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Abstract. A hybrid variational ensemble data assimilation
has been developed on top of the HIRLAM variational data
assimilation. It provides the possibility of applying a flow-
dependent background error covariance model during the
data assimilation at the same time as full rank characteristics
of the variational data assimilation are preserved. The hybrid
formulation is based on an augmentation of the assimilation
control variable with localised weights to be assigned to a
set of ensemble member perturbations (deviations from the
ensemble mean). The flow-dependency of the hybrid assimi-
lation is demonstrated in single simulated observation impact
studies and the improved performance of the hybrid assimi-
lation in comparison with pure 3-dimensional variational as
well as pure ensemble assimilation is also proven in real ob-
servation assimilation experiments. The performance of the
hybrid assimilation is comparable to the performance of the
4-dimensional variational data assimilation. The sensitivity
to various parameters of the hybrid assimilation scheme and
the sensitivity to the applied ensemble generation techniques
are also examined. In particular, the inclusion of ensemble
perturbations with a lagged validity time has been examined
with encouraging results.

1 Introduction

Data assimilation is the process of utilising meteorologi-
cal observations to determine the initial state for Numerical
Weather Prediction (NWP) models. Early during the devel-
opment of NWP it was realised that statistical estimation
methods could be utilised in the data assimilation process
(Gandin, 1963) and data assimilation research has mainly
been focused on statistical estimation methods since then.

Since the dimension of the NWP model state is of order 107–
109 and several orders of magnitude larger than the number
of available observations at any particular moment in time
(105–106), it is necessary to take prior information into ac-
count. A short range forecast, which includes the influence
of the time-history of observations, is often taken as the prior
estimate of the model state and is generally called theback-
ground state. The error covariance of the background state
is used to characterise the background state uncertainty. One
can say that assumptions about Gaussianity lies behind this
approach.

A core issue in the development of data assimilation al-
gorithms for NWP has been the formulation of models for
the background error covariance. Development started with
time independent (climatological) horizontal background er-
ror correlation models being essentially functions of hori-
zontal distance separation only (Gandin, 1963). The back-
ground error correlation models of these techniques, also
known as Optimum Interpolation (OI) or statistical interpo-
lation techniques, were later on generalised to become 3-
D by including the vertical direction and also by including
multi-variate balance constraints like the geostrophic balance
(Lorenc, 1981). Most implementations of statistical interpo-
lation have in common that the background error covariance
has a static (climatological) formulation, with the effect that
the weights given to the observations are independent of the
actual flow situation and also independent of the information
content of previously assimilated observations.

The Kalman filter (Kalman, 1960) provides a framework
for estimation of the mean and the covariance of the model
state for linear forecast models and the extended Kalman
(Kalman and Bucy, 1961) filter provides an extension of
the Kalman filter to weakly nonlinear forecast models. In
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combination with the Kalman Smoother recursions (Durbin
and Koopman, 1997) Kalman filtering can be extended to the
non-Gaussian and nonlinear frameworks. Due to the large di-
mension of the model state vector of NWP models, the Ex-
tended Kalman filter and the Kalman smoother are not di-
rectly possible to apply for full-scale meteorological data as-
similation problems. There exist, however, several approx-
imations to the Extended Kalman filter and the Kalman
smoother that are possible to utilise also for full-scale me-
teorological data assimilation. 4D-Var, and in particular the
incremental 4D-Var (Courtier et al., 1994), can be viewed as
a practical solution to the Kalman smoother over a limited
assimilation time window. One weakness of the 4D-Var ap-
proximation to the Kalman smoother can be the application
of a climatological background error covariance at the start of
each assimilation window, although this can be alleviated in
several ways (Fisher, 2003). This particular weakness of 4D-
Var is overcome with various versions of Ensemble Kalman
filters and smoothers (EnKF, Evensen, 1994, 2007). With a
limited number of ensemble members, which is always the
case for any full-scale ensemble data assimilation problem,
the EnKF, however, suffers from a severe rank deficiency.

The current two main streams in development of mete-
orological data assimilation are the 4D-Var and the EnKF.
Advantages and disadvantages of these two approaches to
data assimilation were discussed by Kalnay et al. (2007) and
Gustafsson (2007). The consensus of this discussion is the
necessity to form a synthesis of the two approaches to mete-
orological data assimilation. Such a synthesis, a Hybrid Vari-
ational Ensemble data assimilation for the HIRLAM (HIgh
Resolution Limited Area Model) forecasting system (Undén
et al., 2002) is the subject of the present study.

Hybrid variational ensemble data assimilation algorithms
are described and discussed in Sect.2, followed by a brief
overview of the HIRLAM variational data assimilation in
Sect.3 and by a description of the implementation of the
hybrid assimilation algorithm into the HIRLAM variational
data assimilation in Sect.4. For the generation of ensemble
perturbations we apply two techniques, the Ensemble Trans-
form Kalman Filter (ETKF) re-scaling technique (Bishop et
al., 2001) and the Ensemble of Data Assimilations (EDA)
technique (Houtekamer et al., 1996; Fisher, 2003) based on
perturbation of data assimilation input data (observations and
background). These techniques are described in Sect.5. Re-
sults from data assimilation experiments for one shorter sum-
mer period and one longer winter period are provided in
Sect.6. We compare the impact of the ensemble generation
technique on the quality of the hybrid assimilation and we
examine the sensitivity of the hybrid assimilation scheme to
various parameters. Some concluding remarks are given in
Sect.7.

2 Formulations of hybrid variational ensemble data
assimilation algorithms

Hybrid variational ensemble data assimilation algorithms
aim to combine the advantages of the full rank error covari-
ance matrices of variational algorithms with the advantages
of the flow-dependency of the covariances of ensemble data
assimilation algorithms, for example, Ensemble Kalman Fil-
ters (EnKF). There are also strong efforts currently to de-
velop hybrids of ensemble data assimilation algorithms and
Particle Filter (PF) algorithms (van Leeuwen, 2009), in or-
der to better handle the nonlinearities of the forecast models
and the observation operators (Papadakis et al., 2010). These
developments, including PF ideas, have not yet reached a
mature stage enough to be applied to full-scale numerical
weather prediction problems.

Essentially there have been two approaches to combine
variational data assimilation techniques with ensemble data
assimilation techniques. One approach is to compute an het-
erogeneous covariance model in a flow-dependent way, for
instance by using ensemble data to derive spatially and tem-
porally variable background error variances (Fisher, 2003;
Berre and Desroziers, 2010). A further step in this direction
is to represent background error correlations by, for exam-
ple, flow-dependent correlation models based on wavelet for-
mulations (Pannekoucke et al., 2007). The second approach
is to utilise the original (raw) ensemble covariances in lin-
ear combinations with full rank variational covariance mod-
els, possibly also applying localisation techniques to the en-
semble component (Hamill and Snyder, 2000; Lorenc, 2003;
Buehner, 2005). These techniques will be described in more
detail below. One particular and promising line of develop-
ment within this approach is also to replace the integration of
the tangent linear and adjoint models in 4D-Var with a 4-D
ensemble of nonlinear forecast model states over the assimi-
lation window (4DEnVar, Liu et al., 2008, 2009; Buehner et
al., 2010a, b).

Hamill and Snyder (2000) suggest that the background er-
ror covarianceB of the hybrid variational ensemble data as-
similation technique should be formed as a linear combina-
tion of a climatological 3D-Var based covarianceBvar and a
flow-dependent ensemble-based covarianceBens:

B = wvarBvar + wensBens (1)

with the following constraint on the weightwvar for the cli-
matological part of the covariance and the weightwens for
the ensemble part of the covariance

wvar + wens = 1 (2)

in order to preserve the total background error variance in
the case it is similar inBvar and inBens. As is the case with
any Ensemble Kalman Filter background error covariance in
physical space, the utilisation of a relatively small number
of ensemble members will result in poorly estimated small
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correlations, for example, those at relatively large horizon-
tal distance separations. If not handled properly, these poorly
estimated small correlations may result in spurious correla-
tions, and the corresponding spurious influence of observa-
tions at large distance separations. In order to minimise the
adverse effects of such poorly estimated small correlations,
one may introduce a localised Ensemble Kalman filter (Ott
et al., 2004) or one may modify the raw ensemble based co-
variances to asymptotically approach zero at large distance
separations. One way to achieve this is via an element-by-
element multiplication of the raw ensemble covariance ma-
trix Braw-ens with another correlation matrixA based on a
correlation model for which the correlations approach zero
at large distance separations (a so called Schur product, here
denoted by◦).

Bens = A ◦ Braw-ens (3)

The suggested hybrid variational ensemble data assimilation
by Hamill and Snyder (2000) is relatively easy to implement
in case the optimisation for the assimilation weights is car-
ried out in observation space. In most operationally applied
variational data assimilation schemes, however, the optimisa-
tion is carried out in model space via a minimisation of a cost
function that depends on the assimilation increment in model
space. Thus, the covariance matrix to be inverted has the di-
mension of the model state vector, and this huge dimension
prohibits a direct inversion of the covariance matrix. In this
case the minimisation problem is generally solved iteratively
and the minimisation problem is pre-conditioned via simpli-
fying assumptions about the background error covariance.

Lorenc (2003) suggested an alternative hybrid variational
ensemble data assimilation algorithm that solves the minimi-
sation problem by an augmentation of the assimilation con-
trol vector and by adding an additional cost function term,
which represents the weights given to the different ensemble
members. Thus, the total assimilation incrementδx can be
considered to include two parts, one partδxvar correspond-
ing to the constraint given by the climatological background
error covariance, and another part that is a linear combina-
tion, with space-dependent weights, of the ensemble pertur-
bations, i.e. the deviations between the ensemble members
and the ensemble mean:

δx = δxvar + κ

K∑
k=1

(
αk ◦ δxens

k

)
(4)

whereK is the number of ensemble members,κ is a tuning
factor,αk is the vector of weights given to ensemble member
k in the linear combination of ensemble perturbations and

δxens
k = xens

k − xens (5)

is the ensemble perturbation, i.e. the deviation of thekth
background ensemble member from the ensemble mean. The
weights given to the ensemble background perturbations may

be functions of horizontal and vertical position and these
weights are determined by adding an ensemble constraint
Jens(α), being a function of the matrixα of all the weights
for the different ensemble members, to the cost function to be
minimised. Thus, in the case of a hybrid variational ensem-
ble data assimilation, we will have for the total cost function

J (δxvar, α) = βvarJvar(δxvar) + βensJens(α) + Jo (6)

where Jvar(δxvar) denotes the original variational back-
ground error constraint, based on a climatological back-
ground error covariance, andJo the original variational ob-
servation error constraint.

In order to preserve the total background error variance in
the case it is similar inBvar and inBens, the weights for the
two parts of the background error cost-function terms need
to fulfil

1

βvar
+

1

βens
= 1. (7)

The ensemble background error cost function can be formu-
lated in the following way

Jens =
1

2
αT A−1α (8)

where the covariance matrixA can be interpreted as a covari-
ance for the localised ensemble member weights described
by, for example, a variance and a spatial scale of the localised
ensemble weights. In the expressions aboveαk ◦ δxens

k means
element-by-element multiplication. Wang et al. (2007) have
proven that the two formulations of the hybrid variational en-
semble data assimilation are equivalent.

The main advantage of the version of the hybrid method
proposed by Lorenc (2003) is that it can very easily be
incorporated in an existing variational assimilation frame-
work (3D-Var or 4D-Var). This is the reason, why it was
selected for the HIRLAM variational data assimilation. This
hybrid assimilation method has also been applied to the WRF
(Weather Research and Forecasting) regional model (Wang
et al., 2008a, b; Zhang and Zhang, 2012) and operationally
also in the global UK Meteorological Office forecasting sys-
tem (Clayton et al., 2013).

3 The HIRLAM variational data assimilation

The HIRLAM variational data assimilation includes a 3-D
version (3D-Var, see Gustafsson et al., 2001 and Lindskog et
al., 2001) and a 4-D version (4D-Var, see Gustafsson et al.,
2012). We have incorporated the hybrid variational ensemble
technique in both 3D-Var and 4D-Var.

The core elements of the HIRLAM variational data as-
similation are the incremental formulation (Courtier et al.,
1994), the spectral representation of the assimilation incre-
ment with a 2-D discrete Fourier series (Berre, 2000) and the
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tangent-linear (TL) and adjoint (AD) models, based on the
spectral version of HIRLAM, applied in 4D-Var (Gustafsson
and Huang, 1996). The application of periodic functions like
the discrete Fourier series over a regional model domain is
made possible through an extension of the model domain in
both horizontal directions to obtain bi-periodicity (Haugen
and Machenhauer, 1993). Since the same discrete Fourier se-
ries and the same area extension are used to represent hori-
zontal correlations during the data assimilation, the area ex-
tension needs to be wide enough to let these horizontal cor-
relations fall off to zero over the width of the extension zone.

The following cost function is minimised with respect to
the assimilation incrementδxvar in HIRLAM 4D-Var:

J = Jvar + Jo =
1

2
(δxvar)

T B−1
varδxvar

+
1

2

tN∑
tk=t0

(Hk M k δxvar − dk)
T R−1

k (Hk M k δxvar − dk) (9)

whereBvar is the background error covariance,tk = t0, . . . ,tN
the data assimilation time window,dk =yk − Hk(Mk(xb))

the innovations withyk being the vector of observations at
time tk, xb the model background state valid at timet0, Mk(.)

denotes integration of the nonlinear model from timet0 un-
til time tk and M k the corresponding tangent linear model
integration.Hk(.) is the nonlinear observation operator,Rk

is the observation error covariance andHk the linearised ob-
servation operator, all valid at timetk. The main difference
between 4D-Var and 3D-Var is that for 3D-Var the assim-
ilation increment is assumed constant in time (M k = I ) and
valid in the middle of the assimilation window. For 4D-Var a
weak digital filter constraint (Gustafsson, 1992; Gauthier and
Thépaut, 2001) is also applied to prevent spurious growth of
fast oscillations and there is also the possibility to apply re-
linearisations ofMk andHk in an outer minimisation loop.

For the minimisation of the cost function J, a pre-
conditioning transform is applied to the assimilation control
variableχ = U−1δxvar such that the error covariance matrix
for the transformed variableχ can be assumed to be diago-
nal. The variable transform is based on simplifying assump-
tions such as homogeneity and isotropy with respect to hori-
zontal correlations. This variable transform in the HIRLAM
variational data assimilation essentially follows Berre (2000)
and it also includes balance operators derived by statisti-
cal regression techniques. The data assimilation control vari-
ables are vorticity, un-balanced divergence, un-balanced tem-
perature, un-balanced surface pressure and un-balanced spe-
cific humidity, all represented by their spectral components.
As an extension to the original formulation by Berre (2000),
a variable Coriolis parameter is applied in the balancing be-
tween the mass field and the wind field.

4 Implementation of an ensemble constraint in the
HIRLAM variational data assimilation

In the first version of the HIRLAM Hybrid variational en-
semble data assimilation, we have assumed that the weights
αk, k = 1, . . . , K given to the background perturbations of
the K ensemble members are functions of horizontal posi-
tion only. Furthermore, since these weights now are included
in the assimilation control vector, we need to specify a co-
variance matrixA to represent the characteristics of these
ensemble weights. We have chosen to apply the same simpli-
fying assumptions and pre-conditioning as in the variational
minimisation, we thus assume that the horizontal correlations
for the ensemble weights are homogeneous and isotropic. In
addition, we specify a variance for the ensemble weights.
These assumptions mean implicitly that the localisation for
the covariance matrixBens is isotropic, equivalent to what is
applied with the Schur product in the localisation of back-
ground error covariances for Ensemble Kalman filters.

We apply the same ensemble weighting functionsαk,
k = 1,K to all model variables at all vertical levels. One needs
to be a bit careful not to destroy completely the dynamical
balances between the different model variables, fulfilled in
the model states of each ensemble member (Kepert, 2009).
We have therefore chosen to apply the weighting functions to
the variables vorticity, divergence, temperature, specific hu-
midity and ln(ps). This should give gradient relationships like
geostrophic balance a better chance to survive this implicit
localisation in comparison with application of the weights
directly to wind components, for example.

For the ensemble constraintJens we need to specify the
general weightβvar of the climatological background error
constraint, the corresponding weightβens=

βvar
βvar−1 of the en-

semble constraint, the variance of the ensemble weighting
function αk, and the horizontal correlation spectrum of the
ensemble weighting functionαk. These variables can be con-
sidered as tuning coefficients of the hybrid variational en-
semble data assimilation. We have done experiments with
full weight to the variational background error constraint,
with equal weights to the two background error constraints
(βvar =βens= 2.0) and with a strong penalty on the static
background error constraint (βvar = 11.0). In the present for-
mulation the ensemble weighting functions are assumed to
have zero mean. The standard deviation is used to control
their amplitude and is set to be1

K
for each ofαk, k = 1, . . . ,K,

whereK is the ensemble size. The assumed horizontal auto-
correlation function of the weightsαk expresses require-
ments on their smoothness. One may argue that these weights
should have a sufficiently large scale to prevent important
forecast errors related to, for example, baroclinic instability
from being destroyed by the localisation effects. The size of
the ensemble may also be a factor in choosing the locali-
sation scale. With a smaller ensemble, the sampling error is
greater and therefore a shorter localisation scale might be jus-
tified. For the first reason, however, we use the climatological
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horizontal spectrum for the un-balanced surface pressure,
which has the largest horizontal scales among the control
variables. The shape of such a horizontal correlation func-
tion is very close to a Gaussian one. In addition, we have
made experiments with other analytically specified horizon-
tal correlation functions, similar to those that are applied for
localising covariances in Ensemble Kalman filters (Gaspari
and Cohn, 1999).

Thepower law

ρp(r; c) =
1

1 +
1
2

(
r
c

)2
(10)

with r being the distance andc a parameter (the length scale),
is known to have most of the energy in the long waves. This
horizontal correlation function decreases with distance very
slowly and is different from zero even at distances longer
than 10 length scales.

The 5-th order piecewise rational function(Gaspari and
Cohn, 1999)

ρc(z; c) =



−
1
4

(
|z|
c

)5
+

1
2

(
z
c

)4
+

5
8

(
|z|
c

)3

−
5
3

(
z
c

)2
+ 1, 0 ≤ |z| ≤ c,

1
12

(
|z|
c

)5
−

1
2

(
z
c

)4
+

5
8

(
|z|
c

)3

+
5
3

(
z
c

)2
− 5 |z|

c
+ 4 −

2
3, c ≤ |z| ≤ 2c,

0, |z| > 2c

(11)

has a very similar behaviour as the Gaussian correlation func-
tion if the scaling parameters are matched properly, but it
vanishes exactly for distances larger than 2c.

Thewindowed power law

ρpc(r; L) = ρc

(
r; L

√
10/3

)
ρp(r; L) (12)

is used to model correlation functions that have a relatively
large amount of spectral energy on shorter waves.

Because the variational cost function is minimised in spec-
tral space, the covariance matrixA includes the spectral den-
sity of the selected correlation function obtained via a 2D-
Fourier transform. Since the correlation model is assumed
to be homogeneous, the covariance matrixA is diagonal
and its inverse is easily available. By definition any homo-
geneous correlation function has a non-negative spectrum
everywhere.

The correlation functions described and discussed above
are illustrated in Fig.1.

5 Ensemble perturbation techniques

5.1 The ETKF re-scaling

To approximate the sequential update and the dynamical evo-
lution of the model state covariance, we employ the hypoth-
esis that a limited size ensemble of model states can be used
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Fig. 1.The horizontal correlation functions: Power law (red), Gaus-
sian (blue), the Compact 5th-order piecewise rational function
(green) and the windowed power law (yellow); the length scale L
= 500 km.
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Fig. 2. Model domain for the summer case Hybrid variational en-
semble data assimilation experiments.

Fig. 1. The horizontal correlation functions: Power Law (red),
Gaussian (blue), the Compact 5th-order piecewise rational func-
tion (green) and the windowed power law (yellow); the length scale
L = 500 km.

to efficiently sample the leading directions of the forecast
error variability. We have implemented the ETKF rescaling
scheme (Bishop et al., 2001; Wang et al., 2004), a version
of the Ensemble Square Root Kalman filter (Tippett et al.,
2003). Under this approach, the evolution and the update of
the covariance is carried out on its square-root, approximated
by the ensemble of model states. The ETKF rescaling scheme
uses a transform to construct the analysis square-root(Ba

i )
1/2

at timeti from the forecast square-root(Bf
i)

1/2 and the non-
linear dynamical model is used to propagate the error covari-
ance in time to the next assimilation cycle.

Because the forward numerical integration of each ensem-
ble member is the main computational burden of the scheme,
we have selected a small size of the ensemble for the first
implementation (K = 12 for a summer case andK = 20 for a
winter case, see below). In this case, the forecast error covari-
ance will certainly lack contributions from several important
directions. Both multiplicative and additive inflations are em-
ployed to parameterize the effect of this modelling deficiency
(Wang et al., 2009).

The analysis ensemble of perturbations is constructed as
an additive combination of two ensembles

Za
= Za,*

+ Ya, (13)

whereZa,* is the contribution from the ensemble of fore-
cast states andYa is the contribution from random structures
of the full-rank static forecast error covariance matrixBvar.
We have omitted the subscripti in order to simplify nota-
tions. The forecast uncertainty, represented in the ensemble,
is downscaled to the analysis uncertainty using the Kalman
filter theory:

Za,*
= Zf C5(I + G)−1/2ADscCT . (14)
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Here Zf is a matrix with the K ensemble fore-
cast background perturbations as columns;G is a
(K − 1)× (K − 1) diagonal matrix with the non-zero eigen-
values of(Bf

ens)
′ = (H Zf)T R−1(HZf), the forecast error co-

variance in the observation space, normalised with the ob-
servation variance and compressed to the ensemble space;C
is aK × (K − 1) matrix containing the corresponding eigen-
vectors of(Bf

ens)
′ as its columns;5 is a single coefficient

and it corresponds to an adaptively estimated multiplicative
scalar inflation factor, which parameterizes the effect of sev-
eral aspects, such as the impact of the space compression, the
effect of model errors and the impact from un-sampled di-
rections of the leading directions of the forecast error uncer-
tainty; 5 is typically around 15 with 20 ensemble members
in the present setup;ADsc is an empirical diagonal downscal-
ing matrix, which prohibits the amplification of uncertainty
in the non-leading directions (Bojarova et al., 2011).

The forecast perturbations are rotated along the eigenvec-
tors of(Bf

ens)
′, the rotated perturbations are downscaled with

the weights proportional to the eigenvalues of the(Bf
ens)

′ and
are rotated backwards. The backwards rotation assures the
centering of the rotated perturbations around the mean opti-
mally using the available degrees of freedom (Wang et al.,
2004). Both the geometry and the precision of the observa-
tional network are taken into account for transforming the
forecast perturbations into the analysis perturbations. Only
conventional observations (TEMP, PILOT, SHIP, AIREP,
DRIBU, SYNOP) were used for constructing the rescaling in
a summer test case, while satellite radiance data (AMSU-A)
were used in addition for a winter test case. For 4D-Var, the
forecast ensemble perturbation input to the estimation of the
forecast error covariance in observation space is provided at
the observation time windows (with a time resolution of 1h),
while for 3D-Var the corresponding forecast ensemble per-
turbation input is given for the nominal analysis time only.

The impact from the random structures of the climatologi-
cal covariance matrix, an additive inflation of the analysis er-
ror variance, supply the ensemble with a “fresh blood” each
assimilation cycle and helps to recover important uncertain-
ties not included in the small ensemble originally.

The ensemble re-scaling scheme is adopted for applica-
tion to a Limited Area Model. The ETKF perturbations are
relaxed towards the EuroTEPS perturbations (Frogner and
Iversen, 2002) on the lateral boundaries and in the strato-
sphere (above 100 hPa).

The ETKF rescaling scheme iteratively estimates the lead-
ing directions of the forecast error variability. By sequentially
applying this scheme an ensemble of perturbations, which
contains flow dependent structures and reflects both the den-
sity and the quality of the observational network, can be cre-
ated. However, the severe rank deficiency of the forecast and
analysis error covariances under affordable sizes of the en-
semble is a weak point of the ETKF rescaling scheme. The
multiplicative variance inflation is introduced to make these
rank-deficient covariances physically meaningful, and is a

core issue for the efficient performance of the ETKF rescal-
ing scheme. The variance inflation is calculated iteratively
by adjusting the ensemble spread to the innovation variance
(corrected for the observation error variance), averaged over
the whole observation space.

The observational error variance is tuned for the opti-
mal performance of the variational data assimilation scheme
(Dee, 1995). It provides the mechanism which controls to
what extent the information from the observations of a cer-
tain type should influence the numerical model. There is a
certain inconsistency between the assumption on the obser-
vational error varianceR and the fit ofR to the innovations.
This makes the estimation of the multiplicative inflation less
efficient. For more details on the ETKF re-scaling as imple-
mented in HIRLAM, see Bojarova et al. (2011).

5.2 The Ensemble of Data Assimilations (EDA)

An alternative to the ETKF re-scaling is to run an Ensemble
of Data Assimilations (EDA) with perturbation of data as-
similation input data (observations and background). In case
of a perfect model assumption, perturbations of the back-
ground correspond to the forecast evolution of the previous
analysis perturbations. Several operational Ensemble Predic-
tion Systems (EPSs) are based on such EDA schemes, for
example the EPS systems of ECMWF and Meteo-France,
which use 4D-Var in the assimilation for each ensemble
member. The Canadian operational EPS system is based on
an Ensemble Kalman Filter that also applies perturbation of
observations.

We will apply the 3D-Var hybrid, as described above,
without perturbation of observations for the ensemble control
and with perturbation of observations for the other ensem-
ble members. The observation perturbations are generated as
Gaussian random numbersN(0, σobs) which are added to all
types of observed values that enter into the data assimilation,
with σobs being the same observation error standard devia-
tion that is applied in the variational data assimilation (the
R-matrix). This approach to observation perturbation may
possibly not be the most optimal one, since some of theσobs-
values have been assigned to provide a proper influence of
each type of observation and not only to represent the obser-
vation error including representivity errors. Negative aver-
age effects of the crudely designed observation perturbation
scheme is, however, partly compensated by a final tuning of
the analysis perturbations through a multiplicative inflation
factor, estimated in the same way as for the ETKF re-scaling
scheme i.e. through a comparison between the background
forecast perturbation variance and the innovation variance
corrected for the observation error variance. This multiplica-
tive inflation also acts to take account of model errors.
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Table 1.Description of experiments carried out with the HIRLAM
Hybrid variational ensemble data assimilation for the period 12–
24 August 2007.

Experiment name Description

3DVAR 3D-Var, no ensemble constraint

hybrid_90 3D-Var Hybrid,βvar= 11
(90 % ensemble, 10 % static cov.)
Ensemble weight spectrum as forps
Tuning factorκ = 1.0

hybrid_50 3D-Var Hybrid,βvar= 2
(50 % ensemble, 50 % static cov.)
Ensemble weight spectrum as forps
Tuning factorκ = 1.0

hybrid_pwl_500 3D-Var Hybrid,βvar= 2
(50 % ensemble, 50 % static cov.)
Ensemble weight spectrum by a
power law with length scale 500 km
Tuning factorκ = 1.0

hybrid_pwl_200 3D-Var Hybrid,βvar= 2
(50 % ensemble, 50 % static cov.)
Ensemble weight spectrum by a
windowed power law with length scale
200 km
Tuning factorκ = 1.0

6 Data assimilation experiments

Real observation data assimilation and forecast experiments
were carried out on the model domain illustrated in Fig.2 for
the short summer period 12–24 August 2007. The horizon-
tal grid resolution was 22 km, the number of vertical levels
was 40 and the number of ensemble members was 12. In or-
der to test the impact of the hybrid assimilation, data assim-
ilation experiments were also carried out for a longer winter
period 17 January–29 February 2008 over a similar domain
as illustrated in Fig.2, also with 40 levels but with a finer
horizontal grid resolution of 11 km. The number of ensemble
members for these experiments was 20 and the data assimi-
lation was carried out with a 6 h cycle.

The forecast model used in the experiments was the
HIRLAM grid point forecast model. It is hydrostatic and
it utilises a semi-implicit, semi-Lagrangian two time level
time integration scheme (Undén et al., 2002). The physi-
cal parameterizations used were the CBR turbulence scheme
(Cuxart et al., 2000), the Kain-Fritsch convection scheme
(Kain, 2004), the Rasch–Kristjánsson cloud water scheme
(Rasch and Kristjánsson, 1998), the Savijärvi (1990) radia-
tion and the ISBA surface scheme (Noilhan and Mahfouf,
1996), supplemented with new formulations for the heat
transfer in the soil and in a snow layer (S. Gollvik, personal
communication, 2013).
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Fig. 2. Model domain for the summer case Hybrid variational en-
semble data assimilation experiments.

6.1 Results from the summer period experiments

Experiments for the summer period were carried out in ac-
cordance with the descriptions in Table1.

6.1.1 Estimated ensemble background error variances

The background error variance (σ 2
b ) is an important quan-

tity that together with the observation error variance (σ 2
o )

determine the magnitude of the weight given to the obser-
vations. It is therefore of interest to investigate the flow-
dependent background error variance fields provided by the
ETKF based ensemble for the+6 h forecast. We will show
examples of the ensemble based background error variance
applied for the assimilation at 21 August 2007 12:00 UTC.
The corresponding background model state, i.e. the+6 h
forecast from 21 August 06:00 UTC is illustrated for 300 hPa
geopotential and wind in Fig.3 (left panel) and for 850 hPa
temperature in Fig.3 (right panel). In the upper levels we
may notice a strong meridional circulation with a meander-
ing jet-stream over the North Atlantic. Associated with this
is a high pressure ridge along 20◦ W towards Iceland and a
low pressure system (trough) centred over France. Also note
a small scale cut-off low at 35◦ N 30◦ W. In the 850 hPa tem-
perature we may notice strong gradients (fronts) associated
with the cut-off low over the Atlantic and also in the area of
the upper-air trough over Western Europe.

Examples of the ensemble estimate of the background er-
ror variance fields, associated with the background model
state illustrated in Fig.3, are presented in Fig.4. We have
chosen to show the variance fields for wind components
at model level 10 (approximately 300 hPa, left panel) and
temperature at model level 30 (approximately 850 hPa, right
panel). The corresponding climatological background error
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Fig. 4. Examples of estimated background error variance fields based on the ensemble of+6 h forecast valid at 21 August 2007 12:00 UTC
from the hybrid data assimilation experiment hybrid_50. Wind components at model level 10 (approximately 300 hPa, left panel) and tem-
perature at model level 30 (approximately 850 hPa, right panel). Isoline spacing 5 m2 s−2 and 1 K2.

variance fields are constant in the horizontal for the wind
components and have a dependence on latitude for the tem-
perature, due to the use of a variable Coriolis parameter in
the balancing between vorticity and linearised geopotential.
The first to be noticed in Fig.4 is the strong inhomogene-
ity of the variance fields contrasting radically the assump-
tions on homogeneity in 3D-Var. Furthermore, areas of large
background error variance are clearly related to features in
the background model state, providing support to the core
idea of this study, to introduce flow-dependent background
error statistics into the data assimilation process. To mention
a few details, large uncertainties seem to be associated with

the position and the strength of the meandering jet-stream
over the North Atlantic. The association of large background
error variances with the jet-stream is easily understandable.
The horizontal wind shear close to the jet stream is large and
even small errors in the forecast horizontal position of the
jet-stream will give rise to large absolute errors, measured in
m s−1. Furthermore, the jet stream is often associated with a
large vertical wind shear and dynamical instability. To handle
this dynamical source of uncertainty in upper-air data assim-
ilation, one does not necessarily need to introduce the utili-
sation of ensembles, it was shown by Lindskog et al. (2006)
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Fig. 5. Assimilation increments from single simulated observation experiments. Left panel: wind and temperature increments at 300 hPa
(a westerly wind observation increment of 5 m s−1 was inserted on 300 hPa at 65◦ N 25◦ W), isoline spacing 1 m s−1 and 1 K; right panel:
temperature and specific humidity increments at 850 hPa (temperature observation increment of 5 K was inserted on 850 hPa at 40◦ N 30◦ W),
isoline spacing 0.1 K and 0.0001.

that a diagnostic interpretation of instability can be applied
successfully.

Concerning the horizontal variability of the background
error variance fields for low level temperature (Fig.4, right
panel), we can notice that large values occur in very elon-
gated (anisotropic) structures. Comparing with the back-
ground model state for 850 hPa temperature in Fig.3 (right
panel), it is clear that these large background error variances
are associated with the occurrence of atmospheric fronts.
One may in particular notice the frontal systems in the vicin-
ity of the upper-air cutoff low at 35◦ N 30◦ W.

We can say that the dynamical propagation of an ensem-
ble of model states, together with the ETKF re-scaling to es-
timate an ensemble of analysis perturbations, have provided
us with a robust tool to describe the background error un-
certainty as influenced by dynamical as well as observation
network effects.

6.1.2 Single observation impact experiments

We illustrate here the possibilities of the Hybrid Varia-
tional Data assimilation to resolve flow-dependent structures
through a “single simulated observation” experiment. A sin-
gle simulated observation is inserted into the data assimila-
tion process. The impact on the model state from such an
observation in a totally controlled environment can tell about
what cross-correlations between model state components are
implied by the variational or hybrid covariance models. In
Fig. 5 we show the data assimilation increments from two
“single observation” experiments with the version of the
hybrid ETKF-Variational data assimilation assuming 90 %
contribution to the background covariance from the ensem-
ble component (experiment hybrid_90). A simulated wind

observation at 300 hPa was inserted in the jet-stream to the
west of Iceland, and a temperature observation was inserted
at 850 hPa within the front associated with the upper-air low-
pressure cut-off at 35◦ N 30◦ W. These experiments demon-
strate the advantages of the hybrid data assimilation system
in resolving flow-dependent structures (results from refer-
ence single observation experiments based on climatological
background error covariances are not shown here, but could
be found elsewhere; Gustafsson et al., 2001). At the same
time they reveal weaknesses of this first implementation of a
hybrid assimilation. We seem to be able to modify and move
an atmospheric front in a consistent manner (“an old dream
of an old data assimilation worker”) with the hybrid data as-
similation. On the other hand, the analysis increments, espe-
cially of temperature and humidity (not shown), are too noisy
and the wind increments in the jet stream are overestimated.
The ensemble size of only 12 members, used in these ex-
periments due to technical reasons, must be increased. A de-
crease of the decorrelation scale of the correlation functions
ρ(r), which imposes the smoothness requirements on the lo-
cal perturbation weights, can be used to remove the noise to
a certain extent. However, in this case, informative structures
of the ensemble associated with the large scale motion are
lost as well. We consider that an increase of the ensemble
size is the only way to tackle the rank-deficiency problem
and, thus, the spurious correlations at large distances.

Furthermore, the ensemble spread of the temperature is
too small and the ensemble spread of wind is too large. The
analysis increments are of order tenths of a degree, although
the inserted innovation was 5◦ large. One reason is certainly
the rank-deficiency of the ETKF ensemble, which requires
the application of a multiplicative inflation. The multiplica-
tive inflation is estimated in a too simplistic manner. Another
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reason lies in the assumptions on the observation error vari-
ances. The observation error for temperature measurements
is assumed to be relatively small in the HIRLAM data as-
similation system. As a result, following the variance update
equation, the variance of the analysis error for temperature
and therefore the spread of the ensemble for temperature be-
comes too small. A re-tuning of the observation error vari-
ances is required for the optimal performance of the hybrid
data assimilation system.

6.1.3 Comparison of real observation assimilation
increments

The final outcome of the whole data assimilation process are
the data assimilation increments. We will illustrate here the
data assimilation increments for 21 August 2007 12:00 UTC,
thus for the same moment of time for which we have de-
scribed and discussed the background error variances and the
simulated single observation experiments above. The com-
parison between the different assimilation increments is not
completely clean, since the background states and thus the
observation innovations differ. We will concentrate our com-
parison on the effects of the different applied spectral den-
sities for the ensemble perturbation weights. All experimen-
tal results to be described are from experiments with a 50 %
contribution from the climatological component and with a
50 % contribution from the ensemble component to the back-
ground error covariance.

Assimilation increments for wind components at model
level 10 and for temperature at model level 20 are presented
in Fig. 6 for four different experiments: for the 3D-Var ex-
periment (experiment 3DVAR, upper left panel) and for the
hybrid experiments with three different spectral density for-
mulations for the ensemble perturbation weights, the spectral
density used for un-balanced surface pressure in 3D-Var (ex-
periment hybrid_50, upper right panel), the power law spec-
tral density with a length scale of 500 km (experiment hy-
brid_pwl_500, lower left panel) and for the windowed power
law spectral density with a length scale of 200 km (experi-
ment hybrid_pwl_200, lower right panel).

The first to notice for the assimilation increments in Fig.6
are the smooth, large scale and almost circular increments
from the 3D-Var experiment (upper left map) and the occur-
rence of more elongated (anisotropic) increment structures in
the first hybrid experiment (upper right map). We can clearly
see similarities to the flow structures in the background field
(Fig. 3). Secondly, we may notice that the flow-dependent
elongated structures are further enhanced when a larger scale
localisation is applied for the ensemble perturbation weights
(lower left map). Finally, by introducing a rather small scale
localisation, through the windowed power law with a length
scale of 200 km, we see that these flow-dependent elongated
flow increment structures almost disappear. The increment
map from this experiment appears much like the 3D-Var

increment map (compare the lower right map in Fig.6 with
the upper left map).

From this comparison of real observation increments we
may conclude that it is crucially important to pay attention
to details in the formulation of the spatial characteristics of
the localisation of the ensemble perturbation weights. A too
small scale localisation may introduce smoothing effects in
the extended ensemble space that can completely wipe out
all the potential benefit from taking an ensemble of model
background states into account.

6.1.4 Verification of forecasts based on real observation
assimilation experiments

Forecasts up to+48 h were carried out at 00:00 and
12:00 UTC for all the five experiments described in Ta-
ble 1. We have verified these forecasts against all available
radiosonde and surface (SYNOP) observations within the
model domain. The data assimilation experiments were car-
ried out for the period 12–24 August 2007. We restricted the
verification to the period 16–24 August 2007, thus allowing
an ensemble perturbation spin up during 4 days.

A period of 8 days is certainly far too short to make any
definite conclusions about the performance of the hybrid
variational ensemble data assimilation, the data period was
selected for practical reasons, since we had available a first
HIRLAM ensemble prediction setup for this period including
ensemble based lateral boundary conditions from EuroTEPS
experiments.

First we investigate the effects of varying the weight (βvar)
given to the climatological background error constraint and
the weight given to the ensemble background error constraint
(βens). For this purpose, bias and RMS (Root Mean Square)
verification scores for temperature, wind speed and rela-
tive humidity forecast profiles as verified against radiosonde
observations averaged over the period 16–22 August 2007
and over+12, +24, +36 and+48 h forecasts are shown in
Fig. 7. The results from experiments 3DVAR (3D-Var), hy-
brid_90 (10 % 3D-Var and 90 % ensemble covariance), and
hybrid_50 (50 % 3D-Var and 50 % ensemble covariance) are
compared.

The verification scores in Fig.7 provide quite a consistent
result. We may notice that the forecasts from the 3D-Var ex-
periment have better scores for temperature and wind while
the scores for humidity are slightly worse in the upper tro-
posphere (above 700 hPa) compared to those for the exper-
iment with the ensemble dominant background covariance.
The most important result in Fig.7 is that the experiment
based on equal weights (βvar =βens) given to the climatolog-
ical and the ensemble based parts of the background error
covariance provides the best forecast verification scores for
all the three basic model variables at all vertical levels. This
is a very encouraging result that gave us confidence to con-
tinue the developments along the ideas of a hybrid variational
ensemble data assimilation.
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Fig. 6. Example of assimilation increments for wind speed at model level 10 (black lines and colour-shading) and temperature at model
level 20 (red lines) on 21 August 2007 12:00 UTC. 3D-Var (upper left panel); hybrid with different horizontal spectral densities for the
ensemble weights: same spectral densities as for assimilation of un-balanced surface pressure in 3D-Var (upper right panel), spectral density
corresponding to a power law correlation with 500 km length scale (lower left panel) and spectral density corresponding to a windowed power
law correlation with a 200 km length scale (lower right panel). All experiment are based on a 50 % contribution from the climatological
component and a 50 % contribution from the ensemble component to the background error covariance. Isoline spacing 2.5 m s−1 and 1 K.
Different shades of green indicate the intervals between 1, 3, 6, 8 and 10 m s−1.

In order to shed some more light on how the formulation
influences the background error covariance, we have selected
one of the model variables, the temperature at 700 hPa, and
illustrated the time-averaged forecast scores as a function of
forecast length in Fig.8. Here it is interesting to note that the
3D-Var assimilation gives the closest fit to the observations at
analysis time with a RMS difference of approximately 0.5 K,
while the corresponding RMS difference for the assimilation
based on a 90 % contribution from the ensemble based co-
variance (experiment hybrid_90) is approximately 0.9 K and
thus almost doubled. The corresponding RMS fit for the as-
similation scheme based on equal weights to the climatolog-
ical and the ensemble parts of the background error covari-
ance (experiment hybrid_50) is approximately 0.6 K and lies
thus in between the RMS of the other two experiments, as

can be expected. The analysis model state fits closer to the
observations in the 3D-Var experiment in comparison with
the two experiments, when also the ensemble based back-
ground error covariance was partly utilised. This is consis-
tent with the magnitudes of the corresponding background
error variance fields of the two components, as discussed and
illustrated above. The climatological background error vari-
ance has quite a large value and is more or less constant over
the whole model domain (“we do not know where we can
expect large background errors”), while the ensemble based
variance has a large amplitude in quite restricted areas (“the
model dynamics and the history of spatial observation dis-
tributions provides some information on background error
uncertainty”). It needs to be mentioned that the low rank of
the ensemble covariance may also contribute to the poorer
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Fig. 7. Bias and RMS (Root Mean Square) verification scores for
temperature (upper panel), wind speed (middle panel) and rela-
tive humidity (bottom panel) forecast profiles as verified against ra-
diosonde observations averaged over the period 16–22 August 2007
and over+12,+24,+36 and+48 h forecasts. Experiments 3DVAR
(3D-Var, red curves), hybrid_90 (10 % 3D-Var and 90 % ensemble
covariance, blue curves) and hybrid_50 (50 % 3D-Var and 50 % en-
semble covariance, green curves). The curve marked CASES indi-
cates the number of observed values for the verification.
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Fig. 8. Bias and RMS (Root Mean Square) verification scores for
700 hPa temperature forecasts as verified against radiosonde obser-
vations averaged over the period 16–22 August 2007 as a function
of forecast length. Experiments 3DVAR (3D-Var, red curves), hy-
brid_90 (10 % 3D-Var and 90 % ensemble covariance, blue curves)
and hybrid_50 (50 % 3D-Var and 50 % ensemble covariance, green
curves). The curve marked CASES indicates the number of ob-
served values for the verification.

fit to the observations in the case of the hybrid analysis, as
compared to 3D-Var, in particular where the observations are
dense (Clayton et al., 2013).

Although the fit to the observations is closest for the 3D-
Var assimilation scheme in Fig.8 at analysis time, we can
notice that already at a forecast length of+12 h this is no
longer the case. The fit to observations is now closest for the
experiment based on equal weights to the climatological and
the ensemble part of the background error covariance. This
tendency for the experiment with equal contributions to the
background error covariance to have smaller RMS forecast
verification scores becomes more pronounced with forecast
length.

We have presented and discussed forecast verification
scores as a function of forecast length for 700 hPa temper-
ature only. The patterns for the development of the forecast
scores for other model variables (figures are not shown) are
very similar to the pattern for the 700 hPa temperature. We
have also investigated the effects of varying the horizontal
spectral density for the weights given to the different ensem-
ble members in the assimilation increment, i.e. the defini-
tion of the covariance matrixA in the ensemble part of the
background error constraint. The sensitivity of the forecast
verification scores to the spectral density used, which con-
strains the weights given to the different ensemble members,
is quite small in general (not shown here). One may possi-
bly conclude that there is some small preference to apply the
power law spectral density with a length scale of 500 km with
regard to the quality of humidity forecasts.
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6.2 Results from the winter period experiments

Experiments for the winter period 17 January–29 Febru-
ary 2008 are briefly described in Table2. For all experiments,
a 6 h data assimilation cycle was applied. For the 4D-Var
experiments a 6 h assimilation window centred around the
nominal analysis time was applied, while in the 3D-Var ex-
periments a similar assimilation window was applied with
the background field for calculation of innovations evalu-
ated at the time of the observations (FGAT = First Guess at
Appropriate Time). Tuning factorsβvar andκ were set dif-
ferently for 3D-Var Hybrid and 4D-Var Hybrid, and were
based on separate tuning experiments to optimise the fore-
cast performance.

Lateral boundary conditions for all experiments were pro-
vided by the global EuroTEPS low resolution forecasts, since
it was required to have ensemble perturbations also on the
lateral boundaries. One control experiment was repeated
with high resolution deterministic ECMWF forecasts for the
lateral boundary conditions, in order to investigate possi-
ble negative effects of the low resolution EuroTEPS lateral
boundary conditions. Indeed, this experiment (results are not
shown) indicated such negative effects of the low resolution
EuroTEPS lateral boundary conditions.

The winter period experiments were run with 20 ensemble
members. Generally speaking, EnKF applications for full-
scale NWP models have been reported to need≈ 100 en-
semble members for a good performance. Such a large num-
ber of ensemble members was out of reach for our investiga-
tion. One of our 4D-Var hybrid experiments applied a double
number (= 40) of ensemble members during the hybrid as-
similation by adding also ensemble member forecasts valid
2 h into the data assimilation window. The idea behind se-
lecting such a lagged valid time ensemble was the possibility
to correct timing errors (and implicitly spatial phase errors)
in the background field during the assimilation.

6.2.1 Impact of the hybrid assimilation approach on top
of 3D-Var and 4D-Var

For the validation of the impact of the hybrid approach on
top of 3D-Var and 4D-Var we will first illustrate how the
ETKF re-scaling handles the ensemble spread for tempera-
ture at model level 28 (≈ 800 hPa) in Fig.9 (the effects of
the tuning factorκ are not included). For 3D-Var hybrid (up-
per maps) and 4D-Var hybrid (lower maps) we present the
ensemble standard deviations (ensemble spread) both before
the ETKF re-scaling (maps to the left) for the background
forecast fields, and after the ETKF re-scaling (maps to the
right) for the analysis fields. The dynamical features of these
standard deviation fields are obvious with elongated struc-
tures along atmospheric fronts, for example. Note that the
standard deviation fields have a slightly smaller amplitude
in the 4D-Var hybrid case than in the 3D-Var hybrid case,
consistent with the generally smaller errors in short range

Table 2.Description of experiments carried out with the HIRLAM
Hybrid variational ensemble data assimilation for the winter period
17 January–29 February 2008.

Experiment name Description

3dvar_ref1 3D-Var, no ensemble constraint.

3Dvar_hybrid1 3D-Var Hybrid,βvar= 2
(50 % ensemble, 50 % static cov.),
Tuning factorκ = 2.0

4dvar_ref1 4D-Var, no ensemble constraint.

4dvar_hybrid1 4D-Var Hybrid,βvar= 4
(25 % ensemble, 75 % static cov.),
Tuning factorκ = 4.0

4dvar_hybrid2 4D-Var Hybrid,βvar= 4
(25 % ensemble, 75 % static cov.),
Tuning factorκ = 4.0
Ensemble perturbations for Hybrid
complemented with perturbations with
a+2 h lagged valid time.

EDA_hybrid1 3D-Var Hybrid,βvar= 2
(50 % ensemble, 50 % static cov.).
Generation of ensemble perturbations
through an ensemble of 3D-Var assimilations
with perturbed observations.
Tuning factorκ = 2.0

forecasts produced from 4D-Var initial data as compared
to 3D-Var based forecasts. Furthermore, note the reduction
of the spread in the analysis ensemble after the ETKF re-
scaling, corresponding to the effect of using observations in
the assimilation process. It can also be noticed that the dy-
namical features are well preserved during the re-scaling pro-
cess. We have shown the ensemble spread for the 4D-Var
based+6 h forecast in Fig.9 (lower left panel). It needs to
be mentioned that it is the 4D-Var based+3 h forecast, valid
at the start of the 4D-Var assimilation window, that enters
the implicit ensemble covariance calculations in the 4D-Var
hybrid assimilation, while for the 3D-Var hybrid the corre-
sponding+6 h forecast is used. Since the spread of the+3 h
ensemble forecasts generally is smaller than for the+6 h en-
semble forecasts, application of different tuning factorsκ for
3D-Var and 4D-Var hybrid assimilation (see Table2) can be
motivated. Note also in Table2 that a different partitioning
between the static and the ensemble background error covari-
ances is used for 4D-Var hybrid (75 % for the static part of
the covariance) as compared to 3D-Var hybrid (50 % for the
static part of the covariance). The motivation for this differ-
ence is that 4D-Var partially develops its own flow-dependent
background error covariances. An assimilation and forecast
test over a shorter period confirmed that this choice of parti-
tioning was a good one.

The hybrid variational ensemble data assimilation does
not only utilise flow-dependent background error standard
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Fig. 9. Ensemble spread (RMS) for temperature at model level 28 (≈ 800 hPa), 3D-Var hybrid (top panels) and 4D-Var hybrid (bottom
panels), before ETKF re-scaling (left panel) and after ETKF re-scaling (right panels), 22 January 2008 12:00 UTC. Isoline spacing 0.5 K.
The tuning factorκ has not been taken into account.

deviation fields as illustrated in Fig.9. Also spatial corre-
lations and cross-correlations between different model vari-
ables are taken into account through the ensemble informa-
tion. We illustrate this here for 3D-Var and 3D-Var hybrid
specific humidity assimilation increments at model level 30
(≈ 850 hPa) in Fig.10. We take specific humidity as an ex-
ample because a large positive impact in humidity forecast
scores was found with the hybrid 3D-Var assimilation (see
below). We may notice that completely different spatially
elongated structures are seen in the 3D-Var hybrid assimila-
tion increments (Fig.10, bottom panel) as compared with the
standard 3D-Var assimilation increments (Fig.10, top panel),
for which the effects of the assumptions of isotropy and ho-
mogeneity are recognisable. With regard to the magnitudes
and the sign of the increments in different areas it is not so
difficult to realise that the observed innovation input to the
assimilation from the sparse radiosonde network could be
very similar, the main difference is that the ensemble infor-
mation provides a set of flow-dependent basis functions that
is used for the spatial spreading of the observed innovation
information.

The impact of the hybrid assimilation for 3D-Var and 4D-
Var on mean sea level pressure forecasts over a Scandinavian
domain is presented in Fig.11. Included in the figure are ver-
ification curves (bias and standard deviation) for 3D-Var, 3D-
Var hybrid, 4D-Var and 4D-Var Hybrid.

From Fig.11 it can be seen that 3D-Var hybrid provides
a large positive impact on standard deviation forecast verifi-
cation scores in comparison with the standard 3D-Var. The
standard 4D-Var provides an even larger (doubled) positive
impact over the standard 3D-Var, which is consistent with
previous comparisons between HIRLAM 3D-Var and 4D-
Var (Gustafsson et al., 2012). On the other hand, it is also
obvious from Fig.11 that the 4D-Var hybrid provides no
positive impact over the standard 4D-Var for the mean sea
level pressure standard deviation forecast verification scores
during this experiment period of 40 days, a minor positive
impact of the hybrid in the bias verification scores can be
noticed, however.

The differences between average root-mean-square (RMS)
verification scores for 3D-Var and 3D-Var hybrid are sig-
nificant for +12, +18 and+24 h forecasts according to a
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Fig. 10.Specific humidity assimilation increments at model level 30
(≈ 850 hPa) with 3D-Var (top panel) and with 3D-Var Hybrid (bot-
tom panel). 22 January 2008 12:00 UTC. Isoline spacing 0.0005.

two-sided studentt test, the differences between the 4D-Var
and the 3D-Var RMS verification scores are significant for
+6, +12, +18 and+24 h forecasts according to the same
test.

The wind speed and relative humidity vertical profile fore-
cast verification scores, as verified against all radiosonde sta-
tions within the forecast domain, for the 3D-Var, 3D-Var hy-
brid, 4D-Var and 4D-Var hybrid experiments are included
in Fig. 12. With regard to the wind speed profile verifica-
tion scores, we see a significant, positive impact of the 3D-
Var hybrid as compared to the standard 3D-Var as well as a
significant, positive impact of the standard 4D-Var over the
standard 3D-Var, similarly to what was achieved for mean
sea level pressure verification scores. In addition, we can
now also observe a positive impact of the 4D-Var hybrid as
compared to the standard 4D-Var. The positive impact of the
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Fig. 11. Bias and standard deviation verification scores for mean
sea level pressure forecasts over a Scandinavian domain averaged
over the period 19 January–29 February 2008 and given as func-
tions of forecast length. The control forecasts from the 3D-Var (red
curve), the 3D-Var hybrid (green curve), the 4D-Var (blue curve)
and the 4D-Var hybrid (pink curve) experiments are included. Fore-
casts have been run with 6th hourly lateral boundary conditions.

hybrid approach is consistent over all vertical levels, for 3D-
Var as well as for 4D-Var. The differences between RMS ver-
ification scores, for the 3D-Var versus the 3D-Var hybrid as
well as for the 3D-Var versus the 4D-Var scores are signifi-
cant at the 95 % significance level for all levels in the tropo-
sphere for wind speed.

For the forecast relative humidity profile verification
scores, we notice a positive impact of the 3D-Var hybrid as
compared to the standard 3D-Var and also for the 4D-Var hy-
brid as compared to the standard 4D-Var in the troposphere.
The improvement of the verification scores are most signifi-
cant for the 3D-Var hybrid as compared to standard 3D-Var,
such that the 3D-Var hybrid verification scores are even bet-
ter than the 4D-Var hybrid verification scores for levels in
the lower troposphere where moisture is important for fore-
casting of weather parameters like precipitation. One may
speculate why we have this very significant positive impact
of the hybrid for 3D-Var and not for 4D-Var. One reason
may be that the 3D-Var hybrid utilises directly the humidity
spatial covariances and cross-covariances derived from the
nonlinear model integration of the ensemble members, com-
pare the increment maps seen in Fig.10, while in the case of
the 4D-Var these nonlinear model ensemble covariances and
cross-covariances are implicitly transformed to be valid at the
actual observation time by the integration of the tangent lin-
ear model. In case the tangent linear model is not very accu-
rate for humidity, this transformation may degrade the qual-
ity of the humidity covariances and cross-covariances. This is
likely to be the case for the tangent linear model in HIRLAM
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Fig. 12. Bias and standard deviation verification scores for wind
speed (upper panel) and relative humidity (lower panel) profile fore-
casts as verified against radiosonde data in the whole forecast do-
main over the period 19 January–29 February 2008 and given as
functions of forecast length. The control forecast from the 3D-Var
(red curve), the 3D-Var hybrid (green curve), the 4D-Var (blue
curve) and the 4D-Var hybrid (pink curve) experiments are in-
cluded. The curve marked CASES indicates the number of observed
values for the verification. Forecasts have been run with 6th hourly
lateral boundary conditions.

4D-Var that includes no condensation processes, for exam-
ple. The differences between RMS verification scores be-
tween the 3D-Var hybrid and the standard 3D-Var are signif-
icant on the 95 % significance level for relative humidity at
all levels below 300 hPa, while the differences between RMS
verification scores between the standard 4D-Var and standard
3D-Var are significant on the 95 % significance level for rel-
ative humidity at 500 hPa only.

6.2.2 Application of lagged ensembles in hybrid
assimilation

The relatively small impact of the 4D-Var hybrid as com-
pared to the standard 4D-Var should not necessarily be con-
sidered as a disappointment but rather as a recognition of

the strengths of the standard 4D-Var assimilation technique
with its implicit full rank flow-dependent assimilation struc-
ture functions. One of our hypotheses is that one needs to
enrich the ensemble used in our 4D-Var hybrid with en-
semble variability in more directions representing possible
short range forecast errors. One straightforward way is to in-
crease the ensemble size, but this is not technically feasible
at present considering available computing power. Another
way is to introduce stochastic components in the nonlinear
forecast model (Palmer and Williams, 2010) that is used to
integrate the ensemble of model states forward in time in or-
der to sample at the source of uncertainties, but at present
our knowledge on such sources of uncertainties is too lim-
ited within the HIRLAM community to make any such model
perturbations meaningful.

A fairly simple way to increase the size of the ensemble
to be used for the hybrid assimilation is to try to apply some
time lagging technique. In a first trial it was natural to try
some initial time lagging by complementing the+3 h back-
ground forecast ensemble from the previous data assimila-
tion cycle, used in 4D-Var hybrid, with the+9 h forecast en-
semble from the next to the previous data assimilation cycle.
In this way, the size of the ensemble applied in the 4D-Var
hybrid was doubled from 20 to 40. It turned out, however,
that forecast verification scores were not improved (results
are not shown) by increasing the ensemble size in this way.
We concluded that the ensemble for the hybrid assimilation
was not enriched by adding a+9 h hour ensemble to the+3 h
ensemble valid at the same time, the forecast perturbations
from two such consecutive assimilation cycles are too sim-
ilar, possibly because assimilation increments at 06:00 and
18:00 UTC do not provide much new information due to the
reduced networks of conventional observations.

Next we tried a more radical change by introducing a valid
time lagging. Our idea was that by lagging the valid time it
would be possible to better correct for timing errors (and im-
plicitly spatial phase errors). Thus, in addition to the+3 h
background forecast valid at the start of the data assimilation
window in 4D-Var hybrid, we added the+5 h background
forecast valid 2 h into the data assimilation window. Al-
though valid at different times, with a time difference of 2 h,
we used these two ensembles to represent the flow-dependent
background error covariance at the start of the assimilation
window. This ad hoc trial turned out to be more successful.
Most forecast verification scores (not shown) were slightly
improved by adding the ensemble with the wrong valid time.
The time series of the mean sea level pressure forecast ver-
ification scores over the Scandinavian verification domain
revealed that forecasts for a few situations were improved
by the additional ensemble component, in particular for the
case 27 January 2008 12:00 UTC+ 24 h the standard devia-
tion verification scores were reduced by almost 50 %.

The difference between the mean sea level pressure fore-
casts produced with and without the valid time lagged ensem-
ble for 27 January 12:00 UTC+ 24 h are shown in Fig.13
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Fig. 12. Bias and standard deviation verification scores for wind
speed (upper) and relative humidity (lower) profile forecasts as ver-
ified against radiosonde data in the whole forecast domain over the
period 19 January - 29 February 2008 and given as functions of
forecast length. The control forecast from the 3D-Var (red curve),
the 3D-Var hybrid (green curve), the 4D-Var (blue curve) and the
4D-Var hybrid (pink curve) experiments are included. The curve
marked CASES indicates the number of observed values for the ver-
ification. Forecasts have been run with 6th hourly lateral boundary
conditions.
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Fig. 13.Differences between mean sea level pressure forecasts from
the 4dvar hybrid1 and the4dvar hybrid2 experiments. 27 Jan-
uary 2008 +12h (top) and +24h (bottom). The difference between
the two experiments is that4dvar hybrid2 uses an additional valid
time lagged (+2h) ensemble in the 4D-Var hybrid ensemble covari-
ance. Isoline spacing 1hPa.

Fig. 13. Differences between mean sea level pressure forecasts
from the 4dvar_hybrid1 and the 4dvar_hybrid2 experiments. 27 Jan-
uary 2008+12 h (top panel) and+24 h (bottom panel). The differ-
ence between the two experiments is that 4dvar_hybrid2 uses an
additional valid time lagged (+2 h) ensemble in the 4D-Var hybrid
ensemble covariance. Isoline spacing 1 hPa.

(bottom panel) and the differences between the correspond-
ing+ 12 h forecasts are shown in Fig.13 (top panel). Al-
though it may be a random coincidence, these two consec-
utive forecast difference maps indicate a typical phase error
in the southwest to northeast storm track from the Atlantic,
over the British Isles towards Scandinavia. A trial to track
these forecast differences back in time to explain initial data
increment differences turned out to be too difficult due to too
small assimilation increments being accumulated over sev-
eral data assimilation cycles.

We may consider that this trial at least proves the concept
of applying lagged valid time ensembles for hybrid varia-
tional ensemble data assimilation, when available computer
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Fig. 15. Bias and standard deviation verification scores for wind
speed (upper) and relative humidity (lower) profile forecasts as ver-
ified against radiosonde data in the whole forecast domain over the
period 19 January - 29 February 2008 and given as functions of
forecast length. The control forecast from the 3D-Var (red curve),
the 3D-Var hybrid based on the ETKF ensemble (green curve) and
the 3D-Var hybrid based on the EDA ensemble (blue curve) experi-
ments are included. The curve marked CASES indicates the number
of observed values for the verification. Forecasts have been run with
12th hourly lateral boundary conditions.

Fig. 14. Bias and standard deviation verification scores for mean
sea level pressure forecasts over a Scandinavian domain averaged
over the period 19 January–29 February 2008 and given as func-
tions of forecast length. The control forecast from the 3D-Var (red
full curve), the 3D-Var hybrid based on the ETKF ensemble (green
dashed curve) and the 3D-Var hybrid based on the EDA ensemble
(pink dotted curve) experiments are included. Forecasts have been
run with 12th hourly lateral boundary conditions.

resources do not allow increase of the total ensemble size in
the ensemble prediction system.

6.2.3 A comparison between EDA and ETKF ensembles
for hybrid assimilation

Verification scores for forecasts from the standard 3D-Var,
the 3D-Var hybrid based on ETKF ensemble perturbations
and the 3D-Var hybrid based on EDA ensemble perturbations
are included in Fig.14 for mean sea level pressure forecasts
over a Scandinavian domain verified against surface obser-
vations and in Fig.15 for wind speed and relative humidity
forecast profiles verified against radiosonde observations in
the whole forecast domain. It may be concluded from the
figures that also the 3D-Var hybrid based on an EDA ensem-
ble provides improved forecast verification scores as com-
pared with the standard 3D-Var, although the positive impact
of 3D-Var with the EDA ensemble is slightly smaller than
the positive impact with the ETKF ensemble. One may won-
der whether the differences in performance between the two
3D-Var hybrid schemes is just a matter of tuning, for exam-
ple, the inflation factors applied in the ensemble generation
schemes, the magnitude of the observation perturbation or
the scaling of the ensemble perturbations in the hybrid as-
similation.

The differences between the ETKF based ensemble per-
turbations and the EDA based ensemble perturbations are
further illustrated by examples of such perturbations in
Fig. 16. Included in the figure are model level 28 wind
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Fig. 15. Bias and standard deviation verification scores for wind
speed (upper) and relative humidity (lower) profile forecasts as ver-
ified against radiosonde data in the whole forecast domain over the
period 19 January - 29 February 2008 and given as functions of
forecast length. The control forecast from the 3D-Var (red curve),
the 3D-Var hybrid based on the ETKF ensemble (green curve) and
the 3D-Var hybrid based on the EDA ensemble (blue curve) experi-
ments are included. The curve marked CASES indicates the number
of observed values for the verification. Forecasts have been run with
12th hourly lateral boundary conditions.

Fig. 15. Bias and standard deviation verification scores for wind
speed (upper panel) and relative humidity (lower panel) profile fore-
casts as verified against radiosonde data in the whole forecast do-
main over the period 19 January–29 February 2008 and given as
functions of forecast length. The control forecast from the 3D-Var
(red curve), the 3D-Var hybrid based on the ETKF ensemble (green
curve) and the 3D-Var hybrid based on the EDA ensemble (blue
curve) experiments are included. The curve marked CASES indi-
cates the number of observed values for the verification. Forecasts
have been run with 12th hourly lateral boundary conditions.

and temperature perturbations from ensemble member 5 for
22 January 2008 12:00 UTC+ 12 h. Note that member 5
from the two experiments are driven by the same EuroTEPS
lateral boundary conditions. We may notice that the ETKF
based perturbations are dominated by dynamically coherent
structures in the vicinity of an atmospheric front, while the
EDA based perturbations include also slightly more noisy
features, most likely originating from the perturbation of
observations.

The different character of the EDA based ensemble per-
turbations is also confirmed by ensemble perturbation spec-
tra in ensemble space calculated from differences between
ensemble members and ensemble control in observation
points. Such spectra for 22 January 2008 12:00 UTC+ 6 h
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Fig. 16. Temperature and wind ensemble forecast perturbations at
model level 28 for ensemble member 5, 22 January 2008 12 UTC
+12h. ETKF based perturbations (upper) and EDA based perturba-
tions (lower).

Fig. 17. Ensemble perturbation spectra in ensemble space calcu-
lated from differences between ensemble members and ensem-
ble control in observation points. 22 January 2008 12 UTC +06h.
3D-Var hybrid with EDA perturbations (eda hybrid1, red curve),
3D-Var hybrid with ETKF perturbations (3dvar hybrid1, green
curve), 4D-Var hybrid with ETKF perturbations (4dvar hybrid1,
blue curve) and 4D-Var hybrid with ETKF perturbations including
also a lagged valid time ensemble (4dvar hybrid2, pink curve).

Fig. 16. Temperature and wind ensemble forecast perturbations
at model level 28 for ensemble member 5, 22 January 2008
12:00 UTC+ 12 h. ETKF based perturbations (upper panel) and
EDA based perturbations (lower panel).

are included in Fig.17. The spectrum for the EDA-based
ensemble is significantly more flat than all the ETKF-based
spectra, supporting the hypothesis that the EDA-based per-
turbations have less energy in the dynamically unstable struc-
tures. Furthermore, we may notice from the figure that the
4D-Var based perturbations have relatively larger variabil-
ity in the first few eigenvectors of the ensemble space back-
ground error covariance matrix, as compared with the 3D-
Var based perturbations. This is an indication of the strength
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Fig. 16. Temperature and wind ensemble forecast perturbations at
model level 28 for ensemble member 5, 22 January 2008 12 UTC
+12h. ETKF based perturbations (upper) and EDA based perturba-
tions (lower).

Fig. 17. Ensemble perturbation spectra in ensemble space calcu-
lated from differences between ensemble members and ensem-
ble control in observation points. 22 January 2008 12 UTC +06h.
3D-Var hybrid with EDA perturbations (eda hybrid1, red curve),
3D-Var hybrid with ETKF perturbations (3dvar hybrid1, green
curve), 4D-Var hybrid with ETKF perturbations (4dvar hybrid1,
blue curve) and 4D-Var hybrid with ETKF perturbations including
also a lagged valid time ensemble (4dvar hybrid2, pink curve).

Fig. 17. Ensemble perturbation spectra in ensemble space calcu-
lated from differences between ensemble members and ensemble
control in observation points. 22 January 2008 12:00 UTC+ 6 h.
3D-Var hybrid with EDA perturbations (eda_hybrid1, red curve),
3D-Var hybrid with ETKF perturbations (3dvar_hybrid1, green
curve), 4D-Var hybrid with ETKF perturbations (4dvar_hybrid1,
blue curve) and 4D-Var hybrid with ETKF perturbations including
also a lagged valid time ensemble (4dvar_hybrid2, pink curve).

of the 4D-Var assimilation algorithm to project the observed
information (the innovations) on dynamically active features
being selected and magnified through the integration of the
tangent linear model during the assimilation as well as dur-
ing the subsequent nonlinear model integration of the data
assimilation cycles.

7 Concluding remarks

A hybrid variational ensemble data assimilation for the
HIRLAM forecasting system has been developed and it has
been validated with the emphasis to prove the concept of the
hybrid assimilation as a true synthesis of variational and en-
semble data assimilation techniques. Parallel data assimila-
tion and forecast experiments have been carried out with dif-
ferent parameter settings for the hybrid scheme in addition to
a comparison with the original 3D-Var and 4D-Var schemes.
One version of the hybrid assimilation scheme, with equal
weights assigned to the static (original 3D-Var) background
error covariance and the ensemble based background error
covariance, proved to provide improved forecast verification
scores, as compared to 3D-Var over a short (8 day) period
in August 2007. We also learned that the spectral density
that constrains the localised weights applied to the differ-
ent ensemble perturbations should have sufficient energy in
larger scales, in order to preserve important structures pro-
vided by the ensemble and to prevent a too strong modifica-
tion of these structures by averaging in the extended ensem-
ble space.

The 3D-Var, the 3D-Var hybrid, the 4D-Var and the 4D-
Var hybrid were compared in full-scale data assimilation
and forecast experiments for a 6 weeks winter period,
17 January–29 February 2008. For the winter period, an ad-
ditional tuning of the contribution of the ensemble pertur-
bations to the assimilation increment was introduced in or-
der to optimise the forecast performance. It turns out that
3D-Var hybrid and 4D-Var both significantly outperform the
standard 3D-Var, while the improvement of 4D-Var hybrid
over the standard 4D-Var is less significant. This is indeed
a quite natural result, since already the standard 4D-Var by
itself provides implicit flow-dependent assimilation structure
functions. Clayton et al. (2013) reported on similar problems
at the UK Met. Office to find improvements by 4D-Var hy-
brid over a standard 4D-Var for a global model. It was only
after introduction of a vertical localisation (not yet imple-
mented in HIRLAM) in the hybrid assimilation that the 4D-
Var hybrid managed to outperform the standard 4D-Var.

We have also investigated the sensitivity of the perfor-
mance of the hybrid assimilation to the applied ensemble
generation technique. Thus by adding a+2 h lagged valid
time ensemble to the standard ensemble valid at the start of
the data assimilation window in the 4D-Var hybrid, it was
possible to double the size of the ensemble applied in the
4D-Var hybrid. The motivation for this particular choice of
ensemble time lagging was to try to improve the handling of
timing errors (and implicitly spatial phase errors) in the data
assimilation process. A slightly positive impact of this lagged
ensemble approach certainly proves the concept and encour-
ages us to continue similar investigations. Finally, we have
also compared hybrid assimilation based on ETKF rescal-
ing with hybrid assimilation based on ensemble perturbations
generated by an Ensemble of Data Assimilations (EDA), in-
cluding observation perturbations. Our first results indicate
that the 3D-Var hybrid based on ETKF rescaling and the
3D-Var hybrid based on EDA perturbations provide compa-
rable forecast quality in terms of forecast verification scores.
The EDA based perturbations appear to include slightly more
noisy spatial structures.

The results of this first validation of the hybrid data assim-
ilation have encouraged us to continue the development and
validation with regard to several aspects of its formulation.
The horizontal correlation spectrum applied to the localised
weights for the ensemble perturbations needs to be further
examined and we should also investigate the need for a ver-
tical localisation.

Furthermore, we have already made some progress in
changing the 4D-Var hybrid formulation to utilise directly
the ensemble of 4-D nonlinear model trajectories over the
4D-Var assimilation window in the observation operators in
order to avoid the time integration of the tangent linear and
adjoint models during the 4D-Var minimisation (4DEnVar,
Liu et al., 2008, 2009). The first results of 4DEnVar indi-
cate significantly improved humidity forecasts as compared
to 4D-Var and 4D-Var Hybrid, confirming our speculations
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above on the weaknesses of the TL and AD models of the
HIRLAM 4D-Var to handle moist processes.
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