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Abstract. The state of the art in the forecast of the back-
ground solar wind speed and of the interplanetary magnetic
field at Earth is based on the use as boundary conditions for
heliospheric models of the input data provided by solar ob-
servations. Magnetogram synoptic maps are used to obtain
information on the magnetic field configuration at the solar
source surface. Magnetic field inputs at the solar source sur-
face thus constitute one of the main external sources of errors
in solar wind models. The assimilation of data into forecast-
ing models used in the terrestrial domain showed the ability
to control model state errors. A sensitivity study performed
through the analysis of the ensemble variances and the rep-
resenters technique is used here to assess how process and
model state errors propagate in a nonlinear two-dimensional
MagnetoHydro Dynamic (MHD) system. The aim is to un-
derstand the impact of the source surface input parameters on
the evolution of MHD heliospheric models and the potential-
ities of data assimilation techniques in solar wind forecast-
ing. The representer technique in fact allows one to under-
stand how far from the observation point the improvement
granted from the assimilation of a measure propagates.

1 Introduction

The interplanetary medium, although once considered a per-
fect vacuum, is actually a turbulent area dominated by the so-
lar wind, which flows at the average velocities of 400 km s−1

(slow wind) and 750 km s−1 (fast wind) (McComas et al.,
1998). Among the events which may enhance and provoke a
jump in the solar wind speed, coronal mass ejections (CMEs)
are the most disrupting. CMEs are one of the most ener-

getic and interesting solar phenomena. They propel mag-
netic clouds with a mass up to 1017 g to speeds up to and
above 2600 km s−1 into the heliosphere (Dwivedi and Mo-
han, 2005), influencing near-Earth plasma conditions, caus-
ing fluctuations in the magnetic field near Earth and in the
ionospheric density and driving geomagnetic storms and au-
roras. However, CMEs are not the only source of fluctua-
tions in the solar wind parameters. Coronal holes produce
high-speed streams (Levine et al., 1977; Sheeley and Harvey,
1981) and the alternation of slow and fast flows generates
perturbations named co-rotating interaction regions (CIRs)
(Gosling and Pizzo, 1999). CIRs can themselves impact the
near-Earth space. The understanding of these slow and fast
flows is of prime importance for the forecast of interplane-
tary CME (ICME) propagation and associated threats (Vrš-
nak and Zic, 2007). Such threats are relevant for a variety
of human assets, both in space, air borne and ground based.
Space weather impacts society in diverse ways (Baker, 1998;
Siscoe, 2000; Bothmer and Daglis, 2007): apart from posing
direct threats to astronauts’ lives, space weather events may
damage satellite equipment and alter the atmospheric drag on
satellites. This causes satellite displacements and losses and
disrupts communication and positioning signals. Airline pas-
sengers may be exposed to ionising radiations and induced
currents at ground level may damage ground-based opera-
tions such as pipelines, the power grid and telecommunica-
tion cables. Thus there will be a continued and intensified
need for space environment services to address health, safety
and commercial issues. In recent years, the increased avail-
ability of solar wind measurements has allowed the scientific
community to develop models and tools aimed both at better
understanding the dynamics of solar wind propagation and at
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enabling solar wind now-casting and forecasting at 1 astro-
nomical unit (AU) and beyond.

Two main kinds of heliospheric models exist: MagnetoHy-
dro Dynamics (MHD) based models, such as MHD-Around-
A-Sphere (MAS, Riley et al., 2001), ENLIL (Odstrcil, 2003)
and SWMF/SC/IH (Space Weather Modelling Framework/
Solar Corona/ Inner Heliosphere, Toth et al., 2005), and
empirically based models, such as the Wang–Sheeley–Arge
(WSA) (Wang and Sheeley, 1990) and the model described
in Vršnak et al. (2007).

Physics-based kinetic models are still too computationally
expensive to be used for large-scale heliospheric simulations.
However, recently, methods such as the implicit adaptive
Multi Level Multi Domain method (Innocenti et al., 2013;
Beck et al., 2013) have been developed with the aim of in-
creasing the portion of space which can be simulated with
kinetic codes at a reasonable computational cost.

In the first two kinds of models observations are used
as inputs or boundary conditions. See, for example, Wu et
at. (2006), where a data-driven MHD model is continuously
fed with SOHO/MDI magnetogram data to study the evolu-
tion of active regions starting from the observed magnetic
field configuration.

A third, less commonly employed direction may be ex-
plored in heliospheric modeling: data assimilation (DA) tech-
niques (Bouttier and Courtier, 1999; Evensen, 2009) may
be integrated into existing models to enhance their forecast-
ing abilities, as recently explored in Innocenti et al. (2011).
There, an empirical model is enhanced with the application
of a Kalman filtering DA technique (Kalman, 1960; Welch
and Bishop, 2001). It is noticed, among other results, that the
assimilation of solar wind temperature observations into the
model dramatically improves the forecasts of the solar wind
speed and also grants the baseline model some resilience
against CME activity.

In Schrijver and Derosa (2003), instead, SOHO/MDI mag-
netograms are assimilated into a flux dispersal model for the
evolution of the photospheric magnetic field, which is then
mapped to the solar source surface through a Potential Field
Source Surface model. In Barrero Mendoza et al. (2006),
an ensemble Kalman filtering (EnKF) technique is applied
on top of an MHD model. The variation of the root mean
square error for the state estimate is studied as a function
of the position and number of the assimilation points. The
case study examined is a magnetic storm in the terrestrial
magnetosphere. A similar approach is used here for the re-
gion of space extending from the source surface to 1 AU. No
planetary magnetospheres are considered at this point of the
investigation.

The study presented aims at further investigating the topic
of DA in the area of space weather forecast. DA combines
observational data with the outputs of numerical simula-
tions to produce an optimal estimate of the evolving state
of the system. Thus, by assimilating space environment data
into global numerical models, a better understanding of the

physics of the interplanetary space and increased forecast-
ing capabilities can be expected. DA has been successfully
used by meteorologists and oceanographers in the last twenty
years. On the other hand, the space physics community has
been more reluctant to implement such techniques.

Applications of DA techniques to the near-Earth system
can be found for electron dynamics in the radiation belts
(Kondrashov et al., 2007; Rigler et al., 2004) and for global
assimilation of ionospheric measurements (GAIM) (Schunk
et al., 2003, 2004). Such a rather limited use may be traced
to the fact that the space system is much larger and that
there is a shortage of measurements when compared to me-
teorological and oceanographic systems. A massive amount
of information for terrestrial weather exists, while the num-
ber of satellites collecting space weather-relevant data in the
magnetosphere and in the region of space between the Sun
and the Earth is rather low. The most prominent of them
are SOHO (Solar and Heliospheric Observatory – Fleck et
al., 1995), ACE (Advanced Composition Explorer – Stone
et al., 1998), the Cluster mission (Laakso et al., 2010) and
the PROBA-2 (Project for On-Board Autonomy-2, Gantois
et al., 2010) ESA mission. Both SOHO and ACE are located
at L1, while the Cluster mission consists of four satellites in
the Earth’s magnetosphere. PROBA2, instead, is located in a
Sun-synchronous dusk–dawn orbit. The two STEREO space-
crafts, located in the Earth’s orbit but in orbital positions
ahead and behind the Earth, can be used for space weather
data collection as well, as shown in Turner and Li (2011).

However, more and more observational data will be avail-
able soon. The NASA Living With a Star programme
promises to provide an incredible amount of data regard-
ing all of the different aspects of the Sun–Earth connection.
The first mission, Solar Dynamics Observatory (Pesnell et
al., 2012), was launched in 2010 and the community is just
starting to use the huge amount of data it delivers.

The application of data assimilation to space sciences will
benefit not only from this soon-to-be-available amount of ob-
servational data, but also from the recent development of he-
liospheric models.

One of the main goals of the present paper is to assess the
kind of benefits that DA could bring to MHD heliospheric
models. These preliminary feasibility studies are essential for
understanding the potentialities of DA in the specific field
and thus for deciding if more effort should be put into the
activity.

As a starting point, the first setting considered is a sim-
plified two-dimensional MHD model of the solar wind be-
tween the Sun and the Earth including the Lagrange point L1.
The physics-based model used here is the FLIP MHD model
(Brackbill, 1991) in a simplified two-dimensional configura-
tion. A description of the model is provided in Sect. 2.

It is well known (see, for example, Wu et al., 2006) that a
major source of forecast errors for heliospheric models is the
use of non-optimal boundary conditions at the photosphere
or at the source surface.

Nonlin. Processes Geophys., 21, 539–553, 2014 www.nonlin-processes-geophys.net/21/539/2014/



C. Skandrani et al.: FLIP-MHD-based model sensitivity analysis 541

Another purpose of the present paper is to investigate if
and how the use of statistical techniques for data assimilation
could lead to obtaining a more accurate estimate of magne-
togram input parameters and an improved initialisation state,
in order to predict the future model variables in the whole
area better.

The methodology adopted is reviewed in Sect. 3 and is
based on ensemble Monte Carlo techniques (Evensen, 2009).
Multiple runs of the model are initialised with statistically
guided modifications of the input. Then, the sensitivity study
is conducted by diagnosing process and model state errors for
the nonlinear two-dimensional MHD system simulated with
FLIP-MHD.

The results of the ensemble statistics are presented in
Sect. 4.

First, in Sect. 4.1, it is checked if the model errors are dis-
tributed according to a Gaussian distribution function. Then,
in Sect. 4.2, the model ensemble variances are used to charac-
terise the model sensitivity. The ensemble variance analysis
provides an objective tool for evaluating how initial condition
errors affect a forecast and whether it would be desirable to
gather additional observations to reduce model forecast er-
rors. The variances in time and space of the errors for the
solar wind magnetic field and velocity are in fact calculated
for model runs which differ only for their initial conditions
and can therefore be considered to be the model response to
the uncertainties in the source surface inputs.

Section 4.3 studies the domain of influence of observations
made at a given location on the whole forecasting domain
and especially at the source surface. This so-called “repre-
senters analysis” allows one to understand at a glance how
the system augmented with assimilation propagates the infor-
mation spatially. Then, it becomes easier to see the potential
impact of model improvement using DA.

In the Conclusion a summary of the work presented is pro-
vided and further considerations are drawn on the role of data
assimilation in space weather forecasting models.

2 The FLIP-MHD model

The numerical model used in this study is the FLIP-MHD
model, a 2-D resistive MHD code described in Brack-
bill (1991).

Two directions,z and x, are simulated, as depicted in
Fig. 1. The directionz is the longitudinal or streamwise di-
rection, oriented away from the Sun. Open boundary condi-
tions are set atz = 0 andz = Lz, the domain length in the
z direction. In the transverse or cross-stream directionx re-
flecting boundary conditions are set. All three velocity com-
ponents are retained. The following viscous-resistive com-
pressible MHD equations in dimensionless form, written in
the Lagrangian frame, are solved:

Fig. 1. Sketch of the domain simulated with FLIP-MHD. The left
boundary corresponds to the source surface, conventionally located
at 2.5 solar radii. The right boundary is placed at the terrestrial at-
mosphere.Lx andLz are the box size in thex andz directions. The
red numbers mark the diagnoses locations, as explained in Sect. 3.
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whereρ is the mass density,B is the magnetic field which
obeys the Gauss law constraint∇·B = 0,v is the fluid veloc-
ity, I is the specific internal energy,J is the current density,
p is the fluid pressure, and

∏
the symmetric rate-of-strain

tensor defined as∏
=
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]
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In Eqs. (2)–(4)<λ and<ν are the Reynolds numbers mea-
suring respectively the global kinematic and dynamic vis-
cosity in the numerical box; in the simulations shown,<λ

= <ν = 103 is always assumed. The quantityS = 103 is the
Lundquist number measuring the global explicit resistivity
set within the domain.

2.1 Definition of the source function

Currently, operational prediction models are driven by input
data at the source surface, which is conventionally located

www.nonlin-processes-geophys.net/21/539/2014/ Nonlin. Processes Geophys., 21, 539–553, 2014



542 C. Skandrani et al.: FLIP-MHD-based model sensitivity analysis

Fig. 2.Example of an extrapolated magnetic field at the source sur-
face. From CCMC,http://ccmc.gsfc.nasa.gov.

at a distance of 2.5 solar radii from the solar surface. The
boundary conditions at the source surface are in turn obtained
from observations at the photosphere, such as GONG magne-
togram synoptic maps. Figure 2 shows an example of the ex-
trapolated magnetic field at the source surface obtained using
the MAS tool (Riley et al., 2001) at the Community Coordi-
nated Modeling Center, CCMC (http://ccmc.gsfc.nasa.gov).

In this paper, the FLIP-MHD model is driven by a syn-
thetic analytical function providing the input conditions for
the magnetic and velocity fields at the source surface. For
simplicity, the velocity at the source surface is taken as con-
stant. Instead, the boundary condition for thez component of
the magnetic field at the source surface is imposed as follows:

bz = b0 tanh(x − xcentre) +
b0

f (t)
sin

(
2π(x − xcentre)

LB

)
(6)

xcentreis the middle point of the domain in thex direction.
The equations solved in the code and reported in the results

below use normalised units. The magnetic field is normalised
to b0, the unit length is defined by the thicknessLB , and the
unit time is computed as the time required by an Alfvén wave
to travel one unit distanceLB , the so-called Alfvén time:
τA = LB/vA . Note that in this choice of units the reference
Alfvén speed isvA = 1.

The magnetic field at the source surface varies in time as
determined by the functionf (t) defined as

f (t) =

{
0.5(1− cos(π(1− t/tα))t < tα
1 Otherwise

(7)

tα = tfinal ·α. The maximum value oftα is reached before the
final time, tfinal/τA = 400, when alpha is less then 1. In par-
ticular, we select a valueα = 0.4, to introduce an initial phase
of dynamic perturbation and subsequently observe the relax-
ation of the system to a constant drive.

They andx components of the magnetic field and the ve-
locity in the longitudinal direction are selected to ensure an
initial force-free equilibrium (that is, no force is acting on

the plasma):

by = −
b0

cosh(x_xcentre)
, (8)

bx = 0, (9)

and

u = 1. (10)

With these boundary conditions, the evolution of the so-
lar wind magnetic field and velocity is studied between the
source surface and 1 AU.

The real heliospheric case is of course spherical. However,
a full 3-D description is beyond the scope of the present pa-
per that aims instead at ascertaining the sensitivity of MHD
models to boundary drives. For this reason and at the cost
of losing the effects of the geometric expansion, a Cartesian
grid is used instead. Figure 1 shows the domain used.Lx

andLz are the system dimensions in the cross stream wise
and stream wise direction respectively. The out of planey di-
mension is assumed ignorable. In code units,Lx/LB = 3.6
andLz/LB = 98.4. The red numbers mark the diagnoses lo-
cations defined later in Sect. 3.

The solar wind speed is assumed to be Alfvénic,VSW =

VA , at the injection boundary, and the total simulation time
allows roughly 4 transit times in thez direction. When com-
pared with the real heliospheric case, the distanceLz repre-
sents the Sun to Earth distance and therefore the total sim-
ulation time corresponds to approximately 4 times the total
time required for the solar wind to reach the Earth. For typ-
ical solar wind speeds this corresponds to roughly 12 days.
Of course, given the choice of a Cartesian grid this is only an
indicative number.

3 Methodology

The model sensitivity analysis consists in describing the un-
certainties of a reference simulation from a set of simula-
tions over a chosen time period. Information about both the
reliability of the model and about which input parameters
contribute most to the variability of the model response is
provided through such analysis. From the ensemble method
(Evensen, 2009), ensemble variances and ensemble covari-
ances can help improve the knowledge of how boundary con-
ditions affect the evolution of the system and which areas are
particularly sensitive to their variations. This could be help-
ful for the identification of the areas where dedicated obser-
vations may be useful for the data assimilation process.

Model errors can be simulated in a number of ways. The
different options include using a different model, varying the
resolution of the discretisation grid or altering some param-
eters in the model (Evensen, 2009). One of the available al-
ternatives is to characterise the model sensibilities through
ensemble variances (Evensen, 2009). This leads to the de-
piction of the model errors. In the framework of DA, this
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ensemble technique is widely used to characterise the inac-
curacies in the initialisation of the state of atmospheric and
oceanographic forecasting models.

Several initial states are obtained by imposing small varia-
tions on top of the initial conditions. Then, starting from each
of these initial states, calculations for future states are made.
At a given time, all of the calculated states can be represented
by a dispersion or probability distribution.

One of the preliminary steps before applying DA to a
model is to derive this probability distribution of the state
vector. It can be obtained through a Monte Carlo sampling
method which describes the uncertainties with respect to a
reference simulation of a set of similar simulations over a
chosen period of time. The error covariances can thus be
specified. The sample characterises the sensitivity of the
model forecast to parameter errors around the current state
of the system. Based on this ensemble technique, sensitivity
analysis and representers study constitute the cornerstone of
the approach presented here, leading to the preliminary un-
derstanding of how much DA will be effective.

The analysis includes three main stages:

1. an ensemble of 100 members is generated by perturb-
ing the source function as described in Eq. (6);

2. the integration of the FLIP-MHD model over this set
of perturbed initial states provides access to a set of
model solutions, representing the probability density
of the model state (model errors and uncertainties);

3. diagnoses on the simulated sets are conducted around
some specific locations such as the Lagrange point L1
(location 4), near the source surface (location 2), in the
middle of the domain (location 3) and to both sides of
the longitudinal axis near the borders of the domain
study (locations 5 and 6) (see Fig. 1).

In Sect. 3.1 more information regarding the generation of the
perturbations is provided, while in Sect. 3.2, the ensemble
diagnostic statistical tools are introduced in greater detail.

3.1 Generation of perturbations

Within the framework of this study, evolved forecast error
covariances are constructed using an ensemble of model runs
that start from perturbed initial states. Perturbations are built
by adding uncertainty to the synthetic source surface mag-
netic field inputs in the streamwisez direction. The velocity,
instead, is kept constant.

If F(x, t) is the analytical function at the source surface, a
particular perturbed fieldF pert(x, t) is obtained as in

F pert(x, t) = F(x, t) + γ (t)F (x, t), (11)

whereγ (t) is a time-dependent coefficient generated from a
Gaussian distribution with mean zero and standard deviation
of 0.05. An error of about 5 % with respect to the reference
field is imposed.

For each member of the ensemble, the simulation is carried
out for 100 time steps up to a final time oftfinal/τA = 400.

3.2 Ensemble theory and statistical tools

In this section the ensemble statistical tools used in this study
are presented in detail. The concepts of representers tech-
nique and domain of influence are introduced, based on the
ensemble Kalman filter method.

3.2.1 Ensemble Kalman filter and representers

The representers technique has been used widely for oceanic
or tidal circulation problems as reported in the literature
(Bennet, 1992; Egbert and Bennet, 1996; Lyard, 1999;
Echevin et al., 2000; Evensen, 2009). At this stage of the
preliminary analysis, it is a simple and robust tool for in-
vestigating how the system with DA will spatially propagate
the information brought by dedicated observations and how
strong the correlation between the observation taken at a par-
ticular spatial location and the other grid points is. A brief
summary of the ensemble Kalman filter technique is pro-
vided here with the aim of facilitating the reading of the rest
of the paper.

In the framework of the ensemble Kalman filter, a series
of forecasting and analysis steps are executed in a sequence.

First, the forecasting step provides model predictions from
the last analysis state and calculates the forecast errors of the
model by propagating the analysis errors appropriately.

Then the analysis step at timeti corrects the forecasted
statexf (ti) with the information obtained from the observa-
tion vectoryo (ti). The corrected statexa (ti) is calculated
according to the following formula:

xa(ti) = xf(ti) + K(ti)
[
yo(ti) − H(ti)x

f(ti)
]
, (12)

wherexf(ti) is the forecast of the state at timeti , yo(ti) is
the vector of observations at the same time and the matrix
H(ti) is the so-called “observation operator”. It ensures the
projection of the model space onto the observation space. In
this particular case, the state vectorx includes the solar wind
magnetic and velocity fields at all grid points of the simu-
lated domain;yo(ti)−H(ti)x

f(ti) is the “innovation” matrix,
which carries the information relative to the difference be-
tween the actual observations and the corresponding values
for the forecasted fields;K(ti) is the Kalman gain matrix at
time ti , given by:

K(ti) = Pf(ti)HT (ti)
[
H(ti)Pf(ti)HT (ti) + r(ti)

]−1
(13)

wherePf(ti) and r(ti) are the forecast error covariance and
the observation error covariance matrices, respectively, at
time ti . The gain matrixK (ti) is the optimal least square
gain at timeti , i.e. the solution of the minimisation prob-
lem of the model observations error cost function (Ghil and
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Malanotte-Rizzoli, 1991; Bouttier and Courtier, 1999). The
matrix K(ti) weights the forecast and the observations ac-
cording to their respective error statistics,Pf(ti) and r(ti).
Notice that Eqs. (12) and (13) are recalled to provide a gen-
eral background to the Kalman filtering procedure used for
data assimilation: indeed, the actual assimilation of helio-
spheric observations has not been carried out yet. The present
work focuses in fact on the concept of representers, which is
described below. The rest of this section aims at explaining
the role of the representer matrices in this sensitivity study
without actually performing the assimilation procedure and
without having observations at our disposal.

Representers or influence functions are obtained by refor-
mulating the analysis step of the Kalman filter described in
Eq. (12), as in

xa(ti) = xf(ti) +

j=pi∑
j=1

bj (ti)r j (ti), (14)

wherexf(ti) is the forecasted state vector at timeti , r j (ti) is
the representer or influence function relative to thej th obser-
vation at timeti andpi is the number of observations avail-
able at timeti . The representerr j (ti) is a vector which has
the dimensions of the state vector andbj (ti) is the scalar co-
efficient associated with the observationj at timeti .

Equation (14) translates in matrix form into

xa(ti) = xf(ti) + r(ti)b(ti), (15)

with the matrixr(ti) defined at timeti as

r(ti) = Pf(ti)HT (ti), (16)

and the vectorb(ti) as

b(ti) =

[
H(ti)Pf(ti)HT (ti) + r(ti)

]−1

[
yo(ti) − H(ti)x

f(ti)
]
. (17)

The matrixr(ti) contains as many columns as there are ob-
servations available at timeti and each column constitutes
the representerr j (ti) relative to a given observation. The
representer formulation of the analysis step of Eq. (14) can
be interpreted as the correction of the forecasted statexf(ti)

done by using a combination of representers, depending on
the forecast error covariance matrixPf(ti). Note that in the
case of a multivariate state vector (e.g. solar wind magnetic
and velocity fields), the information from thej th observation
can be spread to the other model state variables, thanks to the
error cross-covariance of these variables.

Notice that from this point onwards, the time dependence
is dropped for ease of reading. It is also assumed that the
model grid is composed ofn nodes and that the state vec-
tor contains two variables (namely magnetic field and solar
wind velocity). The dimension of the state vector is then2n.

Now, focusing on a single observation, Eq. (16) becomes, at
a given time:

r j = PfHT
j (18)

Hj is the raw of the matrixH corresponding to thej th obser-
vation. For the purpose of the demonstration, let us assume
that thej th observation is (1) exactly located at a grid point
k and (2) associated with one of the state vector variables.
Thus, this observation is identified in the state vector by its
indexkj . Then,Hj (kj ) is the only non-zero element ofHj ,
that is

Hj = (0, . . .,0,1,0, . . .,0), (19)

with only one “1” at indexkj . Thus, Eq. (18) gives, from the
definition ofPf ,

r kj
= PfHT

kj
=



cov(εf
kj

,εf
1)

...

cov(εf
kj

,εf
n)

cov(εf
kj

,εf
n+1)

...

cov(εf
kj

,εf
2n)


(20)

εf is the model forecast error, defined as the difference be-
tween the forecasted and true states (xf

− xt ), which is not
known. The abbreviation “cov” stands for “covariance”.

Consequently, the representer of observationj contains
the covariances between the model forecast errors at the ob-
servation point and all the grid nodes, for all the state vari-
ables (e.g. magnetic field, solar wind velocity).

As explained in Sect. 3, the model forecast errors can be
estimated through the stochastic modelling approach: if an
ensemble of simulations generated by perturbing one or sev-
eral sources of errors of the model is available, these model
forecast errors are approximated by statistics computed from
this ensemble. Thus, the covariances of the model forecast er-
rors are estimated by the ensemble covariances of the model
forecast errors. Therefore

cov(εf
kj

,εf
i) ≈ covens(εf

kj
,εf

i)

=
1

m

m∑
s=1

(εf
kj ,s −

1

m

m∑
s=1

εf
kj ,s)(ε

f
i,s −

1

m

m∑
s=1

εf
i,s)

= (εf
kj

− εf
kj

)(εf
i − εf

i), (21)

where “ens” stands for “ensemble”,m is the number of mem-
bers in the ensemble and the horizontal bar represents the
ensemble average. Under the assumption of the BLUE (best
linear unbiased estimator) hypotheses (Bouttier and Courtier,
1999; Evensen 2009), the model forecast errors are assumed
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unbiased. This implies that

cov(εf
kj

,εf
i) ≈ (εf

kj
)(εf

i)

≈ (xf
kj

− xf
kj

)(xf
i − xf

i)

≈ cov(xf
kj

,xf
i). (22)

Thus, more generally, the variances, covariances and corre-
lations of the model forecast errors are identifiable as the en-
semble variances, covariances and correlations of the state
variables.

3.2.2 Domain of influence of a single observation

Here an explicit expression for the domain of influence of a
single observation is presented. Consider an isolated obser-
vation ykj

relative to the forecasted state variablexf (mag-
netic field components or solar wind velocity components)
and located on a nodek of the mesh. The correction applied
on the forecasted statexf calculated by assimilation of the
observationykj

is expressed by

δx = xa
− xf

= bkj
r kj

(23)

with

r kj
= PfHT

kj
= (cov(εf

kj
,εf

i))i=1,2n (24)

bkj
=

ykj
− xkj

cov(εf
kj

,εf
kj

) + cov(εo
kj

,εo
kj

)

=
δykj

var(εf
kj

) + var(εo
kj

)
(25)

whereδykj
andεo

kj
are respectively the innovation and the

observation error associated with the observationykj
; the ab-

breviation “var” stands for the ensemble variance.
Combining Eqs. (23), (24) and (25), the correction at node

i brought by the observationykj
is then expressed as follows:

δxi =

cov(εf
kj

,εf
i)

var(εf
kj

) + var(εo
kj

)
δykj

(26)

Introducing the formal definition of the correlation, the pre-
vious equation becomes

δxi =
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(27)

where the abbreviation “correl” refers to correlation.
Therefore, the correction at pointi, obtained by the assim-

ilation of the isolated observationykj
, depends on the cor-

relation between the model forecast errors associated with
the observed variablexkj

and the variable to be corrected
xi . According to Eq. (22), this correlation is approximated
by the ensemble correlation of the observed variablexkj

and
the variable to be correctedxi . This correlation term reflects
the spatial extent of the correction and thus represents the
domain of influence(hereafter “doi”) of the observationykj

.
Note that the magnitude of the correctionδxi is represented
by themodulation factorterm that depends on the observa-
tion error and on the ratio of the model error variances at the
point i and at the observation pointk: if the observation error
is strong, the correction has to remain low; if the model error
variance is higher/lower at the pointi than at the observed
point, the correction must be significant/lower.

As a first step in the implementation of a dedicated DA
system, this study will focus on the doi of isolated observa-
tions (magnetic or solar wind velocity fields) rather than on
themodulation factor.

4 Results on ensemble statistics

In this section the statistical ensemble variance and domain
of influence analysis outlined above are presented. With
these experiments, we inspect the potential impact of the DA
technique on the improvement of the state at the source sur-
face and, more in general, on the entire simulated domain.
All parameters (spatial, time, magnetic and velocity field) in
the paper should be considered normalised to the normalisa-
tion factors described earlier in Sect. 2.1.

4.1 Gaussian character of error statistics

For the model error statistics exploration process of this
study, a set of 100 ensemble members is generated. This
number is usually chosen for stochastic modelling to ensure
a statistical significance at a reasonable computational cost.

When implementing real DA experiment it should be nec-
essary to conduct a convergence analysis to determine the
optimal number of members leading to a sufficient stability
of the statistics computed from the ensemble members.

The Gaussian nature of the perturbed states is very impor-
tant for the data assimilation schemes since it ensures that
the optimal state calculated in the analysis step is the most
probable in the sense of maximum likelihood. In the context
of ensemble methods, the forecast error of the model can be
estimated from the dispersion of the perturbed model trajec-
tories around the overall average at a given time step.

Figure 3 shows the distribution of the error for thez com-
ponents of the solar wind velocity and magnetic field for
the different members of the ensemble at the diagnosis lo-
cations of Fig. 1. Each time plot at each location depicts

www.nonlin-processes-geophys.net/21/539/2014/ Nonlin. Processes Geophys., 21, 539–553, 2014



546 C. Skandrani et al.: FLIP-MHD-based model sensitivity analysis

 30 

 1 

 2 

Figure 3. Distribution of the forecast errors for the z component of the solar wind velocity and 3 

magnetic field at the different test locations illustrated in figure 1: location 1 (source surface), 4 

location 2, location 3, location 4 (Lagrange point, L1), location 5 and location 6. The errors are 5 

calculated from the dispersion of the perturbed ensemble member trajectories around the 6 

ensemble average. 7 
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Fig. 3.Distribution of the forecast errors for thez component of the
solar wind velocity and magnetic field at the different test locations
illustrated in Fig. 1: location 1 (source surface), location 2, location
3, location 4 (Lagrange point, L1), location 5 and location 6. The
errors are calculated from the dispersion of the perturbed ensemble
member trajectories around the ensemble average.

the information relative to all the ensemble members at all
the time steps available. These histograms are thus com-
puted on a sample of 10 000 (100 members times 100 out-
puts) achievements and show the empirical distributions of
the model error as a function of the perturbed source surface
input.

It can be noted that the shape of the error distribution is
slightly broader for locations 4, 5 and 6 compared to loca-
tions 1, 2 and 3. This is due to a higher level of non-linear
interactions and unsteady state conditions further away from
the source surface.

Overall, the sampling distributions can be fitted, in a
first approximation, with a quasi-Gaussian. This ensures that
the BLUE (cf. Sect. 3.2) hypothesis can be made and that
the classical formulation of data assimilation, on which the
present study relies, is pertinent. However, it should be men-
tioned that some reconnection events are triggered in some
ensemble members. This could explain, at some locations,
the deviation from the Gaussian shape of the distribution of
the errors.

4.2 Ensemble variances

As part of the sensitivity study, ensemble variance diagnoses
for the magnetic field and velocity at the previously desig-
nated locations of the domain are discussed. The objective is
to estimate the error structures of the model, in order to point
out the areas where gathering dedicated observations may be
useful. In this framework, the model response to perturba-
tions of the boundary condition inputs at the source surface
has been calculated. This will highlight the areas where phys-
ical processes are poorly modelled and will also allow esti-
mating of the reliability of the model. In the first subsection,
the temporal evolution of the ensemble variances is analysed

 31 

 1 

Figure 4. : Time evolution of the ensemble variance for the normalized zb  (left panels) and time evolution of the 2 

normalized zb for all the ensemble members (right panels) at the selected diagnosis locations. The red curve 3 

represents the average of the ensemble and the green curve refers to the reference simulation, where no perturbation 4 

is applied to the source surface inputs. zb is normalized to 0b  and the time to the Alfvén time A . Note that the 5 

left and right zb scales are not common to the six diagnosis points. 6 

Fig. 4. Time evolution of the ensemble variance for the normalised
bz (left panels) and time evolution of the normalisedbz for all the
ensemble members (right panels) at the selected diagnosis loca-
tions. The red curve represents the average of the ensemble and the
green curve refers to the reference simulation, where no perturba-
tion is applied to the source surface inputs.bz is normalised tob0
and the time to the Alfvén timeτA . Note that the left and rightbz

scales are not common to the six diagnosis points.

at fixed points in space. In the second subsection, the spatial
structures of the ensemble variances are studied in the whole
domain simulated.

4.2.1 Local temporal evolution of ensemble variances

The temporal evolution of the various perturbed simula-
tions composing the ensemble provides empirical informa-
tion about the time evolution of the error variances. It has
to be recalled here that, while generating the ensemble, only
bz is perturbed, whilevz is left unperturbed. Figures 4 and
5 refer to thez component of the solar wind magnetic field
and velocity respectively. They present a comparison of the
temporal evolution of the ensemble variances (left panels)
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 32 

 

Figure 5. Time evolution of the ensemble variance for the normalized zv  (left panels) and time evolution of zv1 

for all the ensemble members (right panels) at the selected diagnosis locations. The red curve represents the 2 

average of the ensemble and the green curve refers to the reference simulation, where no perturbation is applied 3 

to the source surface inputs. zv is normalized to the Alfvén speed Av  and the time to the Alfvén time A . Note 4 

that the left and right zv scales are not common to the six diagnosis points.5 

Fig. 5. Time evolution of the ensemble variance for the normalised
vz (left panels) and time evolution ofvz for all the ensemble mem-
bers (right panels) at the selected diagnosis locations. The red curve
represents the average of the ensemble and the green curve refers
to the reference simulation, where no perturbation is applied to the
source surface inputs.vz is normalised to the Alfvén speedvA and
the time to the Alfvén timeτA . Note that the left and rightvz scales
are not common to the six diagnosis points.

and their associated maps of evolution for all of the ensem-
ble members (right panels), for six representative locations
chosen in the whole domain as depicted in Fig. 1. In the right
panels, the red curve represents the temporal evolution of the
ensemble average, while the green curve refers to the ref-
erence simulation whose source surface input is left unper-
turbed.

Considering the rate of perturbation that has been applied
in this stochastic modelling, one can see that the evolution of
the variability in the ensemble remains quite admissible and
maintains fairly reasonable error bounds for bothbz andvz.

Except for location 1 near the source surface, where the
variance remains very low, it can be noted here that the en-
semble variance evolution is quite similar for the six loca-

tions: the variance of the ensemble is extremely low at the
beginning of the time series. Reasonably, though, the loca-
tions far from the source surface show slightly higher differ-
ences in the evolution than the closer ones, as depicted in the
right panels of Figs. 4 and 5. At later time steps,t/τA ≈ 88
for location 2,t/τA ≈ 120 for location 3,t/τA ≈ 140 for lo-
cations 5 and 6 andt/τA ≈ 160 for location 4, the variance
starts increasing for all of the locations: the ensemble expe-
riences rather different evolutions. These differences in the
time evolution of the ensemble variances are the signature
of a dynamical process which crosses the domain from the
source surface to L1.

This notwithstanding, it can be noticed that ensemble av-
erages and reference simulations behave quite similarly; this
confirms that the stochastic modelling protocol is mostly lin-
ear, and thus corroborates the quasi-Gaussian feature of the
distribution of the errors stated in Sect.4.1.

4.2.2 Spatial structure of the ensemble variance

The spatial distribution of the ensemble variance structures at
a given instant reflects the level of model variability over the
ensemble and hence gives an efficient estimation of the errors
of the model in response to the perturbations of thez compo-
nent of the magnetic field. The time evolution of the velocity
variances is quite stable; however, a rather interesting time
evolution is noticed for the magnetic field. In Fig. 6 several
snapshots taken at different times show the spatial extent of
the ensemble variance of the model for thez component of
the magnetic field. Figure 7 shows thez component of the
magnetic field with superimposed magnetic field lines, for
the reference simulation, at the same time steps as in Fig. 6.
These two figures give an efficient insight into the time evolu-
tion of the spatial distribution of the model error structures, in
response to the perturbation of thez component of the mag-
netic field. In Fig. 6, some “bursts” can be observed in the
ensemble dispersion, from time stept/τA ≈ 140 to the final
time stept/τA ≈ 400. These spatial structures correspond to
the ones observed in the temporal evolution of the ensem-
ble variances in Fig. 4. Figure 7, which depicts the magnetic
field lines for the reference simulation, shows that the ma-
jor increases in the ensemble variance seem to be due to
some reconnection events in the simulated solar wind. For
example, the reference simulation shows signs of reconnec-
tion in correspondence with the first model error’s bubble at
t/τA ≈ 140 and also with the model error’s bubble visible
in the ensemble variance att/τA ≈ 160 on the right side of
the domain, but not in correspondence with the model error’s
bubble visible on the left-hand side. The disturbance, when
present, is then advected in time to L1, thus provoking the
time-shifted variance signals in the observation points closer
to L1. The high variances in correspondence with reconnec-
tion events show that not all ensemble instances experience
reconnection at the same time and in the same locations. The
evolution over time shows that more of these events occur.
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Fig. 6. Ensemble variance of the normalisedz component of the
magnetic field at different time steps and on the entire simulated
domain. The spatial dimensions are normalised toLB , the length
scale of variation of the magnetic field. Time is normalised to the
Alfvén time τA .

The simulation instances reconnecting “together” (i.e. at sim-
ilar time and space) are presumably the ones excited with a
similar magnetic field at the boundary.

4.3 Domains of influence

The study of the ensemble variance of the model allowed
one to describe how the physical fields respond differently
to a perturbation of the model inputs and to characterise the
model forecast error. The ensemble modelling protocol that
has been set up in the present study provides an efficient way
of investigating the model forecast error covariances. These
covariances indeed play a leading role in the problem of data
assimilation since they ensure the propagation of the infor-
mation provided by the observations to all model variables.
Therefore they determine the spatial extent and magnitude of
the state corrections provided by the assimilation of observa-
tions. Here the objective is indeed to illustrate how observa-
tions taken at a measurement point located in one particular
position of the domain would affect the overall model evolu-
tion if those observations were assimilated into the model.

For real heliospheric application, the availability of ob-
servation points is currently very limited. The main obser-
vation point is the ACE spacecraft located at L1 position
corresponding to location 4 in this study. As mentioned be-
fore, additional important information can be obtained by the
STEREO mission.

In Fig. 8, the panels illustrate the domain of influence
“doi” as defined in Eq. (27), forbz, for observations taken
at different locations. The effects of reconnection at the dif-

Fig. 7. z component of the magnetic field and, superimposed, the
field lines for the reference simulation at different time steps and on
the entire simulated domain. The spatial dimensions are normalised
to LB , the length scale of variation of the magnetic field. Time is
normalised to the Alfvén timeτA , bz is normalised tob0.

Fig. 8. Domain of influence for thez component of the magnetic
field bz for the assimilation of a magnetic field observation made
at different locations at the same time step,t/τA = 220. The black
circle indicates the data observation location.(a) refers to location
4 (L1, 1 AU), (b) to location 3,(c) to location 5 and(d) to location
6. The spatial dimensions are normalised toLB , the length scale
of variation of the magnetic field; time is normalised to the Alfvén
time τA .

ferent locations of the simulation domain (see Fig. 1) and at
different times are shown.

For example, for panel a, the doi of one virtual observation
located at L1 is depicted att/τA ≈ 220. Both the observation
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Fig. 9. Domain of influence for thez component of the solar wind
velocity vz for the assimilation of a velocity observation taken at
different locations at the same time stept/τA = 220. The black cir-
cle indicates the data observation location.(a) refers to location 4
(L1, 1 AU), (b) to location 3,(c) to location 5 and(d) to location
6. The spatial dimensions are normalised toLv = LB , the length
scale of variation of the velocity; time is normalised to the Alfvén
time τA .

and the domain of influence are referred to thez component
of the magnetic field.

Notice that the amplitude of the correlation at the obser-
vation point location is equal to “1”, which is the maxi-
mum positive correlation. Then, the correlation progressively
decreases when moving away from the observation point.
When the ensemble correlation approaches the maximum
negative correlation, value “−1”, degradation may occur.
This can actually happen when moving too far away from the
observation area. In this case, when implementing DA tech-
nique, the analysis step should be restricted to the area with
positive correlation. As explained in Sect. 3.2.2, the correla-
tions here reflect the potential spatial extent of the correction
around a given location with an isolated observation. Then,
the correlation amplitude (Eq. 27) will be modulated, taking
into account the observation error (with strong observation
errors, the model correction remains low) and the ratio of er-
ror variances at the point to be corrected (correction could be
significant or lower).

Notice that the domain of influence of the observation is
rather localised and decreases to 0 when moving towards the
Sun. This result makes sense, since the driver of the simula-
tion is located at the source surface, i.e. far away from the L1
location, and means that observations of the magnetic field
taken at L1 can only slightly improve the model evolution
closer to the source surface.

It is also important to observe that the occurrence of mag-
netic reconnection results in the fact that some regions of the

domain remain magnetically isolated. The beneficial feed-
back from assimilation is thus prevented from spreading into
those regions. This effect is particularly severe for the obser-
vations taken at L1.

The doi plots from Fig. 8 for location 3 (panel b), loca-
tion 5 (panel c) and location 6 (panel d) respectively, which
again refer to the space and time evolutions of the domain
of influence of various magnetic field observations, show
more reassuring results: observations taken at those locations
would significantly improve the model structure at greater
distances, thus making the use of data assimilation a worthy
tool for making the model evolution closer to reality. Notice
again that the influence of an observation point on the rest of
the domain is strictly bound to the occurrence of reconnec-
tion, which temporarily magnetically isolates the reconnec-
tion area from the rest of the domain. Note that these findings
are independent of time and remain similar throughout the
whole period.

The same doi analyses are performed for the solar wind
velocity vz. Figure 9 shows the domain of influence for the
solar wind velocity in the case of the assimilation of a veloc-
ity observation made at location 4 (panel a), location 3 (panel
b), location 5 (panel c) and location 6 (panel d) respectively at
time t/τA ≈ 220. Notice that the correlation impact is wider
than for magnetic field measures and extends over time to
cover the simulation domain entirely, as visible in Fig. 10,
which refers to the same spatial locations but to a later time,
t/τA ≈ 344. This ensures that data assimilation would signif-
icantly minimise the model errors in the velocity field when
velocity observations are assimilated. Panel (a) is of particu-
lar relevance, since it shows that observations taken at 1 AU,
where most of the space weather relevant satellites are lo-
cated, also have a very strong effect in improving the solar
wind velocity representation over almost the entire domain.

The results thus show that data assimilation should im-
prove the forecast of velocity and magnetic fields not only
near and around the observation location, but also for grid
points rather far from the measurement location.

It is reminded that, as from Eq. (14), the correction of
the forecasted state is a linear combination of represen-
ters associated with the observations assimilated. The rep-
resenters include both contributions from covariances for the
same fields (magnetic field or velocity field) and from cross-
covariances between different fields (magnetic field with ve-
locity field): each representer propagates information from
the observation to the different variables of the state vector.
This means, in this case, that assimilation of magnetic field
observations might improve the state for the solar wind ve-
locity as well, and vice versa.

Here, the ensemble cross correlations between thez com-
ponents of the magnetic and velocity fields are analysed in
the whole domain of study. A virtualbz observation is sup-
posed to be assimilated at the same previous location points
and the doi onvz is computed. Figure 11 shows snapshots
of cross correlations for locations 4, 3, 5 and 6, selected
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Fig. 10.Domain of influence for thez component of the solar wind
velocity vz for the assimilation of a velocity observation taken at
different locations at the same time stept/τA = 334. The black cir-
cle indicates the data observation location.(a) refers to location 4
(L1, 1 AU), (b) to location 3,(c) to location 5 and(d) to location
6. The spatial dimensions are normalised toLv = LB , the length
scale of variation of the velocity; time is normalised to the Alfvén
time τA .

Fig. 11.Domain of influence for thez component of the solar wind
velocityvz for the assimilation of a magnetic field observation taken
at different locations and different times. The black circle indicates
the data observation location.(a) refers to location 4 (L1) and time
t/τA = 176,(b) to location 3 and timet/τA = 140, panel(c) to lo-
cation 5 and(d) to location 6, both at timet/τA = 228. The spatial
dimensions are normalised toLv = LB , the length scale of variation
of the velocity; time is normalised to the Alfvén timeτA .

throughout the simulation at different time steps. It should be
noted that only specific cases are shown. The less interesting

Fig. 12.z components of the solar wind velocityvz (left panel) and
of the magnetic fieldbz (right panel) of the reference simulation in
correspondence with doi plots of Fig. 11, for times(a) t/τA = 176,
(b) t/τA = 140 and(c) tτA = 228. The spatial dimensions are nor-
malised toLv = LB , the length scales of variation of the magnetic
field and of the velocity; time is normalised to the Alfvén timeτA .
bz is normalised tob0 andvz is normalised to the Alfvén speedvA .

cases with no correlation are dropped. For both locations 4
and 3 the domain of influence is characterised by the appear-
ance of a dipole around the observation location with a sep-
aration of correlated and anti-correlated areas. For location 6
the doi shows an anti-correlated area, while for location 5 the
doi is characterised by a positive ensemble correlation. As a
reference, Fig. 12 shows thez components of the solar wind
velocity vz (left panel) and of the magnetic fieldvz (right
panel) of the reference simulation for the same times of the
doi plots of Fig. 11. Preliminarily, this figure indicates that
the cross correlations are related to the sign of the magnetic
and velocity fields, respectively.

It is known in ensemble methods (Evensen, 2009; Bout-
tier and Courtier, 1999) that ensemble correlations are re-
lated to the ensemble member structures of model errors. The
correlation/anti-correlation space extent seems to be related
to the sign of thez components of the magnetic and velocity
fields. While thez component of velocity is positive for all
ensemble members at all locations, as can be noticed form
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Fig. 5 (right panels), the behaviour ofbz at the different loca-
tions is more complicated. From the right panels of Fig. 4 it
is possible to notice that at locations 4 and 3, where dipoles
are present in Fig. 10, some of the ensemble members ex-
hibit positive values ofbz, while the rest of the ensemble
members experience negative values of the magnetic field.
At location 6, where most of the domain shows negative cor-
relation, all the ensemble members have negative magnetic
fields. At location 5, which is mostly positively correlated,
bz is positive for all the ensemble members.

Further studies need to be conducted to better understand
this behaviour.

5 Conclusions

Investigations were made to assess if and how the use of
data assimilation techniques could lead to more accurate esti-
mates of state variables (i.e. solar wind velocity and magnetic
field) for solar wind models in different regions of the helio-
sphere. A location of particular interest is the source surface,
since boundary conditions for solar wind models are usu-
ally taken there. More in general, the potential domains of
influence due to assimilation of virtual measurements taken
at different locations of space on the evolution of the FLIP-
MHD model for the solar wind were investigated. The gen-
eral aim of the study was to understand the processes and dy-
namics in terms of spatial and temporal features of an MHD
heliospheric model. A sensitivity study has been conducted
through ensemble variances and representer “influence func-
tions” analysis, both performed with multiple runs of the
model on statistically guided modifications of the input.

First, the sensitivity study permits us to characterise the
sensibility of the model to the variation of the input param-
eters. This allowed us to better identify the reaction of the
model to small variations in the boundary conditions. It is
now understood how minimal differences in the boundaries
may give rise to a different pattern of reconnection events and
that, as a consequence, a faithful representation of the source
surface conditions is paramount for the evolution of such
models. Hence, the necessity of reliable boundary conditions
arises. Another result is the estimate of the error structures of
the model, which helps to emphasise the domain areas where
dedicated observations may be useful to be collected.

Second, the representer analysis has been used to antic-
ipate and estimate the potential contribution of DA to the
model evolution. Indeed, the ensemble modelling led us to
investigate the model error covariances with the aim of iden-
tifying the potential domains of influence through the assim-
ilation of one virtual observation. Such an analysis was per-
formed by computing the ensemble correlations and cross
correlations, both for magnetic field and velocity measure-
ments at different spatial locations. It was shown that, while
for magnetic field measurements the model improvement is
rather bound to the location of the observation and also to

the occurrence of magnetic reconnection, the assimilation
of velocity measures grants model benefits which span fur-
ther away from the observation location in space and which
are less affected by the occurrence of reconnection. Velocity
measurements taken at L1 proved to be strongly correlated
with the model evolution, also at large distances.

It should be remarked that calculating ensemble correla-
tions also has the advantage of considering the observations
one by one, thus isolating the influence of each observation
in incrementing the correction. In the intermediate goal of
optimising a monitoring network for space weather events,
this approach is very interesting and helpful. Indeed, the do-
main of influence analysis can already provide useful infor-
mation about the spatial extent of the expected correction ob-
tained by assimilating one isolated observation. This allows
one to identify the spatial coverage required for the design of
a space weather observation network.

The approach and the results presented here do not assess
the success or the failure of the assimilation system. How-
ever, the positive results obtained by computing the domains
of influence of virtual observation are a further hint of the po-
tential benefits of DA on space weather MHD models. The
next step would be to implement and run the complete DA,
by applying the correction brought by the observations to the
forecasted statexf (Eq. 14).

From this study, two main strategies for applying DA to
heliospheric models emerge. One consists in updating di-
rectly the model fields in the simulation space. If magnetic
field values are updated, special attention must be dedicated
to the solenoidal condition for the magnetic field. The other
one consists in correcting the boundary values at the source
surface in order to feed the model continuously with optimal
boundary conditions. The study focused on the second strat-
egy, since poor magnetograms are known as a major source
of errors in ambient solar wind modelling.
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J. Linker, Z. Mikic, R. Lionello, P. Riley, N. Arge and D. Odstrcil
at PSI, AFRL, U. Colorado.
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