagnetospheric storm. The reswdi is telling in the Con-
termining the heating rate. Then, introducing the particleclusions.
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4.3 Adaptability of the Fokker—Planck—Kolmogorov t T
equation d
We have seen that diffusion on a strange attractor (SA)
is described by a Fokker—Planck—Kolmogorov (FPK) equa-
tion for theu variable alone, where is a canonical vari-
able on the SA, proper for a certain physical situation. The
FPK equation to which we refer indicates that an initial
function distribution diffuses to a random distribution. Any
measure-preserving transformation frarto some new vari-
ablev(u) has been shown to preserve the invariant relation — |
wZ(M)D(u) =1/21,, with u replaced byv, indicating the L e p
universal nature of the diffusion process on any SA. In this
case, the distributiorf (v) can be found by a direct transfor- Pe Py P
mation f (v) = f(u)du/dv without solving a relative FPK

equation. However, if we are, for example, concerned withFig. 7. Time of diffusion as a function of wave power. Hefg and
the evolution of the energy spectrum, we should use the FPK™2 are th.e critical wave powers for the applicability of the FPK
in divergent form. equation in QLT and NLT, respectively.

Quasi-linear theory (QLT) does predict the long-time evo-

lution of RB electrons on the basis of an FPK equation. The effect of a magnetic mirror in modifying the motion can
However, in the standard formulatiohyons and Williams 5150 play an essential role in certain physical situations.
1984 Summers et al.2007), the wave field of whistlers is Such a physical situation can emerge when RB electrons
treated as random, broadband and phase-incoherent. Thygteract with the so-called quasi-coherent chorus, whose fre-
this formalism can not be directly applied to the problem of 4,ency spectrum contains low-intensity isotropic white noise
elect'ron motion in the regular wave field of chorus. In the (Tsurutani et a.2011). The physical explanation for these
nonlinear approach, we apply just the same FPK equatioRyaye events is quite clear. These are likely to relate to the
in which phase averaging is made due to dynamics itselfjeqular nature of the Earth’s ring current injections, which
and all time means of observable functions are equal to th%enerate chorud iemohn 2006.

phase space means. This approach corresponds to the stan-the |evel of background noise is relatively small; conse-
dard FPK description in statistical mechanics and facili'[atesquenﬂy this effect can exhibit in the equations of motion
f[he_applicability of kinetic models in_ vyhich the RB dynam- only as the fluctuations of parametess and Q. Thus the

ics is simulatedKhazanoy 2011). As itis known, QLTS are  conro| parameter is a function of the magnitude of wave
based on some linearized equations of motion, and the chafie|q , and therefor@ — Q(1+£), wp — wp(1+&). Here

. . - . . . . . _ 2 A ) ; 2 )
acteristic time of diffusion in energy is given by=E</D ¢ _ 55 /p is the random variable having a Gaussian probabil-
that depends on the wave powBras P! in certain en- ity density

ergy ranges. In the nonlinear theory (NLT), the rate of dif-

fusion hinges on the type of interaction, for instance, it obeysp(é) _
the scalingzy ~ P~2/° for chorus-RB electron interaction. V2ro
Shown in Fig.7 is the time of diffusion as a function of wave
power. Since the inequality;/ T >> 1 is a condition for ap- ) X . X X
plying the FPK description, these dependencies have imporgzlIs ths mttensn)éof riO|s§,harKilfhthe Ktr(.)ngcker.delta. gifi
tant consequences in determining the range of values ofwavg n order to understand nOw the extrinsiC noise moariies
power for which the FPK formalism is valid. It is just the ynamics, we consider its influence on motion separately.

same thing to evaluate the permissible values of chorus wavghus’ we include the_ add|t|onal_n0|se @" only n the .
fields, P1, P» and susceptible to FPK description, in QLT phase advar_lce equqtlon, to obtain the closed pair of nonlin-
and NLT, respectively. HereP; and P, are determined by ear stochastic equations

Eqgs. 73) and (76), respectively. They yield’;/ Py = 104, Uns1 = ity + QSINY,

and P>/ Po = 107, where Pp = 10-*nT?Hz 1 is the typical 5

value of wave powerSantolik et al, 2003. Ynt1=Vn +& + 1/HoTu;,; mod 2, (92)

Although it is normally thought that the results from sim- yhere the terng, plays the role of a weak stochastic force.
ple problems give qualitative predictions of the behavior of  Nymeral investigation of a related quantity, the correlation
more complicated physical systems, many questions cong,nctionC (k)

cerning the dynamics of the system still exist. A particularly
interesting aspect concerns the effects resulting from the resc (k) = (1/N) Z Y)Y (n+k),
onance interaction with the quasi-coherent whistler waves. neN

O
o
~,
.,
-,
. NLT
e,
e,
“ua,,
~

exp(—£%/202),

the mean-square value of which (i,£,/) = 028,,/, where
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wherek is the step lag, gives the results shown in Fg. 35
The motion has been shown to&eorrelated, withC (k) =0
for k # 0; this represents a very strong chaotic property, i.e.,
a complete decorrelation of the motion in one mapping pe-
riod. Note that FPK description is valid only when the func-
tion C (k) falls off rapidly with the number of mapping it-
erations. The effect of extrinsic noise manifests itself in the
FPK equation as an additional term in the coefficient of dif- )
fusion, D/ D, = 162/ Q2. This effect does not significantly
affect diffusion induced by stochasticity, due to the global
stability of the SA. L5 ‘ ‘ ‘

The situation is quite different for ion cyclotron resonance 0 > 10 LS 20 2 30
heating (ICRH) Lichtenberg and Liebermaid992. In this
case the dynamics is intrinsically degenerate, and the nonFig. 8. Dependence of the correlation functighk) on , corre-
linearity arises from the finite gyroradius, which leads to a SPonding (1) to the mag™ without noise and (2) with nois&g)
spectrum of modes in the motion, and the term proportionaf©" calculations over 2000 points.
to Q occurs in the phase advance equation. This method has
been used by the authors in conjunction with the problem of
ICRH at the front of a shockhazanov et aJ.2010.

Now we want to study how the Earth’s magnetic mirror
effects change the dynamics 6f and how much impact it

whereg, is a random variable. At last, assuming that these
fluctuations are white noise, we arrive at equations of motion
- . : fthat are similar to the maj®®). Hence, the system generates
has on the statistical properties and long-term evolution o diffusion analogous to that described above. Some numerical
the SVS‘eT“- . . L experiments seem to verify that behavibaith et al, 1997,
' The dnft equations .for paruf:le motion in a current-free Roth et al, 1999 Zheng et al.2012 2013. It is obvious that
field are given bySchmidi(1979: the effect of bouncing on the dynamics may be investigated
2 2 in just the same way.

va=v B/B+[F, B]/B° F =— ('U“ tmy /B) ’ JIt should be notegl/that the tergp in the system acts with-
dv/dt = —(u/m)dB/ds, (93) out significantly changing its statistical properties; moreover,
numerical investigations obviously reveal that the SA re-
mains in the sense such that we can't tell the SA&bffrom
that of system 92) by whichever sign. However, if we re-
move the nonlinear term from the phase advance equation,
then the term dominates the behavior of the system fully.
Y Now, we examine the problem of energization of RB

whereuy is the drift velocity, F the free force averaged over
a gyro-orbit,u the magnetic moment, andthe coordinate
along the field line.

In the drift approximation, is an adiabatic invariant,
which is assumed to be well conserved. Since the energ
of a cha.rged particle gyrating in the Earth’s magnetic mir- electrons subject to resonant coupling with oblique large-
ror 1s strictly conservedy is relat.ed to the constants of the amplitude whistler waves. The existence of such waves is
motion u and E through the relatiom; = 2(E —uB)/m, . n6rmed by direct measuremen@sttell et al, 2008 Cully

which is easily calculated for a given functioh. In the o4 5 2008 Kellogg et al, 201%; Kersten et al.201 Wil-
equations of motion, describing the resonant interaction with

high-f fields. the f ven b son et al.2017). In our calculation, we will rely on the rel-
igh-frequency wave fields, the forces given by EXB @ver- evant experimental data @fattell et al.(2008 andWilson
age to zero, as do all other off-resonant terms. All the same

dual effect | ¢ which lead to th t al. (201]). These waves have a broad range of wave nor-
residual etiects are always present, which iead to the usuay, anglesy with respect to the magnetic field (202§@nd
distortions of the phase plane near resonances of the princ

. . ) . |érge peak-to-peak amplitudeB; ~ (100— 200 mVm~1
pal frequencies, and can be physically associated with t.h ith B, ~ 1nT, E, ~ 100mVnTL. The timescale of the en-
loss of phase coherence from one passage along the fie

. . ; ) lope is typicallyT ~ 0.2s, and the mean value of the
line. To show how this occurs, we first write EQ0] as frequency at peak wave power is (0.2-0ap)~ 1.5kHz).
y = yq +rcosd, wherey, is the guiding center position of

. . i . . We have used this data, as well as the dispersion relation
the gyrating particle. Then, this dependence in th&ari- P

able gives rise to the ter ys, and as a consequence, the © = ©B (kz/“’r%) cosy (Stix, 1992 where wp is the elec-
term{k;vgT }, — {k;vgT }ns1 = {k;vgT}, where{-} isthe frac-  tron plasma frequency~(1.1x 10°s™1), to estimate the
tional part, occurs in the phase advance equation. We cawavenumbek ~ 2 x 10~*m~1 and group velocityg ~ 5 x
eliminate this term by a shift of or ; however, small asym-  10’ms™1.

metries or time variations in the magnetic field exist, which  From Hamiltonian {8) we see that the amplitude of
allow stochastic diffusion to occur. If these variations are ran-the interaction terms is proportional to Bessel functions,
dom, we would write an independent equat{épvgT} = &, and the Bessel coefficients (k,;r) give the fall-off of the
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Fourier amplitudes. Thus we will examine only the resonance
of driving with the fundamental of gyromotiot, p,/E +
wpm/E — o = 0. Then, because the Bessel functions tend to
zero as Y/k,r atk,r — oo, we have to choosgr ~ 1 — 3,
which corresponds to the values &f(-) near a maximum

in the Bessel function. This choice automatically imposes
certain restrictions on the energy spectrum of particles. In-
deed, taking into account the invariant of motid@b), and

the relations;r ~ (1—3), wp/k, ~1,r = /2mwpl/mwp,

we find, without much difficulty, the range of particle ener-
gies, in which the wave-particle interaction is most effective,
(k;/k;)/2E]m ~ (1—3), E < 10MeV.

First we will study the problem provided the condi-
tion B,/B > (J1(-)Uo/Jim)+/E/m holds. By integrating
Egs. 1)—-(23) along with invariant of motion25), we de-
rive, in the usual way, a map that is similar to iemap de-
scribing the chorus—electron interaction, except that the con-
trol parameter contains the ters#j(k,r)(~ 0.1). This simi-
larity means that the given dynamical system manifests it-We see the extent and rate of heating at this wave-particle in-
self in just the same way as tig¢ map; as a consequence, teraction are proportional thyJ1(k,7), just as it is expected.

001 T T T T T T T

0.005

-0.005

-0.01 =

Fig. 9. Phase space— y for the map 94) at 0 = 0.98x 104,

the heating rate is governed by the same B).(However,

We extract from Eqs.94) and ©8) the following estimates of

the intensity of coupling, in this case, is determined by the E,, ~ 5MeV andrq ~ 10*s. We have seen that generic, non-

magnitude of the wave field multiplied by the factg(-). It
stands to reason that the expressigt) femains the same,
after appropriate modifications/P — +/PJ;(-). So these

linear behavior in the interaction with oblique waves restrict
the extent and rate of particle heating, which, to a certain ex-
tent, accounts for the nature of wave-particle interaction.

waves are about four times larger in magnitude than those Electron acceleration in the radiation belts is a well-
measured by SAMPEX (The Solar Anomalous and Magneto-established fact. Whistler-RB electron coupling ranks among
spheric Particle Explorer), and the heating rate of the procesthe most important accelerate mechanisms that are likely to
is comparable to that caused by chorus—electron coupling. play a major role in maintaining the entire pool of RB elec-
Let the dynamics be dominated by interaction of the parti-trons. Acceleration of RB electrons, which are driven by
cle with the electrostatic (ES) component of a wave. Takingwhistlers up to relativistic energies, can proceed in the very
the wave field to be in the form of a space-like (SL) wave short time of~ 1h or less, and manifest itself in bursty rela-
packet b4), we convert the equations of motion into the map, tivistic electron precipitation events. We have used topolog-
ical arguments to determine the value of the control param-
(94) eter at which the dynamical system exhibits chaotic motion,
in the form of a strange attractor. In this case, every particle
can explore the entire phase space energetically accessible to
it; as a result, the upper bound of the strange attractor can be
put on a one-to-one correspondence with the upper boundary
of an energy spectrum whose value depends parametrically
on the spectral power of the wave. The chaotic motion on
the strange attractor is ergodic with mixing, and as a con-
sequence the evolution of the distribution function and all
) _ means obeys a FPK equation.
The map 94) belongs to the class of Fermi mappings, there-  As it appears from our model, one thing is certain: the self-
fore this map possesses an SAcfitenberg and Lieberman  consistent nonlinear approach to the RB electron dynamics
1992. Shown in Fig9is the SA of the system, whose upper offers far more perspective than the QLT. There is every rea-
bound is defined by the equations son to believe that an FPK description has turned out to be
a true one, after a fashion. The nonlinear approach suggests
ub=+0. Ep=wT/Qm, that it may be possible to obtain theoretically a kind of scal-
which is borne out numerically. ing law for the rate of diffusion that would be applicable to
The invariant distribution on the SA is a trivial constant, most whistler wave events. Thus, studying the model of non-
and the time of diffusion in energy is found to be linear diffusion can lead to important results, both from the
point of view of interpreting experimental data and of obtain-
tg=(4/O)T. ing reliable information from the approach.

Uptl = Uy + QSINYy, Yyy1 =Yy +1/upp1, mod 27,

where the variable and the control parametér are defined

by the relations,
u=(E/mwT), Q= Ji(-)Uo/m~/N, (95)

and the spectral characteristd and the ES potential are
given by

N = AvT, Up= EbL/k,. (96)

(97)

(98)
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5 Stochastic acceleration of cosmic-ray electrons lems, including the confinement of particles in fusion de-
vices, radio-frequency heating, acceleration, and heating of
It is well known that high-energy particles observed in cos- particles by nonlinear wave packetsahtenberg and Lieber-
mic rays can be regarded as tails of the particle distributionman 1992. Thus, it was natural to study in terms of the
in space plasmas. The energy relation (the energy per uniRSM how relativistic effects modify the nonlinear motion
volume of space plasma is approximately equal to the energgescribed by the SM. It is worth noting that these investi-
per unit volume of cosmic rays) shows that collective pro- gations of RSM provide us with a more profound knowl-
cesses occurring in the plasma can play an important role irrdge of many general properties of relativistic chaotic sys-
the evolution of the energy spectra of cosmic rays. In thistems. A possible mechanism for strong heating was proposed
connection, it becomes relevant to determine how the enby Papadopoulos, and the first simulation was performed by
ergy should be redistributed in cosmic rays so that the energgargill and Papadopouldd988. It was shown that colli-
spectra could contain particles with very high energés-(  sionless shock waves propagating away from a supernova
plan and Tsytovichl973 Ginzburg 1989. Supernova rem- may be directly responsible for the 10 keV X-ray emission
nant shocks are thought to be the primary source of cosmiseen in SNRs. A sequence of plasma instabilities between
rays, because supernova remnants (SNRs) are able to prthe reflected ions and the background electrons at the foot
vide the energy necessary to maintain the observed cosmief the shock front can give rise to rapid anomalous heating
ray density. Synchrotron emission from SNRs indicates theof electrons. A somewhat different approach to the problem
presence of 100 TeV electrons, and inverse Compton scatwvas taken byDieckmann et al(2004). A self-consistent sim-
tering of background photons by ultrarelativistic (UR) elec- ulation was performed by these authors to show that ions
trons is a very plausible explanation for TeMray emission  reflected from SNR shocks can excite large-amplitude elec-
from young SNRs Reynolds 2001, Treumann and Tera- trostatic waves through the beam-plasma instability. Another
sawa 2001, Vink, 2004 Abdo et al, 2009. mechanism that has been investigated to explain the accel-
The current description of cosmic ray acceleration up toeration process includes the nonlinear coupling of the beam
UR energies is the well-known first-order Fermi accelerationof cosmic rays escaping away from a supernova, with back-
at the SNR shock fronBell, 1978 Blandford and Ostriker  ground Langmuir waves. Estimates of the rate of instability
1978. In the first-order Fermi model, wave turbulence makesfrom this type of interaction were made Bmzburg(1989,
the particle momenta isotropic, thus particles can cross thevho found that the characteristic time of the instability would
shock front many times. Simulations show that the efficiencybe about a few years.
of the mechanism depends on the spectra and amplitudes of As a consequence of this, chaotic dynamics of relativistic
MHD fluctuations, and their fluctuation amplitudes, and rel- electrons is of particular interest. Thus, the nonlinear inter-
ativistic particle distributions are a natural consequence ofaction of high-energy electrons with an extraordinary elec-
the stochastic acceleration by turbulent plasma waves. Asromagnetic wave propagating across a given magnetic field
the effect of energy loss through synchrotron emission is notvas investigated baslavsky et al(1987. They estimated
included in the model, the gradual high-energy cutoff hasthe rate of the diffusion and found it to be sufficient to ac-
been attributed to the balance between the acceleration arcklerate an electron up to UR energies. Chaotic dynamics of
escape processes, which leads to a steady-state distributioelativistic electrons in the spectrum of Langmuir waves has
(Liu et al, 2008 Muranushi and Inutsuk&009. In addition ~ been considered bilimov and Tel'nikhin (1995 in terms
to this, it should be noted, the wave-particle interactions inof a map given by the closed pair of nonlinear difference
the model are treated in the linear approximation. equations. More complete calculations, including the gy-
There is also another treatment of the problem relatingroresonance effect were made lggornykh and Tel’'nikhin
Hamiltonian chaos to nonlinear interactions of particles with (2003 who showed the role of the gyromotion in random-
plasma wavesSagdeev et 811988 Horton and Ichikawa izing the phase of particles. Finalliirotov and Tel’nikhin
1996. A dynamical system that can be represented by a1998 have shown that the stochastic heating of particles by
measure-preserving map and that illustrates the nature ahe nonlinear Langmuir wave packet in space plasmas can be
stochasticity was proposed by Fermi as a model for costegarded as a possible mechanism for the formation of the
mic ray acceleration. There are, as a matter of fact, vari-energy spectrum of cosmic rays.
ous versions of this model, all characterized by a phase ad-
vance equation that is inversely proportional to the velocity.5.1 Stochastic surfing electron acceleration at Galactic
The review of the class of Fermi maps was madd_lat- shocks
enberg and Liebermafi992. Another important model is
the relativistic standard map (RSM), which was indepen-Besides the Fermi model for cosmic ray acceleration, there
dently proposed bZhernikov et al(1989 andNomura etal.  is another possible mechanism for the generation of cosmic
(1992. The RSMiis the relativistic generalization of the stan- rays proposed b¥eller (1971). In this approach, the shock
dard map (SM), introduced W@hirikov (1979. The standard wave emerging at a supernova explosion is capable of ac-
map is well known for application to a wide class of prob- celerating cosmic ions with the spectrum which quiet good
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corresponds to the empiric spectrum. However, this spectrum
of escaping relativistic ions turns out to be unstable in regard @ B
to some plasma instabilities. The self-consistent simulation
of Dieckmann et al(2004 showed that such a beam of rel-
ativistic ions can induce a collisionless shock. This shock
arises as a consequence of strong nonlinear upper-hybrid
(UH) solitary waves which are driven via the beam instabil-
ity by the ion beam. In this scenario, typical for collision-
less shock generatior(tsimovich and Sagdeet979, the
shock front is formed by the dissipative process caused by

particle heating, and the tail of the wave manifests itself as r y
UH wave perturbations in the foot of the quasi-perpendicular \V

shock. The dispersion law of the electrostatic UH wave (its

wave potential is about 1 rigat the foot of shock front is — Vb

w:kvf,vffvb,a)z,/w%—i-a)%, (99) | X

the dispersion law of which is a typical condition for plasma
modes induced by a beamrsimovich and Sagdee979,
where wp is the electron plasma frequency, and v, are
the speed of the front and beam respectively. In this situaequation of phase oscillations

tion electrons can be accelerated up to relativistic energies

through the mechanism of surfin@dgdeev et gl.1988. . 5 w3 o 3

The model of surfing is in general similar to the Fermi—Ulam ¥ + @y SINY = 0, wp= v <w—> 23U,

model Lichtenberg and Liebermat992 of acceleration in B

which the fixed wall plays the role of Lorentz force. This e=E/m, Uo=go/m, (105)

force doesn't change the particle energy and results only iRypere.,, s the bounce frequency in the wave field. In writ-

the drift of particles along the fropt (look at the pﬁctl_Jre in ing (105) we have taken advantage of the dispersion B, (
Fig. 10.)' The way t_he ele_ctrons gain energy 1 by picking Up e relation kr)r =1, and used the asymptotic expression of
wave field energy in multiple encounters with the shock frontthe Bessel function; (/) ~ 1/1%3, which is valid for/ > 1

(Sagg_eev ﬁt all'g'S&I lof th b h By requiringwp > dw, wheredw = wg /e is the spacing be-
Taking the original potential of the wave to be of the form .00 adjacent modes, we obtain the overlap condition

Fig. 10.Particle trajectory at the front of a shock.

then Eq. 2) can be written as which indicates the value of wave field at which electrons

j= Z‘”O”J" (kr)sin(é — wt), 6 =wgm/E (101) with energye can be accelerated in random manner. At last,
- ’ ’ we find from above the characteristic time of the variation

E_ \/’m’ v =n0 —or. (102) of I and ¢ is of order 2r/wp ~ (27 /wp) e, Which essen-

tially exceeds one periodn2w. The small parameter =

In this case electron cyclotron resonance heating (ECRH) is’s/@e ~ 1/s serves as the condition for the applicability of
accomplished by resonance between the gyrofrequency aniée adiabatic approach, developed by the authtonsi¢anov

the UH wave, etal, 2010. . .
] The condition of adiabaticity) <« wvr, I < wl allows us
Y =swpm/Ey—w=0, s€ZsC Z, (103) to write Egs. {01)—(102) in the form

which is satisfied for a series sfvalues for particles of dif- v =swge > — w, I = 25Js(s)poSiny T ZS (t—nT),

ferent energies.
A . L . T=2n . 107
To begin with, let us consider the dynamics in a single e/wp (107)

mode. Choosing a particle resonance-/, we can write  \We have carried out the following transformation here,

Egs. 101)—(102) as o e |
i : Zwoan(-)e’”Q*“”f = @os Js (s)e! 07t Ze’"wB’/e,
1 :<PolJ1(kr)Sin(1//), I/f =la)3m/E—a). (104) oy

Linearizing with Egs. 104) in the vicinity of the exact res- employed the identity} ei"®s!/¢ =T " §(t —nT), and
onance, putting of quantities at the resonance, we obtain theaken into account that the wave-particle collisions occur
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twice during one gyroperiod. After integrating, Eq407)
reduce to a map

2/3 -
eni1=en+ Qey>siny,, 0 =2(w/wp)?*Uo,

Vi1 =Yy + 27 (w/wp)ep+1 Mod 2r, (108)

where s = (w/wp)eC> 1), Js(s) ~ 1/27s1/3 have been
used.

Now we have to obtain the equations of motion under con-
ditions of strong energy losses due to synchrotron emissior = 3HG,
and inverse Compton scattering, the rate of which is given byV€

é= —ﬂsez,

where s~ 0.5 x 10 1%s~1 at B =3uG Ginzburg 1989.
Calculating the loss of energy over the gyroperiod yields
Ae = —aed, a = Bs/ve, vp = wp /27, (109)

which is valid if Ae/e < 1, e < 10'°. Then we combine
Eqg. (108 and Eg. 109), to obtain a dissipative map

2/3 .
ent1= ey (1 — ote,%) + Qen/ siny,,

Ay =212 e,i1 mod 2t (110)
wp

Then, lettingw (e, n) be the energy distribution, we write the
FPK equation corresponding to the mapa.Q

ow(e,n) . 1 92 0 3
o —EW(D(e)w)—i-&(ae )w,
D(e) = Q%¢*3)2, (111)

wheren is the iteration number. Now the evolution of ob-
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) 3/ 0 \83

pl — AP )
whereeg is a characteristic energy given by E419). This
equation predicts that the power law will dependwae)

with solution

const

e~%3 at low energies < ep.
Choosing the following values of quantities
vp=8Hz, and wp=27-8x10Ps1,

evaluate ep=10°(Eg=50TeV, 1q~5x 10°%yr,
dE/dt ~ 100/¢23MeVs 1), and the parameters = 510,

o =5x 1072%. Numerical investigations of Eqs110) at
these parameters gave the results shown inHigThis fig-

ure indicates the spectrum is bounded both above and below
the values obp ~ 4 x 108(Ep ~ 200 TeV) and Ec(~ 14eV)
defined by Eq.106). In Fig. 11b, the analytical expression
(115) is compared with the numerical results. The numerical
points of the spectrum in the main ran@ge< Eg all fall

full on the curve w(e) =const E~%3 as predicted by
(115. Then when one takes into account the geometry of
problem (Fig.10) and assume the distribution along the line
of sight is isotropic, we can write the differential flux of
electrons as

dN /dEdS2 = (¢/27) Ne(E¢) (r(Eo)/r) w(E) (116)
with the gyroradiusr proportional toE, w(E) given by
Eq. (115, and whereNe(E¢) is the density of resonant elec-
trons atE = E¢. If we substitutew(E) in Eq. (116), this ex-
pression becomes

dN /dEdQ = constE~7/3 exp[—(3/8) (E /E0)8/3] . (117)

servable functions can be described by the FPK equation fowith the spectral index- 2.33 in the range of low energies,

the moments ofv(e, n), M (m) = [ ¢"w(e,n)de. In this way

E < Eop.

we have revealed the relaxation time to a stationary state with Since the electrons radiating their peak spectral power at

the mean value
3/8

() = o= (02/4) (112)

which is equal tay; = 1/ 0%%«®8v5, and the mean rate of
ECRH is determined by

dE/dr = Q%vgm/e?/>. (113)

It is worth noting that the injection mechanism at low ener-
gies, which may be intimately related to particle heating, is
the important aspect of cosmic-ray physics. Since the rate o

ECRH is proportional t&£ —2%/3, this is indeed the case. This
stationary distribution, provided, dw/de vanish at infinity,
is given by

(114)

2
0 4
J(e) = QT (e4/38—j+§el/3f> +aedw =0,

Nonlin. Processes Geophys., 21, 685; 2014

frequencyv have energies = /v/vs, vs = 1.26 x 10°B, we
find that the spectral flux density of radiating electrons with
the energy spectrum.?) is

P, = consty=%/3 exp[—(3/8) (v/v0)4/3] , (118)
wherevg = vse3 (~ 4 x 1016Hz). Note, the mean radio spec-
tral index is about 0.5Reynolds 2001), or 0.6 Stevenson
and Green2002 with a spread of order 0.2.

Inverse Compton scattering of cosmic microwave back-
ground (CMB) photons by relativistic electrons is a plausible
xplanation for TeW-ray emission from SNRs. We denote

by ep the energy of a primary CMB photoay(~ 10-3eV),
and E,, as the energy of g-photon. It is well known
(Ginzburg 1989 that electrons with energiesx m /4ep can
scatter only soft photong,, = epe? that contribute to radio
and X-ray spectra, while high-energy electrans m/4ep
will scatter photons with energies, < E, whose spectrum
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' K ' ' d i B 5.2 Stochastic heating of cosmic-ray electrons by
SO gt o a Langmuir wave packet

e, 108

The interaction of relativistic particles with Langmuir waves
is thought to be an important mechanism for producing cos-
mic rays Kaplan and Tsytovichl973 Ginzburg 1989. Ac-
cording toGinzburg (1989, the rate of the Galactic beam-
plasma instability, which generates Langmuir waves with the
frequencywp = 3 x 10*s~1 and minimal wavenumbek =
10-8cm1is about 168s~1. Thus the time—space scales of
such a Langmuir wave packet are likely to Be= 108s and

L =3x 10'cm, respectively. As long as the group veloc-
ity of Langmuir waves is much more less than the speed of

20 fa - &

1.0
B

-2 light, we concern ourselves with the problem of the nonlin-
., ear interaction of relativistic electrons with a spacelike (SL)
; —4 Soe,, H it
= wave packet provided the Cherenkov resonance condition
- _6 kp./E —w =0 is met. A particle moving in this wave field
. is governed by the equations
B b= (k<p0/«/AkL) siny Ly 8(z —nL),
*o, n
-12 V =kp,/E — w,. (119)
T . s 6 7 s o In the usual way we reduce these equations into the map
(b) lge
Epi1= E,+/(k/Ak)kLg2siny,,
Fig. 11. (a)Phase space— ¢ and(b) the energy distributiom (e) ntl ! (k/ ARk Logsing
for the map {10) with parameter®) = 9.2, = 1021, Yny1=Vn +kL

ande. = 102.
‘ —wpL (E,wl/,/E,f+1 — m2> mod 2, (120)

is similar to the energy spectrum of electrons. Note that"hich was introduced bitlimov and Tel'nikhin (1993 and

this characteristic energyi(/4ep, ~ 10°) is comparable to the Krotov and Tel'nikhin(1998. _
mean energy of electrons. In this case, Compton losses in In the nonrelativistic limit, these equations reduce to the
fact are insensitive to the energy of electrons, and an electrod€!l-known map

loses its energy with the rate tHr = 5x10~4s~1 (Ginzburg .

1989. To find the spectrum of Tey-photons, we firstmod-  Ent1= Ey 4/ (k/ Ak) kLog siny,,

ify this expression as it has been done above, then after sub; B I 2
stituting in the FPK equation, the following expression re- Vn+1="Yn+kL—CONSY/V B, E = p®/om,

sults: which describes the heating of particles in an SL wave packet
. —2/3 _ 2/3 of electrostatic wavesSagdeev et 81.1988. In the con-
P, = consty exp[ (3/2) (Ey/Eo) ] : trary limit, (E/m)? > 1, map (20) in terms of the variables

The tail of the equation describes TeMphoton spectrum. (, u) becomes

This spectrum is quite softer than that given by expres- Unil = Un + QSINY,,
sion (118); the signature of the spectra observed in SNRs$ - VYnitl = Yn +1/2u5+1sigru mod 2r,
(Reynolds200% Vink, 2009.

Our results allow the inference of an efficiency of shock u = Ep./|p.imvkL, Q =./(k/Ak) Ué,
acceleration of electrons via the electron cyclotron resonancey, — ¢ /m. (122)
heating and indicate that stochastic surfing acceleration is
likely to play an important role in producing relativistic elec- Numerical investigations of the map @t« 1 indicated the
trons at an SNR shock. appearance of the strange attractor (SA), shown in Eig.

The upper bound of the SA is given by

(121)

up=Q°, (123)
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Fig. 12.Strange attractor of the mapZ1) at Q = 1.1 x 103, : ) ! !

120
which is borne out numerically. The energies over which 80
heating can occur are limited to those given By =
m~kL QY3 (~100GeV atQ = 1073). S
The equations from which the SA arises are usually 40

parameterized by some control parameter whose variation
changes the character of the dynamics. When the control pa-
rameterQ becomes greater than a critical valQe, the sys-

tem exhibits intermittent chaotic behavior shown in Hig-

We are already familiar with this kind of dynamics; how-
ever, we have never seen such a curious behavior before.
It appears that after a finite number of iterations the system
demonstrates an intermittent transition to regular unbounded 600
motion. Following the approach #thazanov et al(20088,

we describe the motion as the composit®ho g (Arnold, 400 + ]
1989, whereg” is the map {21), andG! is the Hamiltonian

N
flow acting on a smooth manifoltf2. The goal is to find this
G'. The action ofG’ is associated with an adiabatic motion, 200 )
which is realized when the following relations
0
3K /4mu?P « 1, Q/u< 1, siny =0 (124) . . . . . . .
-3 -2 -1 0 1 2 3
are valid. Now the evolution of the orbit’s phase flow is de- (c) v
scribed by the vector field . . . . . . .
v=0sinyd/du+ (1/2u®)d /vy, (125) 0
on which the family of invariant curves is given by
-400 ¢ 1
h=Qcosy —1/2u. (126) s
This i serves also as a Hamiltonian function of dynamical ~ -800 1
system 125, the proper values of which are defined by the
initial values of (v, u) on the SA. Because the behavior of . . . . . .

the system is completely determined by these proper values -1200 -3 2 -1 0 1 2 3
of h, we can find the density of states in the space of param- (d) %

eters,p(h) = t =dI'/dh, wheretr =¢/T is the time of mo-

. . . . Fig. 13.Phase space,  for the map 121) at Q = 0.367. Number
tion along the orbit, andr (k) = f“(h)dw is the phase area of iterations increasing frorta)—(c)and(d) asN = 4.2 x 10%; 8 x
10% 2.2 x 10P.

Ch
bounded by the invariant curn@, (Arnold, 1988. Invoking

Nonlin. Processes Geophys., 21, 685; 2014 www.nonlin-processes-geophys.net/21/61/2014/



G. V. Khazanov et al.: Stochastic electron motion 81

Eq. (126), we obtain ' ' T . . . T

20
o ) 2\3/2 .

pih) =7 2n|h|/(h %)™, In= 0. (127) 0
Arising singularity in distribution 127) at |z| = Q, we can 2
characterize its-vicinity. As the radius of thes-vicinity 0
tends to 0, it makes the mean density tends to infinity. As
a consequence, the staté$= Q are the most likely states -10
of the system. In finding an explicit expression 10¢, we
use Eq. {26 with |#] = Q to find |umin| = 1/4Q. So far as -20

all these orbits start from the SA, the,n belongs to the SA.
Then by equatingmin to theup given by Eq. 123), we ob-
tain Q¢ = 1/2+/2, which matches quite well to the numerical
values. If we substitut®. in (122), assumingc/Ak = 100, 120
andk = 10-%cm™1, these required magnitudes of wave field
turn out to belg ~ 3 x 1072, and(Ej)c ~ 10 2mVem1.

Now we formulate the problem of dynamics in terms of the

801

variables(u, i). These variables allow us to obtain more fine =

information about the geometric structure of phase space. 40

Carrying out the procedure, we derive the following equa-

tions: 0
1

W= Edz—i—w(u), w(u):h/2u+1/8u2, (128)

whereW is an invariant of motion. To our surprise, we run 5000

up against the old Kepler problem here. This can be seen di-
rectly from (128) by defining the effective potential(u). It

is worth noting that this problem, unlike the Kepler one, is =
invariant under the transformatid@n-#, u) — (h, —u). Until

the proper values oW are less than 0, the system exhibits 2500 1
bounded motion; in another case, which is realized for ex-
ample, ath = —Q and umin = 1/4Q, the motion becomes
unbounded. Strange as it may appear, the singularity in dis-
tribution (127) leads to a topological modification of phase
space. At first, changes in topology emerge provided the con- , . . , ,
ditions Q > Q¢ but |k| > Q hold. In this case, the topolog- -3 -2 -1 0 1 2 3
ical space is a direct sum of the strange attractor and torus. (c) v

There is another change in topology/at= Q. As it appears
from Egs. 125—(126), the trajectory approaches infinity at
Y =0, or£x, and the vector field vanishes. It is known, on
the other side, any vector field on a torus vanishes nowher
(Arnold, 1989; consequently this kind of dynamics is asso-

Fig. 14.Dynamics of the systemil) in the off-resonant case. Here
0 =0.367 andw = /2 x 1074, (a) 2- 104, (b) 3.5 x 10%, and
éc) 8 x 10% iterations of a single initial condition.

ciated with a metamorphism of phase space. in the form
Now we consider the dynamics of the system in the off- _ ) 5
resonant case, i.e., when the phase velocities of the waves= Qsiny, ¥ = —Q+1/2u”. (130)

in the packet differ from the speed of light. Setti@g), 7" —
kL)ymod2r = Q, 2 > 0, to be the phase shift in the phase
advance equatiorl@l), we numerically investigate the be-
havior of the system. Shown in Fid4 is the phase space  — o sinya/du + (1/2u2 - Q) a/0y. (131)
evolution of the system. We cannot resist the fascination of

the strange behavior. Trying to understand it, we write the|t js easily seen that the functidnchanges its sign, vector
phase flow associated with the Hamiltonian, field (131) is invariant under the transformation

The proper values df in turn determine a family of invariant
curves on the vector field

h=Qcosy —1/2u — <, (129)  u— —u, ¥ — ¥+, (132)
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and the fixed points of the vector field are given by

Yo=0, Juo| = 1/v/29.
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80
(133)

40
One considers these dynamics in a configuration space pro-

ceeding to the variable:, it). The procedure for deriving the
invariant of motion

W= %uz +w), wu) =h/2u+1/8u° +hQu+ Q%u?/2, (134)

is the same at that used for obtainint®. This poten-

tial is symmetric with respect t6-4, u) — (h, —u), and the

turning points are situated next {@min| = 1/40, |umaxl =
20/ Q2. Theseumax determine a monochromatic energy state
Emax= z,nﬂQ/Q with different directions ofp, mo- Fig. 15. Phase space for dissipative mdB% with Q0 = 0.4 and
mentum. The potentialb(x) has a local maximum at the «=8x107°.

fixed points, and the motion near these points obeys the equa-

tion +(Q/u8)sin1/f =0, which shows just the same in-

variance 132, and the tangent vector at a point of fixed

points chaqges its direction. Thus there are two aIIowabIeEquation (36 defines the phase shift away from the res-
local coordinate systemg)’, u’) and (/,u), whose deter-  gnance and in implicit form determines the range of ac-
mlntjmt of the transformation matrix from one to another, -gssiple proper values of, u < /OJa (~ 200 in virtue
/oy 0 ,is equal to-1. There is very good reason 0f Eq. (122); the upper value of energy should be about

/
b ? atllf] /tatL;]' fold is a direct fthe st ,100TeV. The estimates seem to verify this inference.
0 betieve that this maniiold 1S a direct sum otthe strange at- -, propound the model of the stochastic dynamics of

tractor and the Mobius strip. In the resonant case, the Wldtr’felativistic electrons driven by the Langmuir wave packet.

of this strip approach infinity. Therefore, the off-resonant ef- Whether or not a model like this can be applied to the cosmic-

fec_t eliminates a possibility of unt_)ou_nded m_otlon. To de- ray electron acceleration, seemingly, will be a problem for
scribe the effect of synchrotron emission and inverse Compi

. X . uture research, when such a kind of model will need to be
ton scattering on the dynamics, we again apply the metho

developed above (Sect. 4.1, formuleD9)). In this way we dzrr?cpeairr??hgl:gsiig:;rrgllgsl;\(%])m precision to give confi-
derive the following equations |

Up4+1 = Up A —oalu,|) + QSin'ﬁna

Y1 = 1/2u?  1signu (mod 2r), 6 Conclusions

(135)
wherea = BsTVkL (~ 8 x 10—6), and all another variables We study the motion of relativistic electrons interacting reso-
and the paramete remain the same. When the wave per- nantly with space-plasma waves. The nonlinear resonant in-
turbation is small,Q ~ 10-3, the system exhibits chaotic teraction is shown to originate electron chaotic motion re-
behavior on a strange attractor. For the dissipative systentated to the profound change in topology of phase space, and
the phase space volume contracts as the motion proceediie appearance of the strange attractor. In this case, every par-
In virtue of it, the topology of the SA is quite remark- ticle can explore the entire area of phase space energetically
able, showing the property of fractional dimensionalityy accessible to it; as a result, the upper bound of the strange
2 — 20 QY3/3h;, whereh; is the Kolmogorov entropy of  attractor can be put on a one-to-one correspondence with the
the original Hamiltonian system. For the parameter range otupper boundary of an energy spectrum whose value depends
interest, numerical investigations of the system motion argparametrically on the spectral power of the wave. The chaotic
shown in Fig.15. The figure displays the emphatic intermit- motion on the strange attractor is ergodic with mixing, and as
tent behavior. It also proves possible to represent the phasa consequence, the evolution of the distribution function and

flow as

i = —au’+ Qsiny,

v = 1/2u?,

the fixed points of which are given by the equation

aud = Qsinyo. (136)

Nonlin. Processes Geophys., 21, 685; 2014

all means obeys a FPK equation. In nonlinear theory, the rate
of diffusion as a function of wave power energy hinges on the
type of interaction. These dependencies have important con-
sequences in determining the range of values of wave power
for which the FPK formalism is valid. The results are ap-
plied to the problem of acceleration of cosmic-ray electrons
and the Earth’s radiation belt electrons.
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