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Abstract. In this paper, we propose a new method to extractstochastic models of airborne dispersion where the vertical
the extreme fluctuations of vertical velocity in the unstable velocity is assumed to be Gaussi&aérentsen and Berkow-
atmospheric surface layer. Unlike the commonly used con-icz, 1984 Luhar and Britter 1989 Weil, 199Q Du et al,
ditional sampling analysis, this method defines a thresholdl994 Anfossi et al, 1997. However, until now there has
by using a systematical method and tries to reduce the artibeen no consensus on the forms of PDFs of vertical veloc-
ficiality in this process. It defines threshold as the positionity, and many works focused mainly on the skewness and
where the types of probability density functions (PDFs) of kurtosis deviating from a Gaussian distribution, important
vertical velocity fluctuations begin to change character fromnon-Gaussian features of vertical velocity. Receritly, et
stable distributions to truncated stable distributions. Absoluteal. (2017 found that except for the skewness and kurtosis
values of fluctuations greater than the threshold are considdeviating from a Gaussian distribution the tails of PDFs of
ered to be extreme fluctuations. We then analyze the statistivertical velocity are also much longer than a Gaussian dis-
cal characteristics of extracted extreme fluctuations of ver4ribution. Longer tails mean that large vertical velocities will
tical velocity. Our results show that the amplitudes of ex- appear more frequently than Gaussian predictions and the ob-
treme fluctuations are exponentially distributed, and the wait-served time series seem to be bursting.
ing times between extreme fluctuations have stretched expo- Many interesting phenomena are related to extreme sig-
nential distributions. It suggests that there are statistical cornals. One is the cumulative effect. It means that although
relations in the time series of vertical velocity because inde-extreme signals have smaller probabilities than background
pendent time series can only have exponentially distributedsignals, they have larger magnitudes and thus could cause
waiting times. The durations of extreme fluctuations are alsonoticeable effects. The cumulative effects and their implica-
found to be stretched exponential distributed, while for thetions have been discussed in atmospheric science. For ex-
independent time series the distributions of durations areample,Mahrt (1998 has discussed that the simulated sur-
delta-like. Finally, the PDFs of amplitudes, waiting times and face temperature will be much lower than observations if the
durations are all well parameterized in the context of Monin—cumulative effect of extreme singals in the stable boundary
Obukhov theory. layer (SBL) is ignoredDuncan and Schuepfd992 stated
that 80 % of airborne fluxes were due to roughly 20 % of the
recorded extreme events. Another interesting phenomenon is
the local effect. It means that influential effects are focused
1 Introduction on a small fraction of a time interval. In some cases, the local
effect will be important for our lives. In the nocturnal bound-
It has been found that the probability density functions ary |ayer, the extreme vertical mixing can bring the ozone

(PDFs) of vertical velocity in the convective boundary layer g|oft to the surface and this would lead to a local pollutant
(CBL) are non-Gaussian due to the presence of updraftgyvent Salmond and McKendry2005.

and downdrafts, and this finding is expected to improve the
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464 L. Liu et al.: Extreme vertical velocities in the unstable boundary layer

Extreme signals in the time series of vertical velocity are for similarity analysis. In all, 6 days of wind data obtained
always mingled with noise and background turbulence. Ifby sonic anemometers (Campbell CSAT-3, 20Hz) at 10 and
we want to study their statistical features, we should ex-30m are used in this paper.
tract extreme fluctuations from original observations. The Before further analysis, several steps and algorithms are
most commonly used method for extracting extreme fluctu-used to control the quality of the data. First, algorithms devel-
ations is conditional sampling analysis, where fluctuationsoped byVickers and Mahr{1997) are used to detect possible
above a threshold are considered to be extreme sighals ( instrument errors. Erroneous data are withdrawn from further
tonia 1981 Nappq 1991, Duncan and Schuepft992 Do- analysis. Second, the instrument’s reference frame is trans-
ran 2004. However, many works set the threshold artifi- formed to the streamline reference for correcting the possible
cially, and different thresholds may cause apparently condilt of the anemometei{aimal and Finnigan1994 Wilczak
flicting results &chumann and Moend991). This becomes et al, 2001). Third, the data with jets appearing at the top of
one major criticism of conditional sampling analydidgson  wind profiles are withdrawn in order to avoid possible distur-
et al, 2002. Extreme signals are commonly considered to bances from mesoscale structures. Fourth, the Fourier spec-
be caused by particular physical mechanisms different frontra of vertical velocities are analyzed to detect possible con-
those related to noise or background turbulence. In the CBLtamination from high-frequency noise, and data with serious
the extreme vertical velocities and fluxes may be caused byoise contamination are withdrawn. Unless otherwise noted,
plumes or thermalsBaerentsen and Berkowic¥984 Dun- the averaging time used in the computation of averaged vari-
can and Schuepf 992, and in the SBL, the extreme turbu- ables, such as friction velocities, turbulent fluxes and aver-
lence may be caused by wind shear instabilByatkadar aged temperature, will be set to 15 min in this paper.

1979, gravity waves Nappg 1997 or other forcings $un As inLiu et al. (2011), we will analyze the dimensionless
et al, 2002. Different physical mechanisms may lead to dif- vertical velocity defined by

ferent statistical behaviors. Thus, based on the PDF analysis,

one would find a reasonable method to set the threshold an% _w 1)
reduce some artificialitykatul et al.(1994 proposed such T o

a method. They use a Gaussian distribution as a reference

PDF and define the threshold as the position where observedthere w’ is the vertical velocity fluctuation and,, is
PDFs begin to deviate from the reference PDF. However, foithe standard deviation af’. Data are also classified into
the vertical velocity, a Gaussian distribution is not suitablesix categories according to the stability parameter as was
to be used as the reference PDF. The central parts of PDRssed byKaimal et al.(1972: z/L < —-2.0, —20<z/L <

of vertical velocity are asymmetric and cannot be fitted by —1.0, —1.0<z/L <-05, —-05<z/L <-0.3, -03<
GaussiansGhu et al, 1996 Liu et al, 201)). It was found z/L <-0.1, and-0.1 < z/L <0, whereL is the Obukhov
that PDFs of vertical velocity in the unstable surface layerlength and; is the height above ground level.

can be fitted well by the truncated stable distribution, which

is also better than other commonly used distributions, such

as bi-Gaussian and Gram—Charlier PDE®I (et al, 2011). 3 Extraction of extreme fluctuations
These findings can be used to improve the methodadtil
et al.(1994. 3.1 Methods

In this paper, a new method is proposed to extract ex-

treme fluctuations from time series of vertical velocity (see The method is based on the consideration that extreme fluctu-

Sect.3). Then, the statistical features of extreme fluctuations,ations with large amplitudes may be related to some physical

such as the PDFs of the amplitudes of extreme fluctuationsmechanism different from that related to background turbu-

waiting times and durations, are analyzed and parameterizel&nce or noises. If so, their statistical behaviors may also be

in the context of the Monin—Obukhov similarity theory (see different. Thus, by analyzing the PDFs, one could find a turn-

Sect.4). ing point where the types of PDFs begin to change. The turn-
ing point is considered to be a threshold to extract extreme
events. In practice, a mathematical distribution is selected as

2 Data a reference PDF that must fit the central parts of observed
PDFs well. The threshold is then defined by the turning point
The data used in this paper are the same as thdsa &t al. where observed PDFs begin to deviate from this reference

(2017). More details about the data and quality control algo- PDF.Katul et al.(1994) used a Gaussian distribution as the
rithms are found in that paper. Here, we just give a brief in-reference PDF to fit the central part of the PDF of heat flux.
troduction. The experiments were carried out from May 2009For the vertical velocity in the unstable surface layer, the
through April 2010 at a site located in a steppe northeast ofcaussian distribution is not a good reference PDF because
Xilinhaote, in Inner Mongolia, China. The underlying sur- the observed PDFs are generally asymmetric, while a Gaus-
face is nearly horizontally uniform and flat, which is suitable sian is symmetric.
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Liu et al. (201) found that in the unstable surface layer where f is the original PDF andfs; is the normalized
the PDFs of dimensionless vertical velocity under different PDF. The normalization coefficient is computed byc =
stability conditions almost collapse to a curve, which can [ f (x)dx. For smallD, it is found that the normalized trun-
be well described by the truncated stable distribution. Thecated stable and stable PDFs almost coincide in the range
truncated stable distribution does not have a closed express (see Fig.1b). However, for largeD the two normalized
sion, but its characteristic functioh(k) is closed Koponen PDFs will not coincide in the rangé due to their differ-

1995: ent types of tails. This can be easily understood according to
(5). If the tails of the probability function are different, the
_ «_ (124,2\%? L di lizati ffici diff Th
INdk)=—+— 1o (k +A ) cos| o arctan— corresponding normalization coefficients are different. Thus
cos(ra/2) A the normalized pdf will be totally different even in the cen-
. [k| tral part of a PDF (see Fidla, whereD — co andc = 1).
[1_ ip (signk) tan(a arctanT ’ ) The difference between normalized PDFs can be described
by their maxima. Figurdc shows the maxima of PDFs as a
when O<a <1, and function of the half-lengttD /2. For smallD, there is almost
o w2 k| no difference between the two normalized PDFs. However,
nNok)y=—{12%— (k2 + Az) cos| « arctan— asD increases, the difference will become large.
cos(ra/2) A

' We then compute the absolute value of relative deviation
[1_ iB (signk)tan(a arctaru)] - mmﬂ—lk} . (3) between maxima of the normalized truncated stable and sta-
A ble PDFs by

when 1< « < 2 (note that there is a misprint of Eq. (35) in
Liu et al, 2011 where+iafr*~ 1k should be—iafr*~1k).  Rrp=—
Although the characteristic function is a complex function,
its Fourier transform is the probability density function,
which is a real function. where f and fi are normalized truncated stable and stable
The parametek is a cut-off parameter. When=0, the  PDFs, respectively. As shown in Fitd, RD shows different
truncated stable distribution becomes the stable distributionbehaviors with the increase . Three regions can be iden-
To tified. WhenD/2 < 0.5, RD almost approaches zero. Data in
In® (k) = —y|k|* [1— ip tan<7) (signk)] : (4)  this region are mainly noises or background turbulence that
agree with the stable distribution. WherbG D/2 < 2.2,
Both the truncated stable and stable distributions have threRD begins to increase as a linear function®f2. In this re-
common parameters: a characteristic exponeat(0,2], a  gjon, the extreme fluctuations begin to affect the behaviors
skewness parametgre [—1, 1] and a scale parametgr>  of PDFs. However, the relative proportion of noises or back-
0. Sincea and g determine the form of PDF, they are con- ground turbulence and extreme fluctuations may be compa-
sidered to be shape parameté¥slan 2013. rable and it is difficult to distinguish them in this region.
Except in the far tails, there are no differences between thepjith the increase inD/2, data will contain more and more
truncated stable and stable PDFs with the samg, andy  extreme fluctuations. At the same time, deviations between
(Koponen 1995 Nappq 199]). Thus, itis natural to consider  truncated stable and stable distributions will become larger
the stable distribution as a reference PDF. The threshold fopntil the relative proportion of extreme fluctuations is signif-
extracting extreme fluctuations can be defined by the posiicant. WhenD/2 > 2.2, we find that RD ends its linear be-
tion where the observed PDFs begin to deviate from the corhavior and begins to saturate. In practice, the end point of the
responding stable ones. In the following, we use an examplginear behavior of RD is considered to be the threshold for
to show how to find the threshold. extracting extreme fluctuations. In this case, the threshold is
An asymmetrically truncated stable distribution with pa- 7, = x4 D/2 = —0.1+2.2. Fluctuations greater thaf,

rametersx = 1.5, 8 =0.6, y =1 andA =1 is considered. and less thafi_ are recognized as extreme fluctuations.
The corresponding reference PDF is an asymmetrically sta-

ble PDF with parameterg = 1.5, 8=0.6 andy =1. We 3.2 Application to vertical velocities
first define arang€& € [—D/2+xmax, D/2+xmax] along the
x axis with a length o> wherexmayis defined byf (xmax) = The method introduced in Se&.1can be used to extract ex-
maxf (x) (see the rectangles in Fi@g). In this caseymax~ treme fluctuations from dimensionless vertical velocity fluc-
—0.7 for the stable distribution anghax~ —0.1 for the trun-  tuations. According td.iu et al. (2011, the dimensionless
cated stable distribution. We then compare PDFs in the rang®ertical velocities in the unstable surface layer are well fitted
of G. For comparison, PDFs in this range are normalized byby a truncated stable distribution with parameters 1.19,
B =062,y =1.72,andh = 1.61 (see Fig2a). Thus, the sta-
1 ble distribution § = 0) with these same parameter values is
== , 5 T
fox) cf(x + ¥max) ©) chosen as a reference PDF (see the dashed line irR&)g.

max/g — maxfc

-100%, (6)
maxfg
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Fig. 1. lllustration of defining thresholdga) Comparison between truncated stable distribution and stable distribution. Parameters

15, 8=0.6, y =1, andr = 1. The rectangle with a length @ in the direction of thex axis encloses the part that will be normalized.

(b) Comparison between partly normalized truncated stable distribution and stable distrif@)ti@miations of maxima of partly normalized

PDFs as a function ab/2. (d) Variations of absolute values of relative deviation between maxima of partly normalized PDFs as a function
of D/2. According to the form of variations, this function can be divided into three regions that are marked out by dashed lines. Positions of
the dashed lines on theaxis are also marked near these lines. The same dashed lines and corresponding positions are also(n)arked in
Linear fitting and its correlation coefficie® in the intermediate region are also showrfdi

The PDFs normalized by Eg5) coincide for smallD (see We should stress here that because the physical mecha-
Fig. 2b, where the length of range = 1.2). As in the ideal-  nism of extreme events is not known yet we can not define the
ized examples, with the increase inthe normalized PDFs threshold directly from the right physical mechanism. In this
in the rangeG begin to separate (see FRL). One can note situation, the natural way is to find turning points because in
that the normalized observed PDFs and their maxima are albhysics such points usually represent a possible sudden shift
consistent with the truncated stable distribution. The varia-to a contrasting dynamical regim8cheffer et al.2009. We
tion in RD as a function oD /2 is shown in Fig2d. As with found two turning points in the RD plot. The left one is too
the examples in Sec3.1, three regions can be identified. For close to the central part of PDF where the extreme signals
D/2 < 0.7, the fluctuations are mainly noises or backgroundmay also coexist with the noise or other weaker background
turbulence. For @ < D/2 < 1.9, the relative proportion of signals. For safety, we choose the right one as the threshold.
extreme and background signals is comparable and it is difit may not be the best way, but is a reasonable way to define
ficult to distinguish the two kinds of signals in this region. a threshold without the physical mechanism. Of course, if we
For D/2 > 1.9, RD begins to saturate. It is considered to have convincing reasons other ways are also allowed.
be a sign that the relative proportion of extreme fluctuations Some examples of extracted extreme fluctuations are
becomes significant. Thus, the threshold for extracting exshown in Fig.3. The left column of Fig3 shows the orig-
treme vertical velocities i%y = xmax+ D/2=—0.15+1.9. inal (top) and corresponding extreme (bottom) fluctuations
It should be noted that the threshdld is for dimension-  when the local mean wind velocity is about 5msand the
less vertical velocityZ. For the original vertical velocity, the right column shows the results when the local mean wind ve-
threshold locity is about 15m3s?! (see the bottom plot in each panel).
7) One can see that with the decrease/ih (with the stratifica-

tion more and more unstable) the extreme fluctuations show
and the extreme fluctuations of vertical velocity are identified 5 tendency to clustering if the local mean wind velocity is
by large or small. At the same time of clustering, the frequency
w > wy or w <w_. (8) of extreme events seems to descend. This may be related to

Wi =0y Ty
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Fig. 2. Defining thresholds in the time series of dimensionless vertical velocity fluctuafegr@omparison between observed PDFs and the
reference distribution. Different points denote the observed PDFs under different stability conditions. The observed PDFs can be well fitted by
the truncated stable distribution (shown by the line). The stable distribution as the reference PDF is shown by the ddbh&blimgarison

between observed and reference PDFs that are already normalized in the rgprgkd®f 0.6, —0.15+0.6] and[—3.85— 0.6, —3.85+0.6],
respectively(c) Variations in the maxima of partly normalized PDFs as a functio®¢?. Different symbols represent different stability
ranges, which are the same as thoséin Maxima of partly normalized stable and truncated stable PDFs are denoted by the line and the
dashed line, respectivelfd) Variations in absolute values of relative deviations between maxima of partly normalized stable and truncated
stable PDFs as a function &f/2. Regions are marked out by the dashed lines and the positions of these linescaxihare also shown

in this plot. The same dividing lines and the corresponding positions are also maikg¢tydotted lines.

the more frequent appearance of large plumes or thermals id  Statistical characteristics of extreme vertical
the very unstable CBL. velocities
It has been found that the standard deviation of vertical

velocity o,/ in an unstable surface layer agrees with Monin—The statistical characteristics of extreme vertical velocity
Obukhov similarity and can be parameterized by fluctuations can be described by their amplitudes, waiting

times and durations beyond threshold. In this section, we
0w _ 1 01— 4.5,/ [\ Y/3 9 will discuss the statistical characteristics of amplitudes, wait-
uy (1—4.52/L)"~, (©) ing times and durations of the extracted extreme fluctuations.
Figure4 is a schematic diagram of extreme vertical velocity
fluctuations where the waiting times and durations are de-
noted by, ands, respectively. These symbols will be used
in the following sections.

whereu, is the friction velocity (iu et al, 2011). Thus, the
thresholdw.. can also be parameterized by

Y 1 (- 457/1)Y8. (10) 4.1 Amplitude of extreme vertical velocities
u

*

We define the dimensionless excess amplitude of up-crossing
Using the above equation, one can easily obtain the threshby Z — 7. whenZ > T, and the excess amplitude of down-
old by only measuring the stability parametgil. and the  crossing byZ—7_ whenZ < T_. PDFs of excess amplitudes
friction velocity u,. are plotted in Figh. Results show that all the excess PDFs
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Fig. 3. Examples of extraction of extreme vertical velocity fluctuations at different stability parameters and mean velocities. The top one in
each panel is the original time series and the bottom one shows the corresponding extracted extreme fluctuations. Thresholds are denoted &
dashed lines in each panel.

under different stability conditions almost collapse into a sin-wherei_ = 2.56. Finally, we have

gle curve, except data points in the far tails, where the statis- o

tics are poor. Data points can be fitted well by an exponentialf (w/|w/ >wy) = )‘_Jre_a,j(w —wy) (13)
distribution, except the part very near the threshold, where Ow'

data are undercounted due to the limit of measurement resgq g

lution. The fitting function for the up excess PDF is

A :—j(w’—w,)
f(Z=THZ > Ty =hpe HET, ay S <w)= e , (14)
whereA, = 1.77 and for the down excess PDF whereo,, is parameterized by Eq9). For comparison, we
(2T generate an independent and stationary time series whose
fZ-T|Z<T-)=h-e" o (12) PDF is the same as the truncated stable PDF shown irk&ig.
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Fig. 4. Schematic diagram of extreme time series. Waiting time 107 :
and duratior, are also shown in the plot. 0 1 2(Z T‘?’) 4 S
10'
(see Fig6). The excess PDFs of this artificial time series are (b) dashed line:
also plotted by lines in Figs. One can see that the real data f=1.7Texp[-1.77(Z — T3]

and the independent artificial time series with the same dis-  1°

tribution also have the same excess PDFs. R =0.96693

4.2 Waiting time 1074
If a time series is independent and stationary, it can be easily +

&
A
N
&
proved that the waiting time is exponentially distributed. The *" ;42

proof is listed as follows. Suppose that is the sampling N o s

interval and the number of sample# time interval[zg, 7o+ = Ao o oo

t] is t/At. Then, the probability of occurrence number of 1073 \oﬁk el

extreme fluctuation®/ during[zo, 7o + t] is given by A %g@b"’ﬁq

Xmo a] m&@ Y

P(N=k =Cip*1-py ™, (15) 10 ‘ ‘ ‘ o0 WP AE
0 1 2 3 4 5

wherep is the probability of occurrence of extreme fluctua- Z Ty

tions andk € [0, n]. Itis well known that ifn is very large but _ _ _ _ _
np is not very large the binomial distribution) approaches  Fig. 5. PDFs of excess amplitudes of dimensionless extreme verti-

a Poisson distribution. Thus, cal velocity fluctuations. Plafa) shows the down excess PDF and
(b) shows the up excess PDF. Points denote the observed PDFs and
(np)k B different symbols represent different stability ranges, which are the
P(N =k)~ —-—e (np) (16)  same as those in Fig. 3a. Dashed lines are exponential fittings to

the data. Fitting results and their correlation coefficigbiare also
The Poisson-distributed occurrence number will lead to anshown in the plots. Lines are the excess PDFs of artificial indepen-
exponentially distributed waiting time that is expressed by ~denttime series with the same distribution as data.

tw) = 8e o, 17 . . . L
S (tw) = be (17) Figure7a shows the dimensionless waiting time distribu-

where the paramet@': p/At and tw > At (Ross 1983 tion. The dimensionless Waltlng time is defined by

We note that the above conclusion is only for independent tw

time series. If correlations exist, the waiting time distribution 7w = = (18)

will deviate from the exponential distribution. In fact, stud- W

ies in a widespread area, such as boundary layer wind speagherer, is the mean of waiting time. The result shows that
(Santhanam and Kant2005, records of climateBunde et  data under different stability conditions almost collapse into
al., 2005, seismic activitiesavidsen and Golt2004 and  a single curve but deviate significantly from exponential dis-
solar flaresl(epreti et al, 2001), found that most natural time  tribution. For the independent artificial time series shown
series belong to the latter. in Fig. 6, the waiting times are exponentially distributed
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Fig. 6. (a) Comparison of PDFs of artificial independent time series

and the truncated stable distribution with the same parameters ilp:ig_ 7. (a) PDFs of the dimensionless waiting tim&g between

Fig. 3a.(b) Artificial independent time series (top) and extracted ex- extreme vertical velocity fluctuations. Points denote the observed

treme fluctuations (bottom). Thresholds are denoted by the dashefipFs and the different symbols represent different stability ranges

lines in the top plot. that are the same as those in Fig. 3a. Line denotes the waiting time
PDF of the artificial time series shown in Fig. 7. Dashed line is the
fitted stretched exponential distribution and the dash—dot line is the

A . exponential distribution with a mean of (b) PDFs of dimension-
(see the line in Fig7a). We then randomly sort the original less waiting times of the surrogate time series that are obtained by

vertical velocity fluctuations including many extreme events randomly sorting the original time series. Line is the exponential
to obtain a surrogate time series. This time series has th@istribution with a mean of 1.

same distribution as the original one, but loses correlations.
Figure 7b shows that the waiting time distribution of inde-
pendent surrogate series is indeed exponential. The above rgv_here
sults suggest that there are correlations in data. ay = by —,
It has been found that the extreme fluctuations from cor- I'(1/x)
related time series may have waiting times with a stretched (21/’<)2F 1/k +1/2)
exponential PDFRunde et al. 2005 Altmann and Kantz b« = NG : (21)
2005. Figure7a shows that the PDFs of dimensionless wait-
ing times between continuously extreme fluctuations unde@nd « ~ 0.2950. We also analyze upward and downward
different stability conditions can be well fitted by a stretched Vertical velocities exceeding the/— threshold separately
exponential distribution that is expressed by (Fig. 8). One can see that the waiting time PDF between
upward extreme events is almost the same as that between
. downward extreme events and both PDFs can also be well
f (Tw) = age™ Tl (19)  described by Eq10).

K

(20)
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1 ‘ ‘ ‘ 4.3 Durations beyond threshold

As discussed in Sect.2, the probability of occurrence of
a number of\ non-extreme fluctuations for an independent
and stationary distributed time series is approximated by

)" _p)

PM =k~ e,

(24)

if n is large andnp is not large. Then, the distribution of
durations is obtained by

n
P (At—'t < n) —1- @ﬂ"ﬁ). (25)
n.

Based on the analysis of the PDFs of vertical velocity in
Fig. 2a, we can estimate that the probability of occurrence
_ _ _ o of extreme fluctuations will bep ~ 0.06. We substitute this
I(:f:ﬁéj.spragts)lg ;:gini:;;rr'ge?s ‘2’2'2”9 :)m?es bftweer}ldotwn;/_vard value in Eq. 25) and plot the variations aP (1 /At < n) as a

y P pen symbols) extreme fluctua 'S tUnction ofn (see circles in Figl0). The result shows that for

Different symbols represent different stability ranges, which are the. d d d . ’ - fthe d .
same as those in Fig. 3a. Line is the stretched exponential distribu"GEPEN ent and stationary time series most of the durations

tion with the same parameter as that in Fig. 8a and dashed line i&'€ Very small. This is indeed so for the artificial time series
the exponential PDF with a mean of 1. shown in Fig.6, where most durations are equal to abaut
(see dots in Figl0). Comparing the extreme time series in
o Figs.3and6, one can see that the real data are more clustered
We now consider the parametrizationzgf In the surface  than independent time series. This means that long durations
layer, the characteristic timescale for vertical velocity fluc- will appear more frequently in real data than in independent
tuations isz/u,. It should be noted that this is not the only time series. Figuréla shows the PDFs of dimensionless du-
timescale that is related to the mean of waiting time. Sam-~ation of whole extreme fluctuations under different stability
pling interval At is also involved. With the decrease in the conditions. The dimensionless duration is defined by
sampling interval, a waiting period may be shattered into sev-
eral shorter waiting periods. When parameterizing the meary; — t:' (26)
of waiting time, both timescales should be considered. Fig- l
ure9a and b shows that the dimensionless variables obtained _ . .
. where 7, is the mean of duration. Results show that the
by one timescale are very scattered. However, we also notE, ) o "
_ . . . DFs of 7i under different stability conditions almost col-
that#y /At is organized better than,ny/z at large values of

z/L and vice versa at small values5fL. Thus, we defined Iap;e Into a single curve and thls curve can b? well de-
. . . scribed by a stretched exponential distribution with param-
a new dimensionless variable by

eterx ~ 0.6290. Figurellb shows the PDFs of the dimen-

Tw sionless duration of upward and downward extreme fluctua-
A= AL ()= (22) tions separately. Most data are found to be clustered around a

single curve and can be well described by the same stretched

Figure9c shows the variations of as a function ot /L for  distribution in Fig.11a. It suggests that there are no differ-
the whole extreme time series. This dimensionless variablences in the statistics of durations of the whole and the up-
combines the timescalegu, and At and can get all of the  ward (or downward) extreme fluctuations. Finally, we define
data closely clustered around a single curve. The fitting resulthe dimensionless average duration by
shows that this curve can be described by

1]
A= 54.5exp(7.4%) . 23 BT amm

(27)

Figure9d shows the variations of as a function ot/ L for as we have done for the average waiting time. This dimen-
upward and downward extreme events separately. We fingionless variable can also be parameterized well by

that most data collapse into the same curve, whether for the z

upward or downward extreme events. This curve can be wellB = 3.84 exp(7.4—> , (28)
described by Eq23). It suggests that there will be no signif- L

icant differences in waiting time statistics between the wholewhether for the whole extreme time series (Fidc) or for

and the upward (or downward) extreme time series. the upward (or downward) extreme time series (Eity).
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Fig. 9. Variations of dimensionless mean waiting times as a functiasy bf Filled points are measured at 30 m and open ones are measured
at 10 m. In plotgc) and(d), the dimensionless mean waiting tirdeis defined by Eq.Z2). Plots(a), (b), and(c) show the mean waiting
times in the whole extreme time series gyl shows the mean waiting time between upward (circles) and downward (squares) extreme

fluctuations separately.

Note that the coefficients beforgL in Egs. £3) and £8)
are identical. We conclude that it would not be a coincidence.
From Eg. 22) we have

1.1 : : o
o Theory logA = loghy — (1+ %) logAr + %Iog <i)
« Artificial Time Series U
=lo ! +lo f:t + Lo ¢ (29)
1051 ] =N 9 =L Nwar)
5‘ where N, is the number of continuous periods without ex-
B 1 seeeceeeeeeeeeoooee- treme events during a fixed peri@d(15 min in this paper).
~ Similarly, from Eq. 7) we have
[ _
logB = logs — (1+ E) logAr + hd log (i)
0.95} 1 L L Uy
1 g z Z
=lo +lo ni|l+—Ilo , (30
9N 9(2 |,l> 7 g<u*m) (30)
0.9 : : : N
S 10 15 20 where N is the number of extreme events. Because an ex-

n
treme event is next to a waiting period, it can be deduced that

Fig. 10. Duration distribution for the independent time series. Cir-
cles are Eq.25) and dots are computed from the artificial time se-
ries shown in Fig. 7. and

Np Na
ZILZ'—FZIWJ:T. (32)
i=1 i=1

Njs~ Np (31)
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Fig. 11. (a) PDFs of the dimensionless duratiofisof extreme vertical velocity fluctuations. Line is the fitted stretched exponential dis-

tribution. (b) PDFs of dimensionless durations of downward (filled symbols) and upward (open symbols) extreme fluctuations. Line is the

same function as that i@). Different symbols in(a) and(b) represent different stability ranges, which are the same as those in F{g) 3a.
Variations in dimensionless mean durations as a functiary bf The dimensionless duratia® is defined by Eq.27). Filled symbols are
measured at 30 m and open ones are measured at 10 m. Line is the fitted exponential faiatésiations inB for the downward (squares)
and upward (circles) extreme fluctuations separately. Line is the same function agt)at in

Besides, the total durations are generally very small wherb Conclusions

compared withT". Analysis also shows th@ﬁvjl n,;~T/60

for the data used here (not shown). Based on the above coriextreme fluctuations of vertical velocity that may originate

siderations, we deduce that

+£Iog ‘
L u At )

Because the coefficieqts; ~ 10 the third term in Eq.30)
will contribute much more to the relation between Bg@nd
z/L than the second one. Thus

logA ~ log (33)

NpAt

logB ~ lo 1 +£Io <
g gNBAt L 9 u At )

Comparing with Egs.33) and @4), we conclude that the
identical coefficients beforg/L in Egs. £3) and £8) would

be caused by the large valueﬁfE, which is generally true
in atmospheric boundary layer observations.

(34)
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from plumes or thermals in convective boundary layers are
important for airborne dispersion. It is interesting to analyze
the stochastic characteristics of extreme fluctuations and to
design the parameterizations for further development of dis-
persion models. Before doing this, we should extract the ex-
treme fluctuations from original observations where the ex-
treme fluctuations and noise or background turbulent signals
are always mingled together. Conditional sampling is a com-
monly used method to extract the extreme fluctuations, but
a key parameter in this method, that is the threshold defin-
ing the boundary between extreme fluctuations and noise or
background turbulence, is chosen somewhat artificially. In
this paper, a new method based on the analysis of probabil-
ity density functions (PDFs) is proposed to set the threshold
reasonably. It has been found that the PDFs of vertical ve-
locity fluctuations can be well fitted by the truncated stable
distribution. As suggested by its hame, this distribution will
deviate from the corresponding stable distribution in the far
tail. Stable distribution is a wide class that includes a Gaus-
sian as a special case and is commonly used in many different
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are stably distributed. Comparing the observed PDFs and thBaerentsen, J. H. and Berkowicz, R.: Monte Carlo simulation of
corresponding stable distribution, one can find a vertical ve- Plume dispersion in the convective boundary layer, Atmos. Env-
locity amplitude beyond which the types of observed PDFs_ Ion- 18, 701-712,1984.

begin to change from stable to truncated stable distributionsB'?Ckade_‘r’,A"A'g': H'gh'_resé’mt.'on mOdells gf the planeéaéy boundary
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