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Abstract. A parametric model of the inertial-range energy
spectrum is constructed for plasma turbulence in the four-
dimensional wave vector and frequency domain. The model
is based on that of the Eulerian wavenumber-frequency spec-
trum developed for describing fluid turbulence, and includes
wave vector anisotropies in the three-dimensional wave vec-
tor domain by approximating the spectrum to a set of el-
lipses. The shape of the four-dimensional spectrum is de-
termined by the Doppler shift, the Doppler broadening, and
anisotropy coefficients. The model is applied to the magnetic
energy spectrum in the near-Earth solar wind measured by
four Cluster spacecraft, and the set of the spectral parame-
ters are determined observationally. In this way, space–time
structure of plasma turbulence can be condensed into a small
number of parameters, which is suitable for evaluating the
energy spectra in observational and numerical studies on the
quantitative basis.

1 Introduction

Plasma turbulence appears in various astrophysical systems
and plays an important role as an effective transport mech-
anism of mass, energy, and angular momentum. It can be
found in the Sun and the heliosphere (Petrosyan et al., 2010;
Bruno and Carbone, 2013), planetary magnetospheres (Zim-
bardo et al., 2010), accretion disks (Balbus, 2003; Julien and
Knobloch, 2010), and interstellar medium (Elmegreen and
Scalo, 2004; Scalo and Elmegreen, 2004). Above all, so-
lar wind is particularly interesting, since it is the only fully
developed plasma turbulence accessible to us, allowing de-
tailed investigations using spacecraft in situ in space (Tu and
Marsch, 1995; Bruno and Carbone, 2013). One of the re-

cent achievements of multi-spacecraft mission Cluster (Es-
coubet et al., 2001) is the fact that spatial and temporal varia-
tions can be distinguished in the measurements. Furthermore,
three-dimensional spatial structure can also be determined
using multi-spacecraft data. Turbulence is fundamentally a
spatio–temporal phenomenon, and exhibits an interplay of
spatial and temporal effects (Carbone et al., 2011; Servidio
et al., 2011). The large-scale flow causes Doppler shift and
broadening in the measurements, and furthermore, the pres-
ence of the large-scale magnetic field imposes anisotropy in
the energy spectrum. It is a challenging task both in theory
and experiment to reveal the energy spectrum of plasma tur-
bulence in the four-dimensional Fourier space spanned by
frequencies and wave vectors.

There is a growing amount of evidence that the energy
spectrum of plasma turbulence is intrinsically anisotropic
in the wave vector domain. Earlier studies on the quasi-
perpendicular wave vectors with respect to the large-scale
magnetic field (Matthaeus et al., 1990; Bieber et al., 1996)
have been extended to various spatial scales using numer-
ical simulations: magnetohydrodynamic scales (Matthaeus
et al., 1996), ion kinetic scales using hybrid plasma sim-
ulation (Verscharen et al., 2012; Comişel et al., 2013) or
gyro-kinetic treatment (Howes et al., 2011), and electron ki-
netic scales using particle-in-cell simulations (Camporeale
and Burgess, 2011; Gary et al., 2012; Chang et al., 2013).
Vlasov–Maxwell hybrid simulation study provides evidence
of electric power anisotropy (Valentini et al., 2010). Re-
cent studies using Cluster data not only support the picture
of turbulent fluctuations associated with quasi-perpendicular
wave vectors, but also suggest axial asymmetry with re-
spect to the directions around the large-scale magnetic field
(Turner et al., 2011).
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In this manuscript, I propose a parametric method to
characterize the four-dimensional (4-D) energy spectrum of
plasma turbulence using a model spectrum and observational
data from Cluster in the solar wind. The model is given
as analytical and contains five free parameters that need to
be determined by the observations. Using the free parame-
ters obtained by a fitting procedure, the four-dimensional en-
ergy spectrum can be reconstructed as an ideal one. Such a
data-driven reconstruction has become possible by the devel-
opment of the novel high-resolution spectral estimator, the
MSR technique (Multi-point Signal Resonator) (Narita et al.,
2011a). Complementary approach is to produce plasma tur-
bulence in numerical simulations and to analyze the spec-
trum using the model. While ideal situations can easily be set
in the simulations (e.g., constant mean field, choice of fluc-
tuation amplitude relative to the mean field, and the values
of plasma parameter beta), the numerical method necessar-
ily depends on the choice of the plasma model. The energy
spectrum model proposed in this manuscript assumes that the
hydrodynamic treatment of frequency dependence is valid in
that the effect of finite wave propagation speed or dispersion
relation is negligible.

2 Model construction

The model of the 4-D energy spectrum is constructed as a
generalization of the inertial-range spectrum for fluid tur-
bulence recently derived byWilczek and Narita(2012). In
essence, the fluid turbulence model makes use of the ran-
dom sweeping hypothesis developed byKraichnan(1964),
and can reproduce the elliptic model of two-time, two-point
correlation function of turbulent flows (He and Zhang, 2006;
Zhao and He, 2009). The model spectrum is expressed as a
product of the three-dimensional (3-D) energy spectrum in
the wave vector domainE(k) and the Gaussian frequency
distributionF(k,ω) as

E(k,ω) = E(k)F (k,ω) (1)
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1
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The spectrum is defined in the 4-D Fourier space spanned
by the Eulerian (angular) frequencyω and the wave vec-
tor k. The Gaussian frequency distribution is centered at the
Doppler relationω = k · U , and has the standard deviation
kV . In this approach, the spatial structures are assumed to
be swept by the mean flowU and the random sweeping
flow V . The former causes the Doppler shift, and the lat-
ter causes the Doppler broadening. It is worth mentioning
that the notion of the Doppler shift and broadening is valid
not only in high-frequency phenomena (sound waves, elec-
tromagnetic waves), but also in low-frequency plasma turbu-

lence. The 3-D energy spectrumE(k) is modeled as a set of
ellipses determined by three coefficients (a‖, a⊥1, anda⊥2).
The set of the coefficients quantifies wave vector anisotropy
between the parallel and the perpendicular directions to the
large-scale magnetic field by the ratiosa⊥1/a‖ or a⊥2/a‖ and
axial asymmetry with respect to the directions around the
large-scale field by the ratioa⊥2/a⊥1. We use the large-scale
magnetic field (in the directionemag) and the mean flow di-
rection (eflow) to establish the coordinate system in the wave
vector domain. Three basis vectors are mutually orthogonal
and determined by the following relations.

e⊥1 =
(
eflow × emag

)
× emag (5)

e⊥2 = eflow × emag (6)

e‖ = emag (7)

The perpendicular-1 direction is closest to the mean flow di-
rection in the plane perpendicular to the large-scale magnetic
field.

The model spectrum (Eq.1-4) represents the simplest ex-
tension of the fluid turbulence spectrum in that the mini-
mum set of free parameters is used. The model spectrum
is two-sided, viz., it is symmetric with respect to sign re-
versal of frequencies and wave vectors (ω → −ω andk →

−k). The spectral energy is scaled toE0, and inherits the
power-law index of Kolmogorov’s 3-D inertial-range spec-
trum (Kolmogorov, 1941), such that the isotropic limit (a‖ →

1, a⊥1 → 1, anda⊥2 → 1) restores the inertial-range spec-
trum of fluid turbulence. One of the anisotropy coefficients
may be set to unity by redefining the scale factorE0 and the
two other coefficients. In this work,a‖ is set to unity.

The use of the Gaussian frequency distribution is based
on the approximation that small-scale fully-developed turbu-
lence is swept by the large-scale flow in an advective fash-
ion. The mean flow causes Doppler shift, while the variation
of the large-scale flow causes Doppler broadening around
the Doppler shifted frequency (Fig.1). In the limit of van-
ishing Doppler broadening (V → 0) the Gaussian frequency
distribution reduces to the Dirac delta functionF(k,ω) ∝

δ(ω − k · U), restoring Taylor’s frozen-in flow hypothesis
(Taylor, 1938). The symbolV is independently defined as
a free parameter in the model. The notion of the large-scale
flow is valid as far as the fluctuations is regarded as ideally
convected structures. Specifically, the flow (or the plasma)
should not evolve intrinsically within the measured time in-
terval, and this can be examined, e.g., by looking for the exis-
tence of dispersion relations that deviate from the Doppler re-
lation in the frequency-wavenumber diagram. Therefore, the
model spectrum neglects the wave propagation effect such as
Alfvén waves, and the model is more suited for applying to
super-Alfvénic flows.
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Fig. 1. Sketch of the inertial-range spectrum in the wavenumber-
frequency domain. The wavenumber is aligned with the mean flow
direction.

3 Application to solar wind turbulence

The model spectrum is used as an analysis tool to charac-
terize the space–time structure of solar wind turbulence. By
doing so, it is possible to condense the turbulence spectrum
into only several free parameters. Cluster spacecraft are most
useful for such a task, as the 4-D energy spectrum can be
estimated directly from the four-point magnetic field data
(Balogh et al., 2001) by incorporating the MSR analysis
technique. The data are taken on 12 February 2005, 06:30–
08:00 UT, for the analysis. This interval was selected under
the following criteria:

1. Cluster formed a nearly regular tetrahedron which is
suitable for wave vector analysis. The tetrahedral qual-
ity parameterQG (von Stein et al., 1992) in the range
2.9–3.0 was set. This parameter quantifies the tetrahe-
dral configuration as a fractal dimension.

2. Inter-spacecraft separation was about 1000 km and
larger than the thermal ion gyro-radius (of the order
of 100 km) in the solar wind. Turbulence may be re-
garded as magnetohydrodynamic on that scale, and ki-
netic wave dispersion effect can be neglected.

3. Fluctuations of the magnetic field and the plasma are
quasi-stationary in the sense that the large-scale field
may be regarded as nearly constant (cf. the relative
fluctuation amplitude to the large-scale field is about
10.2 %).

4. Frequency spectra for the magnetic field fluctuations
(at all four spacecraft) exhibit a power-law with the
index −5/3. Fig. 2 displays the time series of the
magnetic field magnitude, the ion bulk speed, and the
ion number density (Rème et al., 2001) obtained by
Cluster-1.

The mean values are evaluated in the temporal domain, and
are 2.5 nT (magnetic field), 548.9 km s−1 (ion bulk speed),

Fig. 2. Time series plot of the magnetic field magnitude, the ion
bulk speed, and the ion number density measured by Cluster-1 in
the solar wind.

and 1.9 cm−3 (ion number density). The Alfvén Mach num-
ber is about 13.7 on this time interval, and the plasma pa-
rameter beta is estimated to be about 5.4 using ion data. This
interval represents a turbulent flow in a high-beta plasma.

The 4-D energy spectrum was estimated from the Cluster
magnetic field data (measured by the fluxgate magnetometer)
first by Fourier transforming the four-point time series data
into the frequency domain (using the Fast Fourier Transform
algorithm) and then by projecting the data into the 3-D wave
vector domain using the MSR technique. This method was
developed particularly for studying waves and turbulence us-
ing four-point magnetic field data, and makes extensive use
of the 12-by-12 covariance matrix (three components of the
magnetic field measured at four spacecraft) by combining the
least-square projection (known as the wave telescope ork

filtering technique) and the eigenvalue analysis of the covari-
ant matrix, known as the MUSIC algorithm (Multiple Signal
Classification) (Schmidt, 1986). The MSR technique is based
on the assumption that the measured fluctuations represent a
set of plane waves and that the fluctuations contain small-
amplitude isotropic noise. The energy spectrum is given as
a function of spacecraft-frame frequencies and wave vectors.
The frequency range up to 1.2 rad s−1 and the wavenumber
range up to 0.0023 rad km−1 are used to determine the free
parameters of the model spectrum. The upper limit of the fre-
quency range to analyze is the spacecraft separation (kmax),
which yields, using a given relationshipω ∝ k, the corre-
sponding frequencyωmax that allows one to avoid the spatial
aliasing effect (Narita and Glassmeier, 2009; Sahraoui et al.,
2010). Here, Taylor’s hypothesis gives a reasonable estimate
to set the frequency range in the analysis.

A fitting procedure is applied to the measured spectrum
in two distinct domains. One is the plane spanned by the
streamwise wavenumbers and the frequencies, and the other
is the 3-D wave vector domain after integrating the 4-D
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Fig. 3. Slice of the energy spectrum in the plane spanned by
spacecraft-frame frequencies and streamwise wavenumbers derived
by four Cluster spacecraft data (upper panel) and the reconstructed
energy spectrum using the method of model fitting (lower panel).
Best fitting was obtained for the parameter setU = 547.6 km
(Doppler shift) andV = 49.6 km (Doppler broadening).

spectrum over the frequencies. The fitting procedure in the
former domain determines the Doppler shiftU and the
broadeningV , while the fitting in the latter domain deter-
mines the anisotropy coefficients. Fig.3 displays the mea-
sured spectrum and the reconstructed spectrum using the
set of the best-fitting parameters (U = 547.6 km s−1, V =

49.6 km s−1). The time series data of the ion bulk speed
from Cluster-1 yields the standard deviation

√
〈|δv|2〉 =

20.0 km s−1 in the temporal domain. The Doppler shift esti-
mated in the spectral analysis agrees with the ion bulk speed
within the accuracy better than 1 %. The estimated Doppler
broadening agrees with the ion bulk speed fluctuation only
moderately, i.e., the broadeningV is larger than that esti-
mated from the ion measurements by the factor of about 2.5.
The Alfvén speed estimated from the mean magnetic field
and the ion number density is about 38.9 km s−1, which is
markedly close to the broadeningV .

The reconstructed spectrum shows a difference from the
measurement in that the conic shape is not clearly visible
in the data. Possible explanations are (1) insufficient scale
separation, and (2) finite wave propagation speed. In the for-
mer scenario, since the model spectrum assumes that fluctu-
ations consist of large-scale and small-scale fields, the dif-

Fig. 4. Deviation between the measured spectrum and the model
spectrum in the parameter space spanned byU (Doppler shift) and
V (Doppler broadening).

Table 1. Key spectral shape parameters obtained from the Cluster
data analysis for solar wind turbulence.

U V a⊥1/a‖ a⊥2/a‖

547.6 km s−1 49.6 km s−1 0.73 0.31

ference in the frequency dependence can be interpreted as a
sign of insufficient scale separation. That is, the frequency
broadening is no longer expressed by a constant Doppler
broadeningV = const, but is a function of the wavenum-
ber such asV = f (k). In the present study, the parame-
tersU andV are regarded as a constant, and these values
are obtained by a least square method in the wavenumber-
frequency domain (Fig.4). In the latter scenario, since the
model spectrum assumes that the frequency dependence rep-
resents solely Doppler shift and broadening and neglects the
effect of finite wave phase speed, the difference in the spec-
trum may be interpreted as a sign of the existence of disper-
sion relations associated with, e.g., Alfvén waves, magne-
tosonic waves, or even dispersive waves. The intrinsic noise
originating in the analysis technique is an unlikely source,
since the MSR technique has been developed particularly to
improve the signal-to-noise ratio of the conventional wave
telescope technique significantly by a factor of about 105 in
the spectrum as shown in Fig. 3 inNarita et al.(2011a) by in-
corporating the eigenvalue analysis into the wave telescope
technique. The intrinsic noise associated with the analysis
technique is negligible.

The energy spectrum in the 3-D wave vector domain
was determined by integrating the 4-D spectrum over the
spacecraft-frame frequencies. The anisotropy shape param-
eters (a‖, a⊥1, anda⊥2) are evaluated in the three slices of
the 3-D spectrum (planes atk‖ = 0, k⊥1 = 0, andk⊥2 = 0)
with the help of the anisotropy angleθij in the plane spanned
by ki andkj (the indicesi andj denote the three components
of the wave vector). The anisotropy angle was introduced by
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Fig. 5. Slices of the energy spectrum in the 3-D wave vector domain using Cluster spacecraft data in the solar wind (upper panels), and its
reconstruction using the model spectrum (lower panels).

Shebalin et al.(1983) and its adapted form was used in the
present analysis as

tan2θij =

∑
k k2

jE(ki,kj )∑
k k2

i E(ki,kj )
. (8)

The summation runs over all the wave vector components in
the plane of interest. Fitting procedure using the anisotropy
angle yields the set of optimal ratios of the anisotropy coef-
ficients,a⊥1/a‖ = 0.73, anda⊥2/a‖ = 0.31. Fig.5 displays
the measured spectrum (upper panels) and the reconstructed
spectrum using the best-fit parameters (lower panels).

In thek‖-k⊥1 plane, the spectrum is not elliptic but exhibits
two different kinds of anisotropy. At lower wavenumbers
(below 0.0008 rad km−1) the spectrum extends in the parallel
direction, while at higher wavenumbers the extension turns
to the perpendicular direction. This transition cannot be re-
produced in the model spectrum, and the reconstructed spec-
trum is only moderately anisotropic. In thek‖-k⊥2 plane, the
spectrum is clearly anisotropic, elongated in the perpendic-
ular direction. Approximation to ellipses can reproduce the
spectral contours reasonably. In thek⊥1-k⊥2 plane, the spec-
trum is axi-asymmetric with detailed structures. The spec-
trum is elongated in the direction perpendicular to the mean
flow, i.e., the spectral extension is in the direction of inter-
planetary electric field. These results support earlier studies
using single and multiple spacecraft measurements that so-

lar wind turbulence is anisotropic with respect to the wave
vectors, and is axi-asymmetric around the direction of the
large-scale magnetic field (Narita et al., 2010, 2011b; Chen
et al., 2012).

4 Conclusion and discussion

The model energy spectrum is constructed in a simple fash-
ion using analytic expression. The model is based on various
assumptions such as incorporation of the random sweeping
hypothesis, no wave propagation (or no dispersion relation),
and elliptic approximation of the wave vector anisotropy.
Still, the model has the potential to condense the energy
spectrum of plasma turbulence (and hence space–time vari-
ation of turbulence) into a set of handful free parameters.
Six parameters need to be determined in reconstructing the
4-D energy spectrum, but the shape of the spectrum itself
requires four parameters only: the Doppler shift (U ), the
Doppler broadening (V ), and the anisotropy ratiosa⊥1/a‖

anda⊥2/a‖. The ratioa⊥2/a⊥1 reflects the axial asymmetry
of the spectrum around the directions of the large-scale mag-
netic field. This key parameter set derived from the Cluster
data in the solar wind is summarized in Table1.

There are strengths and weaknesses in the model spec-
trum. Since the model reduces the energy spectrum into a set
of free parameters, various realizations of plasma turbulence
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can be compared more easily and systematically. For exam-
ple, the model can be applied to studies of beta dependence
of plasma turbulence. Evolution of plasma turbulence can be
studied by tracking time dependence of the parameter set.
Quantitative comparison with numerically produced turbu-
lence is possible. The model spectrum is constructed in the
Eulerian frame of reference, and does not require the correc-
tion for the Doppler shift (instead, the concept of Doppler
broadening has been introduced), which saves the computa-
tion time in data analysis. On the other hand, the assump-
tions used in the model are limiting the applicability, and
the conditions of the plasma and magnetic field need to be
carefully examined. The measured spectrum in thek‖-k⊥1
plane exhibits two different kinds of anisotropy (parallel and
perpendicular spectral extensions), which prefers the two-
component picture plasma turbulence describing a superpo-
sition of fluctuations associated with the parallel wave vec-
tors and that associated with the perpendicular wave vectors
(Matthaeus and Ghosh, 1999). Highly structured wave vec-
tor anisotropy cannot be resolved or reproduced in the model
spectrum. Also, the choice of the basis vectors needs to be
exercised, as the axial asymmetry in the measured spectrum
may not always be associated with the direction of the mean
flow or the direction of interplanetary electric field.

The axial asymmetry in thek⊥1-k⊥2 plane is found to be
stronger than anisotropy in thek‖-k⊥1 on the analyzed time
interval, and weaker than that in thek‖-k⊥2. This feature
was already found in the other case study using Cluster data
(Narita et al., 2011b). The strong axial asymmetry cannot be
explained by the spectral deformation induced by the irreg-
ular tetrahedral configuration, as spacecraft formed a nearly
regular tetrahedron during the measurements. Possible ori-
gins of the axial asymmetry include the effect of radial ex-
pansion of the flow, the effect of interplanetary electric field,
and the coronal field structure. The model spectrum can be
extended in various ways to reconstruct the measured spec-
trum more accurately. For example, the parameterV may be
treated as a function of the wavenumber. Another approach
is to incorporate dispersion relations into the frequency de-
pendence, which, however, requires the knowledge of the
wave modes. Also, the presented model can be extended to
describing the energy spectrum in the ion kinetic regime.
For example,Comişel et al.(2013) introduced the Gaussian
frequency distribution to measure the strength of sideband
waves. The Doppler relation was also replaced by dispersion
relations of linear modes assuming that linear modes co-exist
in turbulent fluctuations. To conclude, model construction is
an important task in plasma turbulence studies, and a suit-
able model will serve as a bridge connecting experimentally
derived spectra and theoretical ones.
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