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Abstract. The repeated observation of the same signatures
of mesoscale and submesoscale features in different ocean
variables indicates that some common, non-linear processes
affect them to a significant extent. A new method to exploit
these common signatures to improve the quality of a noisy
variable (i.e. increasing the signal-to-noise ratio) using an-
other variable as template has recently been introduced. The
method is based on superimposing the multifractal structure
of singularity exponents from the template variable to the
variable to be enhanced. In this paper, we will discuss the
sensitivity of this method to the presence of noise of differ-
ent types and amplitude. Our results indicate that multifractal
methods can be a key to enhancing the existing databases of
remote sensing images and give hints about non-linear dy-
namics of the ocean.

1 Introduction

The introduction of new remote sensing platforms for the ob-
servation of oceans has posed more questions than the an-
swers they have provided. Previously unobserved processes
can now be seen by repeated observations (as for instance
with the SMOS – Soil Moisture and Ocean Salinity – mis-
sion (Font et al., 2012) and the large-scale deployment of
the Argo floater system) and improved numerical models.
Making sense of the large amount of new data and at the
same time understanding the associated processes is a press-
ing challenge.

On the other hand, ocean structures associated with
many different processes (frontogenesis and eddy generation
Hallberg and Gnanadesikan, 2006, eddy propagationIsern-
Fontanet et al., 2003; Chelton et al., 2007, variations in sea
roughness, upwellingMason et al., 2011, etc.) have been

shown to leave a recognisable footprint in many different
variables. This common footprint is the result of similar non-
linear terms within the equations defining the evolution of
ocean scalars (such as sea surface temperature – SST, sea
surface salinity – SSS, chlorophyll concentration – CC, etc.),
even if those non-linear terms are not the dominant contribu-
tion to the dynamics of the particular scalars. This common
signature in ocean scalars indicates that a part of the infor-
mation conveyed by the different ocean variables is in fact
redundant. Understanding this redundancy is useful in two
different ways. On one hand it can serve to assess and even
to measure the magnitude of the associated terms in the evo-
lution equations. On the other hand, that redundancy can be
exploited to code information in a more compact way and
even to enhance data quality when one of the data sources is
corrupted or otherwise contaminated.

The introduction of the microcanonical multifractal for-
malism (Isern-Fontanet et al., 2007; Turiel et al., 2008b) pro-
vides a unified formalism to model and quantify this redun-
dancy in a consistent mathematical model. The common sig-
nature in all ocean variables is the multifractal structure un-
derlying all of them, which is dimensionless and independent
of the signal amplitude of any particular scalar. Evidence is
now extensive about the validity of this approach to deal with
ocean variables (Turiel et al., 2005, 2008a, 2009). Recently,
a non-parametric, non-linear method to fuse the information
coming from different scalars using their common multifrac-
tal structure has been proposed (Umbert et al., 2014) for
dealing with a specific application (improving the quality of
SMOS maps).

The goal of this paper is to analyse the performance of
this novel approach to fuse the information from different
scalars as a data quality enhancer. To that goal, we have
started from controlled situations, in which the amplitude
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and characteristics of noise are known and a ground truth is
available. The consequences of this study go beyond a simple
denoising algorithm, as this method settles the basis for the
implementation of new dynamic equations based on a new
dynamic, more robust entities coming from multifractal anal-
ysis.

2 Data

For the analysis developed in this paper the output of a global
circulation model has been used. Our data set consists of
output from the Ocean general circulation model For the
Earth Simulator (OFES) (Masumoto et al., 2004; Masumoto,
2010). The simulation has been carried out with a model de-
veloped starting from Princeton GFDL MOM-3 (az coordi-
nate, eddy resolving, explicit free-surface model) by adapt-
ing it to the parallel architecture of the Earth Simulator. The
simulation has been run on the near-global ocean, spun up
for 50 yr under climatological forcing taken from monthly
mean NCEP (United States National Centers for Environ-
mental Prediction) atmospheric data. After that period the
OFES is forced by the daily mean NCEP reanalysis for 48 yr
from 1950 to 1998. SeeMasumoto et al.(2004) for additional
details on the forcings.

The output of the model corresponds to daily data for the
last 8 yr of simulation. Horizontal angular resolution is the
same in both the zonal,φ, and meridional,θ , directions, with
values of1θ = 1φ = 1/10◦. The calculations are restricted
to variables in surface layer, namely temperature and salinity,
to emulate remote sensing data. The results shown in this
paper refer to 1 January 1990 (see Fig.1), although similar
ones are obtained for any other day.

2.1 Noise sources

All noise sourcesnβ(x) in this paper are Gaussianly dis-
tributed with zero mean and marginal standard deviationσn

which is the same at all the points. The spatial correlation
matrix of the noise is given by the exponentβ of its power
spectrum, namely:∣∣n̂β

∣∣2 (k) ∝‖ k ‖
−β (1)

The value of the exponent can be taken betweenβ = 0
(purely decorrelated noise) andβ = 2 (strongly correlated
noise). In this study we takeβ asβ = 0,1 and 2.

3 Non-linear methods used in this study:
theoretical review

3.1 Singularity analysis

The existence of a multifractal structure in synoptic maps of
ocean scalars has been studied for several years now and can
be given a geometrical meaning by means of the appropriate

Fig. 1.OFES output for 1 January 1990. Top: SST map.
Bottom: SSS.

analysis. A number of studies have shown that singularity
fronts forming a multifractal hierarchy can be extracted from
SST maps of different types and resolutions (Turiel et al.,
2005, 2008a). It has also been observed that other scalars,
such as chlorophyll concentration maps (Nieves et al., 2007)
and even brightness temperature maps (Isern-Fontanet et al.,
2007), have exactly the same singularity fronts that can be
put into correspondence among the different scalars. The
emergence of such a singular structure is the result of the
advective forces acting on a quasi-2-D turbulence regime,
and can be thus observed for scales ranging from kilome-
tres to the planetary scale. Notice that 2-D turbulence is
not a requirement for having singularity fronts: 3-D turbu-
lence also generates singularity fronts, although they form
compiles 2-D manifolds in general (Kestener and Arnéodo,
2003). Quasi-2-D turbulence is required to be able to iden-
tify singularity fronts derived from maps of surface variables
with dynamic structures.

Singularity analysis is the keystone of the so-called mi-
crocanonical multifractal formalism (MMF); in essence, the
fluid can be understood as a hierarchical arrangement of
different fractal components, each one with its own fractal
dimensional and characterized by a particular value of the
singularity exponent. The existence of scaling properties of
scalars submitted to specific types of turbulent flow can be
tracked back to Kolmogorov’s seminal works (Kolmogorov,
1941a, b). Later works showed that structure functions in
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fully developed turbulence (2- and 3-D) present multiscale
dependence on the scale parameter (Dubrulle, 1994; She and
Leveque, 1994; She and Waymire, 1995). The intuition that
such multiscale behaviour is the result of the hierarchy of
multiple fractal components is due to Parisi and Frisch (Parisi
and Frisch, 1985), although the explicit extraction of the frac-
tal components of an ocean variable (just for the surface
layer) was not done untilTuriel et al.(2005). With the ex-
plicit calculation of the singularity exponents of an ocean
scalar MMF can be applied to provide a dynamic interpre-
tation of the resulting singular fronts. For a comprehensive
presentation of MMF the reader is referred toTuriel et al.
(2008b).

Obtaining the singularity exponents associated with a
given pointx of a scalar maps should be easy by just study-
ing the neighbourhood of the point, as for simple scalars:

|s (x + r) − s (x)| = αs(x) rd+h(x)
+ o

(
rd+h(x)

)
(2)

whered is the dimension of the domain ofs (d = 2 in our
case) andr is any displacement vector, withr denoting its
modulus. In practical terms, real signalss are affected by
many artifacts, as noise, discretization errors and spurious
long-range correlations. Hence, the calculation of singularity
exponents requires the use of an appropriate interpolation
scheme, the most usual one being wavelet projections. Let
s be an arbitrary 2-D scalar signal. It will be said thats has
a singularity exponenth(x) at the pointx if, for any wavelet
function9 (Mallat, 1999), the following relation holds:

T9 |∇s|(x, r) ≡

∫
dx

′

|∇s|
(
x

′
) 1

r2
9

(
x − x

′

r

)
= α(x) rh(x)

+ o
(
rh(x)

)
(3)

wherer stands for an arbitrary scale parameter (normalized
by the integral scale so it is dimensionless and smaller than
1) ando

(
rh(x)

)
is a term that becomes negligible compared

to rh(x) whenr goes to zero. The amplitude functionα(x)

does not depend on the particular scale at which the wavelet
projection is calculated and has the same units as the gradient
of the scalar.

The left-hand side, i.e.T9 |∇s|(x, r), is called the wavelet
projection of the gradient modulus ofs over the wavelet9,
and represents a local zoom of variable size around the point
x. What is important in Eq. (3) is the functionh(x), which is
called the singularity exponent of the functions at the point
x. The singularity exponent is, by construction, a dimension-
less measure of the regularity or irregularity of the function
s around the pointx, extending the usual concepts of dif-
ferentiability (integer values ofh(x) have the regular mean-
ing of the amount of continuous derivatives accepted by the
function) and of Hölder exponents (Rudin, 1987; Mallat and
Huang, 1992).

If a singularity exponent can be assigned at each point of
a signals, the signal is said to be multifractal in the mi-

crocanonical sense (although strictly speaking some addi-
tional conditions should hold, seeTuriel et al., 2008b). All
the scalar variables studied in this paper are multifractal in
the microcanonical sense, which can be verified in a standard
way (Turiel et al., 2006).

Singularity exponents are related to ocean circulation and
thus they are not specific to any particular scalar under study
(as has been shown in the case of remote sensed chlorophyll
concentration and SST inNieves et al., 2007). In fact, it has
been verified that to a good approximation singularity lines
coincide with the streamlines of the flow (Turiel et al., 2009),
confirming that singularity exponents are characterized by
the flow and are not scalar-specific, as shown in Figs.2 and3.
Singularity analysis is useful to track fronts or streamlines
similarly to the methods described inCayula and Cornillon
(1995); Ullman and Cornillon(2000).

However, the coincidence of the isolines of singularity ex-
ponents associated with two different scalars does not imply
that the values of singularity exponents of those two scalars
coincide. It turns out that, at least with our output of OFES,
the singularities from SST and from SSS coincide within
the numerical accuracy of the singularity analysis methods
and the uncertainties associated with the model dynamics. In
Fig. 4 we show the conditioned histogram of the singularity
exponents of SSS conditioned by the value of the singularity
exponents of SST. The maximum probability line is given by
hSSS= hSST− 0.08, while more than 95 % of the probabi-
lity is concentrated within±0.15 of this line, so empirically
hSSS= hSST− 0.08± 0.15 with a good approximation.

3.2 Fusion method

The complete theoretical discussion of the fusion method can
be found inUmbert et al.(2014); we summarize the main
results here.

Let us suppose that we have two scalar variables,s andθ ,
that are multifractal according to MMF. It is additionally as-
sumed that both scalars have the same singularity exponents
at all points. We have hence:

T9 |∇s|(x, r) = αs (x)rh(x)
+ o

(
rh(x)

)
T9 |∇θ |(x, r) = αθ (x)rh(x)

+ o
(
rh(x)

)
(4)

By using some theorems from functional analysis (exten-
sions of Riesz’s representation theorem) we conclude from
Eq. (4) that the gradients ofθ and s must be related by a
2× 2 smooth matrixρ, namely:

∇s (x) = ρ (x)∇θ (x) . (5)

The matrixρ (x) must be slowly varying, meaning that it
has a small gradient; otherwise it will introduce new singu-
larity exponents ins not present inθ , which contradicts our
first hypothesis, Eq. (4).

Equation (5), although appealing, does not provide a con-
structive rule for calculating the matrixρ from the data. In
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and Frisch, 1985), although the explicit extraction of the frac-
tal components of an ocean variable (just for the surface
layer) was not done until Turiel et al. (2005). With the ex-
plicit calculation of the singularity exponents of an ocean
scalar MMF can be applied to provide a dynamic interpre-
tation of the resulting singular fronts. For a comprehensive
presentation of MMF the reader is referred to Turiel et al.
(2008b).

Obtaining the singularity exponents associated to a given
point x of a scalar map s should be easy by just studying the
neigbourhood of the point, as for simple scalars:

|s(x + r) − s(x)| = αs(x) rd+h(x) + o
(
rd+h(x)

)
(2)

where d is the dimension of the domain of s (d= 2 in our
case) and r is any displacement vector, with r denoting its
modulus. In practical terms, real signals s are affected by
many artifacts, as noise, discretization errors and spurious
long-range correlations. Hence, the calculation of singular-
ity exponents requires the use of an appropriate interpolation
scheme, the most usual one being wavelet projections. Let s
be an arbitrary 2D scalar signal. It will be said that s has a
singularity exponent h(x) at the point x if, for any wavelet
function Ψ (Mallat, 1999) the following relation holds:

TΨ|∇s|(x, r) ≡
∫
dx′ |∇s|(x′) 1

r2
Ψ

(
x−x′

r

)
= α(x) rh(x) + o

(
rh(x)

)
(3)

where r stands for an arbitrary scale parameter (normalized
by the integral scale so it is dimensionless and smaller than
1) and o

(
rh(x)

)
is a term that becomes negligible compared

to rh(x) when r goes to zero. The amplitude function α(x)
does not depend on the particular scale at which the wavelet
projection is calculated and has the same units as the gradient
of the scalar.

The left hand side, i.e. TΨ|∇s|(x, r), is called the wavelet
projection of the gradient modulus of s over the wavelet Ψ,
and represents a local zoom of variable size around the point
x. What is important in eq. (3) is the function h(x), which is
called the singularity exponent of the function s at the point
x. The singularity exponent is, by construction, a dimension-
less measure of the regularity or irregularity of the function
s around the point x, extending the usual concepts of dif-
ferentiability (integer values of h(x) have the regular mean-
ing of the amount of continuous derivatives accepted by the
function) and of Hölder exponent (Rudin, 1987; Mallat and
Huang, 1992).

If a singularity exponent can be assigned at each point of
a signal s, the signal is said to be multifractal in the micro-
canonical sense (although strictly speaking some additional
conditions should hold, see Turiel et al. (2008b)). All the
scalar variables studied in this paper are multifractal in the

microcanonical sense, which can be verified in a standard
way (Turiel et al., 2006).

Singularity exponents are related to ocean circulation and
thus they are not specific to any particular scalar under study
(as has been shown in the case of remote sensed chlorophyll
concentration and SST in Nieves et al. (2007)). In fact, it has
been verified that to a good approximation singularity lines
coincide with the streamlines of the flow (Turiel et al., 2009),
confirming that singularity exponents are characterized by
the flow and not scalar-specific, as shown in Figures 2 and
3. Singularity analysis is useful to track fronts or streamlines
similarly to the methods described in Cayula and Cornillon
(1995); Ullman and Cornillon (2000).

Co

Fig. 2. OFES outputs for January 1st, 1990 in the Gulf Stream area.
Top: SST Bottom: SSS.

However, the coincidence of the isolines of singularity ex-
ponents associated with two different scalars does not imply
that the values of singularity exponents of those two scalars
coincide. It turns out that, at least with our output of OFES,
the singularities from SST and from SSS coincide within the
numerical accuracy of the singularity analysis methods and
the uncertainties associated with the model dynamics. In Fig-
ure 4 we show the conditioned histogram of the singularity

Fig. 2. OFES outputs for 1 January 1990 in the Gulf Stream area.
Top: SST, bottom: SSS.

Umbert et al.(2014) a simplifying hypothesis is discussed: if
this matrix is almost everywhere proportional to the identity
matrix we can conclude that:

s (x) ≈ a (x) θ (x) + b (x) , (6)

where, as forρ, the functionsa andb must have small gradi-
ents.

Let us now suppose that the functions is contaminated by
some source of noisen, so in fact our data areθ(x) (assumed
to be noiseless) ands

′

(x) = s (x)+n(x). We can construct a
filtered version ofs, denoted bysf , by applying the following
relation:

sf (x) = â (x)θ (x) + b̂ (x) , (7)

whereâ(x) and b̂(x) are estimates of the actual parameters
a(x) andb(x) in Eq. (6). These estimates must be obtained
from the values ofs

′

andθ by an appropriate method which

Fig. 3. Singularity exponents associated with the maps shown in
Fig. 2. Top: SST, bottom: SSS.

takes into account the value of both variables and which en-
forces that botĥa and b̂ must have small gradients almost
everywhere. InUmbert et al.(2014) one such method was
proposed, in whicĥa and b̂ are calculated by linear regres-
sions weighted around each point (Nieves et al., 2007).

The total weight of a pointx, N(x), is defined as follows:

N(x) ≡

∑
x 6=x

′
∈ sea

1∣∣x ′
− x

∣∣2 . (8)

For any functionf we define its local average around the
pointx, 〈f 〉x , as:

〈f 〉x ≡
1

N(x)

∑
x 6=x

′
∈ sea

f
(
x

′
)

∣∣x ′
− x

∣∣2 . (9)
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Fig. 4. Histograms ofhSSSconditioned byhSST as derived from
OFES simulation for the whole globe on 1 January 1990. For each
column of the histogram the value of the SST-related variable is
fixed, so the values in that column represent the distribution of pro-
bability of values of the SSS-related variable for that fixed value of
the SST-related variable. To enhance visualization, in this figure the
histogram is normalized by its maximum probability in each row (so
the brightest colour in each row represents the mode or maximum
of probability along that row).

We have thus:

σ
′2
s (x) = 〈s

′2
〉x − 〈s

′

〉
2
x , (10)

σ 2
θ (x) = 〈θ2

〉x − 〈θ〉
2
x , (11)

σ
s
′
θ
(x) = 〈s

′

θ〉x − 〈s
′

〉x〈θ〉x , (12)

and

â(x) ≡
σ

s
′
θ(x)

σ
′2
s (x)

, (13)

b̂(x) ≡ 〈s
′

〉x − â(x)〈θ〉x , (14)

then Eq. (7) is applied to obtain the filtered signalsf . This al-
gorithm was shown inUmbert et al.(2014) to lead to a large
increase in the quality of SMOS SSS maps using OSTIA SST
maps as templates, and a partial restoration of the structure
of singularity exponents. The method, however, is far from
perfect (the singularity exponents of the filtered signalsf and
those of the templateθ differ significantly), so further re-
search must be conducted to improve the method.

The method was introduced directly to process remote
sensing data, without any prior study on its sensitivity to
noise and on the expected quality of the results. This paper
intends to fill this gap by analysing in detail the performance
of the method in front of several sources of noise of con-
trolled spatial correlation and amplitude.

Fig. 5.Top: Original SSS. Middle: SSS map after filtering using the
SST map as a template. Bottom: Map of differences.

4 Sensibility of the fusion algorithm to different types
of noise

4.1 No noise

In the absence of noise, the fusion algorithm creates a map
which slightly deviates from the original, as can be observed
in Fig. 5.

The map of singularity exponents, Fig.6 shows that some
structures have become a bit blurred. This is probably a con-
sequence of the approximation implied by Eq. (7). The error
map at the bottom of Fig.5 has a standard deviation of 0.3.
This is an indication that the error correction by our multi-
fractal fused method cannot go below this threshold within
the present formulation.
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Fig. 6. Top: Singularity exponents associated with SSS. Bottom:
Singularity exponents derived from the fused SSS map.

4.2 Decorrelated noise (β = 0)

Decorrelated noise is the easiest to filter away by our fusion
algorithm. In Fig.7 we show an example of white noise
added to the original SSS map and of the result of applying
the fusion algorithm to it, as well as the difference map.

Significantly, the average error is negligible (0.02) and the
standard deviation of the error map (obtained by averaging
over all spatial locations) is 0.33 for input noise of unity stan-
dard deviation, a considerable reduction in the error, to very
nearly the same level occurring when no noise is introduced.
Nevertheless, the restoration of singularity exponents, Fig.8,
is very incomplete: just the singularity exponents associated
with the main currents can be recognised. Notice however
that the level of input noise is rather high.

4.3 Correlated noise (β = 1)

Correlated noise is still very well filtered away by our fusion
algorithm. In Fig.9 we show an example of noise added to
the original SSS map with the spatial correlation of the noise
proportional tok−1 and of the result of applying the fusion
algorithm to it, as well as the difference map.

The error map has a spatial average of 0.02 and a standard
deviation of 0.36 for input noise of unity standard deviation,
a considerable error reduction slightly worse than in the pre-
vious case. The error map is still associated with significant
geophysical structures. The restoration of singularity expo-
nents, Fig.10, is worse than in the previous case and centered
on the main currents.

Fig. 7. Top: SSS after the introduction of decorrelated noise with
input noise of standard deviationσi = 1 psu. Middle: SSS map af-
ter filtering the map on top using the SST map as a template. Bot-
tom: Differences between the original (no noise) SSS map and the
fused SSS map.

4.4 Strongly correlated noise (β = 2)

The correction on strongly correlated noise is very challeng-
ing for our fusion algorithm, with an important deformation
of large-scale oceanic features. In Fig.11we show an exam-
ple of noise added to the original SSS map with the spatial
correlation of the noise proportional tok−2 and of the result
of applying the fusion algorithm to it, as well as the differ-
ence map.

Strongly correlated noise introduces large-scale structures,
which are not of geophysical origin, but even so the error
map has a negligible spatial average of 0.014. Submitted to
such a strong perturbation, the standard deviation of the er-
ror is larger in this case, arriving at a value 0.66 for input
noise of unity standard deviation; significant but not quite
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Fig. 8. Top: Singularity exponents associated with SSS after noise
of unity amplitude andβ = 0. Bottom: Singularity exponents de-
rived from the fused SSS map.

satisfactory. The error map has a fuzzy structure, and the
main resulting structures are void of geophysical meaning.
The restoration of singularity exponents, Fig.10, is even
worse than in the previous case and even the main currents
are hard to recognise.

4.5 Dependence of the reconstruction quality on noise
intensity

To quantify the quality of our fusion algorithm, we define the
output noise level,σo, as the standard deviation of the error
image, calculated over the whole image (in fact the average
error is always lower than 0.02 and negligible by compari-
son, so the standard deviation and the root squared error are
almost identical). We define the input noise,σi , as the stan-
dard deviation of the injected noise.

In Fig. 13 we show the evolution of the ratios of output
noise to input noise as the size of input noise increases for
the three types of noise studied. We observe that there is
a crossover valueσc below which fusion is not useful: for
any input noiseσi < σc the output noiseσo is equal toσc
(and then the ratioσo/σi diverges). On the other hand, when
the level of input noise is large enough the capability of our
fusion algorithm to remove noise stagnates at a fixed per-
centage of input noise (the asymptotic maximum percent-
ages of noise removal are 91 % (β = 0), 83 % (β = 1), and
43 % (β = 2). Those ratios are really very good, implying
that fusion is always a good strategy even for very noisy im-
ages.

Fig. 9.Top: SSS after the introduction of correlated noise with input
noise of standard deviationσi = 1 psu. Middle: SSS map after filter-
ing the map on top using the SST map as a template. Bottom: Dif-
ferences between the original (no noise) SSS map and the fused SSS
map.

5 Comparison with median filters

Fusion methodologies have the appeal of invoking the use of
synergistic approaches to combine the information coming
from different variables; however, it is a relatively sophisti-
cated methodology to filter noise which does not depend on
signal amplitude, as the one used in this paper. Many conven-
tional filters, as for instance median filters or average filters,
could lead to better or comparable results and are easier to
implement. We have thus compared the results of fusion fil-
ters with median filters (average filters always have worse
performance than median filters).

To define our median filters, we will consider square
neighbourhoods of(2N + 1)× (2N + 1) points (at the given
resolution) centered at each point of the map. For each square
neighbourhood we compute the median of the points in the

www.nonlin-processes-geophys.net/21/291/2014/ Nonlin. Processes Geophys., 21, 291–301, 2014
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Fig. 10.Top: Singularity exponents associated with SSS after noise
of unity amplitude andβ = 1. Bottom: Singularity exponents de-
rived from the fused SSS map.

neighbourhood (the value of the signal which has exactly
50 % probability of occurrence, that is, the one exactly in the
middle position if the list of(2N +1)×(2N +1) values were
ordered), and we assign this local median value to that point
to obtain the median filtered map. Obviously the quality of
this map depends on the size of the neighbourhood, which is
parametrized byN . LargerNs tend to reduce the impact of
the overimposed Gaussian noise, but at the cost of increasing
the error associated with smoothening of the original signal.
In Fig. 14 we show an example of the application of median
filters of different sizes to a map of SSS corrupted with spa-
tially decorrelated Gaussian noise.

As in Sect.4.5we have calculated the evolution of the ra-
tio of output to input noise as the amplitude of input noise
increases for median filters of different sizes, compared to
the performance of fusion. As shown in Figs.15, 16, and
17, median filters achieve good reconstruction only when the
amplitude of noise is small enough. In general, median fil-
ters have better performance when noise is less correlated
and when the filter size increases, at the cost of sacrificing
resolution. At large sizes (5× 5 or greater) median and aver-
age filters become very similar for input noises greater than
0.5 (figures not shown) because the median and the average
of the Gaussian noise coincide. Taking this into account we
can predict that the output noise for a median filter applied to
a map contaminated with decorrelated noise withN ≥ 2 and
σi > 0.5 behaves as:

σmedian
o = σg(N) + σi/(2N + 1) , (15)

Fig. 11.Top: SSS after the introduction of strongly correlated noise
with input noise of standard deviationσi = 1 psu. Middle: SSS map
after filtering the map on top using the SST map as a template. Bot-
tom: Differences between the original (no noise) SSS map and the
fused SSS map.

whereσg(N) is the inner geophysical variability of SSS in
the (2N + 1) × (2N + 1) neighbourhoods. SSS is a variable
with relatively low variability to scales of less than 1 degree
(Jorda et al., 2011), so up toN = 5 the first term in Eq. (15)
can be neglected as compared toσi for σi > 0.5. We obtain
thus

σmedian
o

σi

≈
1

2N + 1
. (16)

This explains why the curves in Fig.15 asymptotically
tend to straight lines, and why the asymptotical value is pro-
portional to 1

2N+1. When noise is correlated, it is possible to
infer that the formula above can be generalized to:

σmedian
o

σi

≈
1

(2N + 1)γ
, (17)
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Fig. 12.Top: Singularity exponents associated with SSS after noise
of unity amplitude andβ = 2. Bottom: Singularity exponents de-
rived from the fused SSS map.

whereγ → 0 asβ → ∞. This explains why median filters
have lower performance with correlated noise. In contrast,
fusion offers a much greater reduction of noise, probably be-
cause it is a non-linear method.

6 Summary and future work

In this paper we have shown that ocean scalars of different
types possess a common multifractal structure. This corre-
spondence has been highlighted in previous works (Nieves
et al., 2007; Isern-Fontanet et al., 2007), but it has only been
used recently (Umbert et al., 2014) to derive a new algorithm
for data fusion.

Our multifractal fusion method can be used to enhance the
signal quality of a variable contaminated with noise by using
another variable as a template. The method is constructed to
reintroduce the multifractal structure of the noised variable
based on that of the template. This guarantees the reestab-
lishment of the structure of short-range spatial correlations
in the signal, but it seems to impact also long-range correla-
tions.

We have shown the effect of the fusion algorithm when
a source of uncorrelated noise of given amplitude is added.
Our results indicate that until a threshold in noise amplitude
of about 0.3 is reached the application of our denoising algo-
rithm does not improve the quality of the signal; even a noise-
less image degrades in quality to 0.3 after the application
of the fusion algorithm. The results of the application of
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Fig. 13.Evolution of the ratio output noise/input noise depending on
the value of input noise. Red curve: decorrelated noise (β = 0); green
curve: correlated noise (β = 1); blue curve: strongly correlated noise
(β = 2); a constant level of 1 is also drawn (in black) for reference.
The estimated asymptotic values for the input/output ratios are 0.09,
0.17, and 0.57, respectively. The crossovers (passings by 1) occur
for input noise levels of 0.33, 0.33, and 0.40, respectively.

Fig. 14. Results of applying median filters to a noisy salinity with
no spatial correlation and amplitude 1 (same as in Fig.7, top). The
filters are calculated over boxes of variable sizes centered around
each point. Results are for 3× 3 boxes (top), 5× 5 boxes (middle),
and 11× 11 (bottom).
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Fig. 15. Evolution of the ratio output noise/input noise depend-
ing on the value of input noise for decorrelated noise (β = 0). Red
curve: fusion; green curve: median filter with 3×3 neighbourhoods;
blue curve: median filter with 5× 5 neighbourhoods; purple curve:
median filter with 11× 11 neighbourhoods. For large input noises
fusion performs better than the others; the crossover points occur
for input noise levels of about 0.75, 1.25, and 3.25, respectively.
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Fig. 16. Evolution of the ratio output noise/input noise depending
on the value of input noise for slightly correlated noise (β = 1). Red
curve: fusion; green curve: median filter with 3×3 neighbourhoods;
blue curve: median filter with 5× 5 neighbourhoods; purple curve:
median filter with 11× 11 neighbourhoods. For large input noises
fusion performs better than the others; the crossover points occur
for input noise levels of about 0.6, 0.8, and 1.3, respectively.

the fusion algorithm to remote sensing data (SMOS SSS
maps using OSTIA SST templates) discussed inUmbert et al.
(2014) show that in fact the quality could be even better, with
post-fusion errors of around 0.20 and even smaller. This dif-
ference may indicate that the correspondence in the multi-
fractal structure of the maps of SSS and SST resulting from
OFES is not as good as in real data from the oceans. The
result indicates that reinforcing the correspondence between
ocean scalars in numerical models of the ocean could po-
tentially improve their assessment quality about the actual
ocean state, which is important both for operational appli-
cations and for the study of ocean processes. The introduc-
tion of an assimilation scheme accounting for the singularity
structure of the scalars should be studied.

 1

 10

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

Fig. 17.Evolution of the ratio output noise/input noise depending on
the value of input noise for strongly correlated noise (β = 2). Red
curve: fusion; green curve: median filter with 3×3 neighbourhoods;
blue curve: median filter with 5× 5 neighbourhoods; purple curve:
median filter with 11× 11 neighbourhoods. For large input noises
fusion performs better than the others; the crossover points occur
for input noise levels of about 0.5, 0.55, and 0.65, respectively.

The existence of a common singularity structure is a cen-
tral hypothesis of our algorithm, which seems to be con-
firmed for more and more examples from remote sensing and
from numerical models. The development of an appropriate
theoretical framework to explain the creation of singulari-
ties is one of the major challenges in this field of research,
but will help to unify the evolution equations for different
scalars and most probably control their numerical behaviour
and improve their quality.

The method presented inUmbert et al.(2014) and anal-
ysed here is just a first step in the theory of multifractal meth-
ods for data fusion. From the experiences shown in this paper
it is clear that the method is not fully able to restore the mul-
tifractal structure using that of the template. Most likely this
limitation comes from the approximation used (the matrix
issued from Riesz’s representation theorem considered to be
proportional to the identity matrix). The extension for a rep-
resentation with a non-trivial matrix and a better inference
strategy for the smooth matrix elements should be actively
sought. This matrix will not only serve to improve the qua-
lity of existing remote sensing maps, but also will serve to
extrapolate maps in missing areas and will provide geophys-
ical insight into the dynamic relations governing the relation
between the different variables (in particular, providing cano-
nical classification of regions according to the physical and
chemical properties of their water masses – mostly reminis-
cent of the biogeochemical provinces).
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