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Abstract. In this paper we consider fluid transport in two- 1 Introduction

dimensional flows from the dynamical systems point of view,

with the focus on elliptic behaviour and aperiodic and finite This paper is concerned with “Kolmogorov, Arnold, Moser
time dependence. We give an overview of previous work on(KAM) like behavior” in two-dimensional, incompressible,
general nonautonomous and finite time vector fields with theaperiodically time-dependent velocity fields over a finite time
purpose of bringing to the attention of those working on fluid interval. We will explain what we mean by this phrase in
transport from the dynamical systems point of view a body ofthe course of the introduction, and we will begin by noting
work that is extremely relevant, but appears not to be so welthat the motivation for this study comes from the dynamical
known. We then focus on the Kolmogorov—Arnold—Moser systems approach to Lagrangian transport in fluid flows.
(KAM) theorem and the Nekhoroshev theorem. While there Let r =(x,y) denote coordinates describing a two-
is no finite time or aperiodically time-dependent version of dimensional region. A fluid flow in this region is described
the KAM theorem, the Nekhoroshev theorem, by its very na-by a velocity fieldyv(r, ) = (v (x, y,1), vy (x, y,1)). The ve-
ture, is a finite time result, but for a “very long” (i.e. exponen- locity field can bekinematically definedi.e. constructed to
tially long with respect to the size of the perturbation) time describe certain observed features of the flow), dynamically
interval and provides a rigorous quantification of “nearly in- defined (i.e. it is obtained as the solution of a set of partial
variant tori” over this very long timescale. We discuss an ape-differential equations that describe the dynamical evolution
riodically time-dependent version of the Nekhoroshev theo-of the velocity field), or it could be obtained by observation
rem due taGiorgilli and ZehndeX1992 (recently refined by  (i.e. through remote sensing of some region of the ocean). In
Bounemoura2013andFortunati and Wiggins2013 which any case, at this point of the discussion, it is not important
is directly relevant to fluid transport problems. We give a de-how one obtains the velocity field, but we assume that by
tailed discussion of issues associated with the applicabilitysome means we have obtained a velocity field. The equations
of the KAM and Nekhoroshev theorems in specific flows. describing the motion of fluid particles in the velocity field
Finally, we consider a specific example of an aperiodicallyare given by:

time-dependent flow where we show that the results of the

Nekhoroshev theorem hold. r=v(r,t) 1)

(neglecting molecular diffusion, or possibly the effect of ne-
glected scales of motion, which would be the case if one were
considering velocity fields obtained from partial differential
equations that describe only certain length and time scales
in the ocean). If the flow is incompressible the velocity field
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can be obtained from the derivatives of a scalar valued functhe proper mathematical framework, i.e. dynamical systems
tion ¥ (x, y, 1), the stream function, as (see, eBatchelor  theory, before it could be analysed and exploited. Reviews of

(1967): the dynamical systems approach to Lagrangian transport and
9 mixing, mostly for two-dimensional, time-periodic incom-
X = B_(x’ v, 1), pressible flows, can be found Aref and El Naschi€1994,
Y Aref (2002, Acrivos et al.(1991), Babiano et al(1994, Ot-
y = _‘r;_‘/’(L v, 1). 2) tino (1989a b), Wiggins (1992, Wiggins and Ottind2004),
X

andSturman et al(20086.

Making the connection with the mathematical framework of  The new insights into transport and mixing obtained from
dynamical systems theory, formally E@) (has the form of the dynamical systems approach for two-dimensional, in-
Hamilton’s canonical equations, wheygx, y,t) plays the  compressible, time-periodic flows motivated efforts to extend
role of the Hamiltonian function and the corresponding phasehis approach to more complex flow situations. Two possible
space coordinatesy, y), are actually the physical space co- extensions would be from two to three space dimensions and
ordinates in which the fluid flow takes placeyf(x, y,t) is from periodic time dependence to a more general time de-
periodic in the timey¢, then it is standard in dynamical sys- pendence. Some motivation for these extensions came from
tems theory to study the structure of the trajectories of Bq. ( the desire to use the dynamical systems approach to study
by considering the (discrete) orbits of the associated Poincaréagrangian transport in the ocean and atmosphere, starting
map, i.e. to view the continuous time trajectories of E). ( in the early 1990s. Such flows will generally not vary peri-
at a sequence of discrete times, where the sequence of timeslically in time. However, the two dimensional approxima-
is integer multiples of the (temporal) period of the streamtion does have validity under certain circumstances. More-
function. over, ‘“realistic” flows are obtained from the solution of a

This “Hamiltonian dynamical systems” point of view gen- set of partial differential equations derived from the physi-
erated a great deal of interest and further research startal situation under consideration. Typically, these partial dif-
ing in the early 1980s with the publication 8fef (1984). ferential equations are strongly nonlinear and can only be
This occurred at the same time that “applied dynamical“solved” with a computer. This gives rise to a velocity field
systems theory” was flowering as a topic of study acrossdefined as a data set over a finite time interval, fimige time
many disciplines in science and engineering. The growingdynamical systemEarly work on transport in geophysical
availability of computational resources was giving rise to aflows from the point of dynamical systems having aperiodic
large amount of “computational phenomenology” for two- time dependence and/or defined as a finite time data set can
dimensional, area preserving maps (such as the standafte found inDuan and Wigging1996, Miller et al. (1997,
map; see e.gMeiss 2008. Thus, armed with the point of Duan and Wigging1997, Malhotra and Wigging1998),
view described iMAref (1984, one could “see” that phase Haller and Pojg1998, Rogerson et al(1999, and Coul-
space structures such as elliptic periodic orbits, hyperbolidiette and Wigging2001). Reviews that describe how these
periodic orbits and their stable and unstable manifolds, andssues in dynamical systems theory arise from the point of
KAM tori had an immediate interpretation in terms of “struc- view of transport in geophysical flows atenes and Winkler
tures” in the flow influencing transport and mixing. In this (2002, Wiggins (2005, Mancho et al(2006, andSamelson
way dynamical systems theory provided an analytical andand Wiggins(2006.
computational meaning for the notion of “coherent struc- This paper is concerned with the extension of the dynam-
tures” in fluid flows that was becoming a frequent obser-ical systems approach to transport in two-dimensional, in-
vation in experiments due to advances in flow visualizationcompressible flows having more general time dependence
capabilities (see e.@drown and Roshko1974. For exam-  than periodic, and their dynamics over a finite time interval.
ple, transversely intersecting stable and unstable manifold®©ur focus is on “elliptic behaviour” and invariant tori. How-
of hyperbolic periodic orbits give rise to “chaotic fluid par- ever, first we review some of the work on finite time, ape-
ticle trajectories” through the construction on Smale horse-riodically time-dependent dynamical systems. Some of the
shoes, KAM tori trap regions of fluid (therefore preventing more recent work in this area has been motivated by the is-
them from “mixing” with surrounding fluid), KAM tori are  sues raised by some of the work related to transport in geo-
found surrounding elliptic periodic orbits (hence these are aphysical flows noted above. However, there has been a great
“signature” of regions of unmixed fluid), and the intersect- deal of work in the mathematics community and the control
ing stable and unstable manifolds give rise to “partial” bar-theory community that is relevant that has not been prop-
riers to transport and “lobe dynamics”. This mathematical erly recognized. In SecL.1we describe issues and work on
framework proved to be ideal for realizing the physical pic- nonautonomous dynamical systems and in Se@twe de-
ture of mixing put forth earlier byReynolds(1894, Eckart  scribe issues and work on finite time dynamical systems.
(1948, Danckwerts(1952, and Danckwerts(1953. Ottino
et al. (1999 has described in detail the physical picture of
mixing first described by Reynolds and how it had to await
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1.1 Nonautonomous dynamical systems Hasselblat{1995 develops the framework of dynamics gen-
erated by iteration of sequences of maps, which is a possible
As applied dynamical systems enjoyed an explosion of popframework for nonautonomous dynamidsenichel(1991)
ularity, starting from the late 1970s and continuing throughalso proves a stable and unstable manifold theorem for hy-
today, “dynamics” — the study of how the state of a systemperbolic trajectories in discrete time aperiodic systems.
evolves in time — is typically described by iteration of maps By now the framework for the geometrical analysis of
(discrete time) and flows (continuous time). Flows are thenonautonomous dynamical systems is well under develop-
group of one-parameter families of transformations of thement. Notions of attractivity, stability, and asymptotic be-
state space (where the parameter is “time”) that are obtainetiaviour have been developed Kloeden and Schmalfuss
as the solutions of autonomous differential equations (here(1997, Langa et al.(2002, Meyer and Zhand1996, and
we will simplify our discussion by assuming that the solu- Sell(1967h 1971). Shadowing lemmas have been developed
tions of differential equations exist for all positive and neg- in Chow et al.(1989 andMeyer and Zhand1996. Chaos
ative time). Maps arise naturally from time-periodic differ- is discussed and analysed lierman and SilnikoW (1992,
ential equations through the so-called “Poincaré map” conMeyer and Sel(1989, Scheurle(1986, Stoffer (1988a b),
struction. The success of the geometric approach of dynamwiggins (1999, and Lu and Wang(201Q 201J). Various
ical systems theory in applications encouraged efforts to exaspects of bifurcation theory are developed.anga et al.
tend the ideas to more complex settings, and time-dependerf2002, Poetzsch¢2011ab, 20100, andRasmusse(2006.
differential equations whose time dependence is more genA version of normal form theory is developed $iegmund
eral than periodic are a natural extension to consider. In thif2009. Recent work on general discrete nonautonomous
case the Poincaré map construction was no longer possibleystems is described iKloeden and PoetzschH2011) and
since this relied on the time periodicity of the differential Poetzsch¢20103.
equation. Moreover, the solutions of nonautonomous differ-
ential equations do not define flows in the usual sense ofl..2 Finite time dynamical systems
the definitiod. Therefore, the basic consideration that one
must begin with is “how do you describe the dynamics aris-As we mentioned earlier, efforts to use the dynamical sys-
ing from a nonautonomous differential equation™? tems point of view to analyse transport and mixing in geo-
In some sense, this problem was solved in the 1960sphysical flows have motivated the study of time-dependent
Dafermos developed the notion opeocessand generalized  velocity fields that are only defined over a finite time interval,
the LaSalle Invariance Principle to this settingafermos  or finite time dynamical systemitially, one might think
(1971). Miller (1969 and Sell (1967a b, 1971) developed that such a notion is completely at odds with the “dynamical
the notion ofskew product flowand their associated cocycle systems point of view”, since it is often stated that dynamical
property. These ideas are further described from a pedagogsystems theory is concerned with the “long time behavior” of
ical point of view in the recent review article Byalibrea  a system. Indeed, notions such as “stability” and “attraction”
et al. (2010. With descriptions of “time evolution” appro- describe aspects of the behaviour of trajectories as time ap-
priate to nonautonomous differential equations at hand, theoroaches infinity. Mathematical proofs of characteristics of
building blocks of a geometrical theory can be developed.collections of trajectories such as “invariance” and “chaos”
This was begun in the works of Dafermos, Miller, and Sell typically require an appropriate type of control over these
cited above, but there are other important results from thiscollections of trajectories as time approaches infinity. Never-
era that do not appear to be well known. Possibly one reasotheless, computer simulations of a wide variety of dynamical
for this is that the particular nature of the time dependence irsystems (necessarily for a finite simulation time) indicate that
the ordinary differential equation community was not so im- these infinite time notions provide both a language and struc-
portant for many lines of investigation. For example, in the ture to describe the results, and this provides some hope that
classic ordinary differential equation textbook @bdding-  there is a reasonable chance of success for developing analo-
ton and Levinsor§1959 it is easy to see that the proof of the gous “dynamical systems ideas” for nonautonomous dynam-
stable and unstable manifold theorem for a hyperbolic tra-ical systems that are only defined for a finite time.
jectory does not use any particular form of time dependence There has been a great deal of activity in recent years in
(only that the relevant functions are appropriately boundeddeveloping a “dynamical systems framework” for finite time
in time, and that the existence and uniqueness of solutionglynamical systems. However, it should be noted that simi-
holds). A stable and unstable manifold theorem for hyper-lar to the situation described above, the differential equations
bolic processes is proven bgwin (1973 andde Blasi and  and control theory communities addressed a number of es-
Schinag(1973, and the more recent textbook Batok and  sential issues in this area many years earlier (and it contin-
ues to be a topic of interest in control theory). A recent re-
Lspecific examples that illustrate the fact that the solutions ofView paper oDorato(2006 gives an overview of and histor-
nonautonomous equations do not form flows can be fourihii ical perspective on work on “finite time stability”. The paper
brea et al(2010. of Weiss and Infant¢1965 also provides a very insightful
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and rigorous discussion on finite time stability. More re- namical system, such as Hamiltonian structure. For example,
cently, Duc and Siegmun@2008 developed basic building theorems concerning hyperbolic trajectories and their stable
blocks (i.e. hyperbolic trajectories and their stable and unstaand unstable manifolds are generally equally valid in both
ble manifolds) for two-dimensional, time-dependent Hamil- Hamiltonian and non-Hamiltonian systems. Stability results
tonian systems defined only for a finite time interval. Furtherfor “elliptic dynamics”, on the other hand, generally rely cru-
work along these lines can be foundBerger et al(2008. cially on the special structure of the dynamical system (e.qg.
The original definition of “hyperbolicity” is intimately con- Hamiltonian, reversible) as well as the coordinates in which
nected to a type of infinite time average along trajectoriesthe Hamiltonian system is expressed (e.g. action-angle coor-
Restricting such averages to finite time can be problematicdinates), with the latter being important for specific analyt-
This topic is treated iDuc and Siegmun¢?011) andBerger  ical methods, such as Fourier analysis. One way of under-
(2011). Another approach to the notion of hyperbolicity for standing this difference is that “hyperbolic phenomena” are
finite times would be through a proper generalization of thegenerally stable under perturbation of the dynamical system,
idea of the spectrum associated with the linearization about avhile “elliptic phenomena” are not. This would seem to in-
finite time trajectory. This is discussedBerger et al(2009 dicate that the fate of “elliptic objects” under perturbation
andDoan et al(2017). requires a more careful analysis of the effect of the perturba-
With an approach for defining and computing hyperbolic tion, and this tends to be the case.
trajectories for finite dimensional vector fields in hand, itis The KAM and Nekhoroshev theorems are major results
natural to consider the computation of the stable and unin Hamiltonian dynamics that are concerned with the be-
stable manifolds of the finite time hyperbolic trajectories. haviour of “elliptic objects”, i.e. invariant tori, under per-
This issue had been consideredHialler (2000, Mancho  turbation. A standard (and the original) setting for these
et al. (2004, Mancho et al(2006, andBranicki and Wig-  theorems in (canonical) Hamiltonian systems is that of the
gins (2010. However, it is important to point out a charac- (Hamiltonian) perturbation of an integrable system expressed
teristic associated with finite time hyperbolic phenomena —in action-angle variables, i.e. the unperturbed Hamiltonian is
nonuniquenes$n general, all methods used to prove the ex- expressed entirely as a function of the action variables. This
istence of unique invariant manifolds require the use of a typds the setting relevant to us, but more general settings can be
of iterative or recursive technique with a passage to a limit,found inBroer et al(1996.
and a unique invariant manifold is obtained in this limit. Es-  The foundations of the KAM theorem were laid in the
sentially, passage to the limit means taking time to plus or1950s and 1960%Kblmogoroy, 1954 Arnold, 1963 Moser,
minus infinity (depending on whether or not one is comput-1962. Succinct overviews of the essential points of KAM
ing unstable or stable manifolds, respectively). Neverthelesstheory can be found i€hierchia and Mathg010, Pdschel
with respect to the notion of barriers to transport, this is not(2007), and Sevryuk(2003. It is probably fair to say that
an issue, since the manifolds are constructed (numericallyKAM theory became known throughout the worldwide dy-
with trajectories (and therefore uniqueness of solutions im-namics community from the late 1970s onward. However,
plies that trajectories cannot cross manifolds constructed inhe Nekhoroshev theorem came much latdekhoroshev
this way). The nonuniqueness effectively means that the re¢1977), despite the fact that the phenomenon of “stability
gion where the one-dimensional manifolds (in two space di-over exponentially long time scales” was considered ear-
mensions) are numerically constructed has a certain thicklier than the KAM theorem irLittlewood (1959h a) and
ness (see estimate ktaller, 2000 which would go to zero if ~ Moser (1955. The Nekoroshev theorem was promoted in
it were possible to allow time to approach infinity. the west by the Italian schools associated with Benettin,
There is an important point to be made here which Gallavotti and Giorgilli. A very accessible proof of the the-
will serve to introduce that aspect of aperiodically time- orem was given irBenettin and Gallavott{1986, and the
dependent dynamics over finite time intervals that we will website of Prof. Antonio Giorgilli ifttp://www.mat.unimi.it/
be considering in this paper. We emphasize again that weisers/antoniyhas a wealth of information on both the KAM
will be considering two-dimensional, time-dependent Hamil- and Nekhoroshev theorems, as well as a collection of in-
tonian systems, i.e. incompressible, two-dimensional velocstructive pedagogical articles and applications to fundamen-
ity fields. Broadly speaking, the stability properties of tra- tal problems in physics.
jectories and invariant manifolds of Hamiltonian systems are We now describe the aspects of the KAM and Nekhoro-
either hyperbolic or elliptic in natureVery generally, hy-  shev theorems that set the context for the purposes of this
perbolic properties of trajectories, or invariant manifolds, arepaper. For more general settings and conditions of applica-
somewhat independent of any “special structure” of the dy-bility, we refer to the references given above.

20f course, this is a bit too simplistic, but it is accurate for our
needs. The “boundary” between hyperbolic and elliptic is where
bifurcation occurs and requires careful consideration, and “partial
hyperbolicity” is also of much current interefdsin 2004).
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2 The Kolmogorov—Arnold—Moser (KAM) theorem 1978. The full Hamiltonian, i.e. the unperturbed part and
and Nekhoroshev’s theorem the perturbed part, is then expressed in terms of the action-
angle variables of the unperturbed, integrable Hamiltonian
We begin by considering the more familiar autonomouscf. Eq.3). This is important because a number of the analyti-
cases for the KAM and Nekhoroshev theorems. The nonaucal methods used in the proofs of the KAM and Nekhoroshev
tonomous cases, relevant to our work, are discussed itheorems use characteristics of the action-angle variables.
Sects2.4and3. Dealing with ResonancesThe KAM theorem is con-
We consider a Hamiltonian of the following form: cerned with the preservation under perturbation of certain
nonresonant tori on the unperturbed systést (Ip) is the
H(1,0) = Ho(I) +€H1(1,0),  (1.0) € BxT", () vector of frequencies associated with mmrﬁﬁ = Ip. The
where B C R” is the ball of radiusk in R”, Ho(I) is re- standard nonresonant condition for the tofus I that the

ferred to as the unperturbed part of the Hamiltonian andT€dueéncies must satisfy is:

Hi(1,0) is referred to as the perturbation. The Hamiltonian oH,
- - : , k- 21 k" 0 —1 forall

function needs to be “sufficiently differentiable” on a “well- K- == Uo)l >y [ k% v > 0,7 >n

controlled domain”, and we will address this issue more pre- nonzero integer vectorsk = (k1. ..., k,) € Z" — {0}, (6)

cisely when we consider aperiodic time-dependent Hamilto- .

nians in Sect3. The coordinates/, ) € B x T" play avery ~ Where| k |=3_i_; |ki|. It is a standard result that “almost

important role. These are the so-calladtion-angle vari-  all” (in the sense of Lebesgue meaSL_Jre) f_requenC|es satisfy

ablesthat arise from the structure of the unperturbed, inte-such a conditionBroer et al, 1996 Chierchia and Mather

grable systemArnold, 1978, and we will have more to say 2010.

about their role shortly. NondegeneracyNonresonance is a condition on the first
The unperturbed Hamiltonian vector field is given by: derivative of the unperturbed Hamiltonian. Nondegeneracy
SH, is a condition on the second derivative. A standard nonde-
I = _8_90(1) —=0. generacy condition is the following:
0=—U 4 29
57 0h) (4) det( T (10)> #0. (7)

and the trajectories of this vector field are given by: If the Hamiltonian depends explicitly on time, a different

I(t) = Ip = constant nondegeneracy condition is used, the so-caegnergetic
9 Hp nondegeneneracy conditiomhis is the standard nondegen-
0(t) = —+= o)t +bo. (5)  eracy condition, but restricted to a level set of the Hamilto-
: . . : . nian. For details seBroer et al.(1996 and Chierchia and
Clearly, then-dimensional action variablé = Iy is con- Mather(2010.

stant in time, and the-dimensional angle variables increase
linearly in time at a rate defined by the frequency vectors o The Nekhoroshev theorem and sufficient

%1 (o). In this way! = Io defines am-dimensional invari- conditions for its application
ant torus and the trajectories on the torus are quasiperiodic,
havingn frequencies. Now we turn our attention to Nekhoroshev's theorem

o N _ (Nekhoroshey1977). First we state the theorem in the form
2.1 The.KA_I\/I theorem and sufficient conditions for its of a “model statement’Liochak 1993, describe what this
application means, and then give some background and history. Our
statement applies to the Hamiltonian EB). (and the Hamil-
tonian must be analytic on an appropriate domain; we will
comment more on this later).
For an initial condition (0) = Ip € B we have:

The KAM theorem is concerned with the preservation of in-
variantzn tori upon perturbation by the terf, (1, ). First,
we consider the preservation of a given toius: Iy. This
torus will “persist” for the perturbed system withe same
frequenciesaa#(lo) provided the unperturbed Hamiltonian || 7 ;) — 1y ||< c16? for |¢] < exp(ca/e”) (8)
satisfies a nondegeneracy condition, the vectar foéquen-
cies is “strongly nonresonant” and the perturbation is suf-for ¢ < gg. Heree is a parameter that is estimated in the proof
ficiently small. We discuss the sufficient conditions for its of Nekhoroshev's theorem in terms of the defining param-
application below. eters of the Hamiltonian (to be discussed later @p)is a
Action-Angle variablesWe assume that the unperturbed “threshold” value for. The parameters, c¢1, andcp are also
system is integrable in a way that action-angle variables exestimated in terms of the defining parameters of the Hamil-
ist, i.e. there are integrals that are independent and in in- tonian, and the “stability exponents’andb are estimated as
volution (these terms and conditions are definediinold, functions ofn.
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Just as we did for the KAM theorem above, we summa-tion expansion. These details are at the heart of the Nekhoro-
rize the sufficient conditions for the applicability of Nekhoro- shev theorem. Rather, we show how an exponentially small
shev’s theorem below. remainder of a perturbation series can be obtaihedper-

Action-Angle variablesAs for the KAM theorem, we as- turbation series of a particular type is, somehow, obtained.
sume that the unperturbed system is integrable in a way thaiVe discuss the autonomous case since the argument is sim-
action-angle variables exist, exactly as we described for theler, and it suffices to convey the main ideas behind exponen-
KAM theorem. tially small stability estimates. Our discussion follows from

Dealing with Resonance$he Nekhoroshev theorem does Giorgilli (1995.
not focus on specific values dfcorresponding to nonreso-  We consider the following “near integrable” autonomous
nant tori. Rather, it provides an estimate of evolution in time Hamiltonian:
of anyinitial action variable over an exponentially long time. ~
The proof of the Nekhoroshev theorem is divided into two H(I,6) = Ho(I)+e¢H(1,6), [€BeR" 6eT", (10)
parts — an analytic part and a geometric part. The analytic
part derives a normal form that is valid in a particular type of where B is the open ball centered at the origin of radRis
nonresonance region. Estimates of the evolution of the actior he associated Hamiltonian vector field is given by:
variables can then be obtained for that particular region. The

geometric part is the creative element provided by Nekhoro4 = —(1,9),
shev. He developed a method that enabled him to show that
_ -2 . OH
the entire phase space could be covered by domains in suchja= _%(1, 0), (11)

way that the normal forms appropriate to these domains, and
the associated estimates of the evolution of the action varignd we are interested in the time evolution of theariables.

ables, applied to the entire phase space. This construction \We suppose that“steps” of canonical transformation the-

requires the nondegeneracy condition that we next describeyry have been performed, which transform Er)(into the
The geometric argument was improvedidsche(1993. A normal form:

pedagogical discussion of the geometric argument is given in
Giorgilli (2002. H'(I',0") = Ho(I") +eH1(I') +---

Nondegeneracylhe unperturbed Hamiltonian must sat- + & H.(IN + &R, 0. (12)
isfy a nondegeneracy condition, i.e. a condition on the sec-
ond derivative of the unperturbed Hamiltonian. However, it The nature of the domain and the properties of the canonical
is different from the nondegenderacy condition of the KAM transformations on this domain that bring E0) into the
theorem. A standard nondegeneracy condition is that the unform of Eq. (L1) are important ingredients in Nekhoroshev’s
perturbed Hamiltonian must satisfy a convexity condition of theorem. However, they are not important for the point that

the following form. In particular, we wish to discuss here. Rather, given a normal form of the
form Eq. (L2) we will describe, roughly, how one obtains an
9?Ho 9°Ho 2 exponential estimaténd, in course, what exactly this itali-
| 5 Dvl=Mlvl, [ Ov-vizm]|vl]l xP - P y .
12 ol cized phrase mearisHamilton’s equations for the Hamilto-
forallv e R", m < M. (9)  nian Eq. (12) are given by:
Similar to the KAM case, a different nondegeneracy condi-,  §H’ 9 H
K . X A I nl 0 1/ )
tion may be applied when the perturbation depends exphc-e = W( 0) = e (1) +0OC),
itly on time. In this case it is assumed that the unperturbed 9H' LR
Hamiltonian isquasiconveyi.e. it is convex on a fixed level I’ = — YL (1I',6)=—&"* w(l’ﬁ’)- (13)

set of the Hamiltonian. For details sBgoer et al.(1996.
In his original proof Nekhoroshev used a weaker nondegenWe are interested in the time evolution of the action variables,

eracy condition referred to as “steepness”; Ne&horoshev ~ which are given by:
(1977.

t

I'(t)—1'(0) = —SH'J‘/ 8—R/(I’(7:),9’(t))dr, (14)
The idea behind “exponential stability” estimates , 96

“Exppnentlal St?blhty . es.tlmates are not.obtalned from a 30f course, the real innovation of Nekhoroshev was showing
stral'ghtforV\{ard appllcatlon OT pertqrbatlon theory. Herfa how the entire action space could be covered with domains on which
we give a brief, non-rigorous, discussion of how exponential«appropriate” normal forms could be constructed (i.e. normal forms
stability estimates can be obtained from a perturbation exthat were “adapted” to possible resonances on the domains), with
pansion. “Non-rigorous” means we do not provide proper es-associated exponential estimates, and how these estimates could be
timates of domains and sizes of the remainder in the perturbaextended to the entire action space.
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and therefore

I'(t)—1'00) |< &t
10— 1'0) <6 |

: (15)

171

course, we avoided many details that must be dealt with in
the course of proving the Nekhoroshev theorem. However,
this is the essence of the idea, given a normal form of the
form of Eq. (L2). A great deal of additional work is required

where|| - || denotes an appropriate norm on functions (a dis-to then show that the entire phase space can be covered with
cussion of the particular norm is not important for the presentregions on which “appropriate normal forms” having expo-

discussion). It follows from these estimates that:
oR

a6’

| I'(t)—T'(0) |=O) if 4 =0(e), (16)

and, therefore, we will haviel’ () — I’ (0) |= O(¢) on a time
interval[0, T] where
_ O(e)

st L 17)
| 2E]

Now if |2£
turbation theory estimate aftersteps of the normalization
process, we havel’(t) — I'(0) |= O(¢) on a time interval

nential stability estimates are valid, and that these estimates
can be used to give a “uniform” estimate valid for the entire
phase space (this is the “geometric part” of the Nekhoroshev
theorem).

2.3 Verifying that the assumptions of the KAM
and Nekhoroshev theorems hold in specific
examples

the result obtained is just the standard per- The conditions for the validity of the KAM theorem and

the Nekhoroshev theorem in specific applications appear
straightforward. However, this situation is somewhat mis-

of length©O (51) The problem with this conclusion is that leading. Most of the work that verifies the applicability of

|57 |

bitrary parameter should not play a role in the form of a

stability result, but this point will also be addressed in the

course of our discussion. Therefore, in general we exfect
to have the estimat®(r!). We will ignore constants since

they are not essential for understanding the essence of th
manner for obtaining exponential stability results. Roughly,t

in order for Eq. 12) to be of use, the ratio of the order- 1
term to the order term must be smaller than 1, i.e.

(r+1)et!

e =@r+De<1.

(18)

This immediately suggests an “optimal” form fein terms
of e:

1

r+ls-—. (29)
&

Now recall Stirling’s formula:

rix e

Since the remainder term is of the order+ 1)!¢"t1, sub-
stituting Egs. 19) and @0) into this expression will give an

(20)

expression for the order of the remainder in terms of the “op

timal” normalization order as a function ef

(r+ 1)! gH—l A+ 1(,, + 1)r+18r+1€—(r+1)’
~((r+ 1) T Vr+1e D,

/1
~1 —e_%.
e

Hence, we see that with this choicerofthe remainder term
in Eq. (12) is “exponentially small ire”, and using this re-

(21)

is not bounded. In general it grows as some power of
r! (such an estimate is obtained in the course of the prooP
of Nekhoroshev’s theorem). There is also the fact that an ar

the KAM and Nekhoroshev theorems for specific models has
een carried out in the context of models in celestial me-
chanics; see, e.gCelletti and Chierchi§2007) andGiorgilli
et al. (2009. A specific model problem where detailed cal-
culations of the applicability of Nekhoroshev’s theorem are
carried out is described ihochak and Porzid1989. The
issues with applicability start at the very beginning of the
onsideration of the application. The KAM and Nekhoroshev
eorems are stated, and proven, using the action-angle vari-
ables of the unperturbed integrable system. Even if one has
a model that can be divided into an integrable part plus “a
perturbation”, it is, in general, highly nontrivial to construct
action-angle coordinates for the unperturbed, integrable part.
For this reason there have been essentially no applications
of the KAM theorem to fluid transport where the conditions
for the applicability of the theorem have been verified for
a model under consideration. Similarly for the Nekhoroshev
theorem, although that result hardly seems known at all by
those considering Lagrangian transport issues in the fluids
community.

Nevertheless, the KAM theorem provides a “language” to
discuss invariant tori, and their manifestation as flow bar-
riers, even though the applicability of the theorem is gen-
erally not verified for specific flows. The reason for this is
the nature of the KAM theorem itself, and the conditions for
its applicability. In particular, we know that, for the unper-
turbed (two-dimensional, time-independent and incompress-
ible) flow, in a region of closed streamlines action-angle vari-
ables exist theoretically, even if we cannot find analytical ex-
pressions for the explicit coordinatesrfiold, 1978. More-
over, the nonresonance and nondegeneracy conditions are
generic Therefore it would be surprising if they did not hold.
Nevertheless, this is no substitute for a quantitative study of
the limits of applicability of these theorems in specific exam-

sult with Eq. (L7) gives the exponential stability estimate. Of ples. For promising recent work on the applicability of KAM
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discussion, only the geometry of the streamlinesnd the
coordinatesHowever, some selected relevant references are
Bower (1991, Samelsor{1992, Duan and Wigging1996),
and Samelson and Wiggin®006, and in these references
a specific functional form for the flow field of this particular
model of a jet can be found. In a frame of reference moving
with the phase velocity of the jet, the streamlines appear as in
Fig.2a. In particular, the flow is steady and spatially periodic.
It is important to realise that the horizontal and vertical co-
ordinates in Fig2a are the physical coordinates describing
the streamlines of the jet, i.e. they aret action-angle co-
ordinates. The left and right vertical boundaries of the flow
] shown in Fig.2a are identified, i.e. the flow is periodic in the
PRY A e N S ! P . horizontal direction. Consequently, there are five regions of
ae. 0 mEoomE I gitude 7 W closed trajectories, denoteti, ..., Rs in the figure. The jet
is the central region, denotdaty (these trajectories are peri-
Fig. 1. Average sea-surface height, which is related to streamlinegdic since the flow is spatially periodic). Immediately above
of the velocity field, in the North Atlantic. The “jet” is clearly ob-  g5nd pelow the jet are regions of “recirculating trajectories”,
servable. Image courtesy of Jezabel Curbelo. denotedR, and R4, and at the very top and bottom are two
regions of periodic trajectories, denot®g and Rs, that tra-
verse the entire domain and move in the opposite direction as
theory without action-angle variables sge la Llave et al.  the jet (i.e. trajectories iR3).
(2005. This flow structure describes a steady, incompressible,
two-dimensional flow (hence, it is Hamiltonian and inte-
2.4 Application of the KAM and Nekhoroshev theorems  grable) having five regions of qualitatively distinct closed
to fluid transport trajectories (we have not considered variability applied to
this model — yet). In order to apply the KAM and Nekhoro-
By now it is “common knowledge” that in the application of shev theorems to this flow we must transform the flow to
the KAM theorem to fluid transport the KAM tori act as com- action-angle variables in the regions of closed trajectories.
plete “barriers to transport”. This statement requires muchHowever, the action-angle transformations for the five dif-
more careful consideration and we want to explore its meanferent regions will generally be different, and action-angle
ing and full implications in terms of our discussion of the coordinates are not defined on the separatrices that separate
KAM and Nekhoroshev theorems discussed above. First, wehe five regions. This is something of a moot point since the
motivate our discussion by considering a particular “flow fea- transformation to action-angle coordinates, for even one of
ture” that arises in many geophysical flow studies: a jet. Thethe regions, has not been carried out for any of the kine-
discussion is also very relevant to our discussion in Se8t.  matically defined jet models noted above. What is required
A two-dimensional (2-D) "meandering jet” is a common is that this transformation produces a change of coordinates
flow feature observed on the surface of the ocean. In particin which the transformed variables are as follows. The hori-
ular, specific 2-D jets that are visible on the ocean’s surfacezontal coordinate (the angle) must be periodic. Additionally,
are, for example, the Gulf Stream and the Kuroshio currentsin the new coordinates, the streamlines or contour lines of
These circulating patterns are very stable and are often dehe Hamiltonian must have a geometry compatible with ex-
scribed from the perspective of a stationary reference flowpression 8). This means that the Hamiltonian must depend,
plus a (temporal) variability that acts as a not too large ape+to leading order, on the vertical coordinate (the action) plus
riodic perturbation of the reference state (note that waato  a small distortion introduced by the perturbatiéh. This
expect geophysical flows to have time-periodic or quasi peri-means that for instance the lines in the transformed region
odic variability, even though this has been the subject of in-of interest of Fig2a, before the addition of the perturbation,
vestigation for many kinematic jet models). Figurehows  should be purely horizontal. Following the expression found
the time average of the sea-surface height (SSH) in the Nortlin Samelsor{1992 for the Hamiltonian displayed in Fi@a,
Atlantic. The magnitude of the SSH is locally related to a the unperturbed termilp depends both on the horizontal and
stream function from which the surface velocity is obtained vertical variables, thus it would not be in the appropriate co-
in the geostrophic approximation. A very similar picture can ordinate system required by the Nekhoroshev theorem. We
be obtained for the Kuroshio region. will consider an example in Sect.that is expressed from
Consequentlykinematicallydefined 2-D meandering jet the beginning in action-angle variables, that has the geomet-
models have received much attention over the years. Theic features of the jet, and therefore allows us to apply the
specific details of those models are not important for ourNekhoroshev theorem with a variety of time dependencies.

36

latitude
[~}
-
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Fig. 2. (a) Streamlines associated with a “jet” (figure frddamelson and Wiggin2006 shown in the physical coordinates of the flow;
(b) streamlines associated with the “jet” example from Séshown in the action-angle variables. The streamlines are showirfoe 0
ande = 0.1.

Figure2b shows the streamlines of the particular exampledependent:
that will be the focus of our study in Seel. This example
shows patterns similar to that of Figa, with a recognizable H(I,6,1) = Ho(I) +¢H1(I,6,t), (1,0) e BxT. (22)
recirculating regiorR1 and two regionsk, and R3 with peri-
odic trajectories that transverse the entire domain (the examIhe particular type of time dependence that has been studied
ple is periodic in the horizontal direction). This flow is differ- in some detail is that ajuasiperiodidime dependence. This
ent, though, from the kinematic models illustrated in Pig. means that the time-dependent perturbation can be written in
in that it is obtained from a Hamiltonian expressed in action-the following form:
angle variables that correspond to the vertical and horizontal
axes, respectively. In particular, the example Hamiltonian infl1(1,0.1) = Hi(1,0,¢1,.... dm). (23)
Sect.4 has the formH (1,0) = Ho(I) + ¢ H1(1,0,t) so that
the Nekhoroshev theorem can be applied immediately. Fo
the streamlines shown in Figb we have chosen= 0.1 and
Hi(1,6,1) = H1(1,0) by settingb(r) = 0.

Even if we succeed in expressing the stream function in
action-angle coordinates in the regions of interest of the flow,
we note that the general Hamiltonian given in EB8). Will
only have relevance as a stream function of a fluid flow for
the case: = 1. In this case it would describe a steady, two-
dimensional incompressible flow (in action-angle variables).
This is not particularly interesting (from the point of view of
mixing, but possibly for transport), since two-dimensional,
steady incompressible flows are integrable, and in this cas@

the integral i (1, ) = Ho(/) + H1(1,6),  (I,6) € BxT, tori plus those of the perturbation. This can be described by

where B is an interval inR. Therefore in order for there to saving that the unperturbed tori are “auasi-periodically danc
be “interesting” mixing and transport in two dimensions, the . ying unpertu : quasi-periodically

flows must be time dependent, from which it follows that if ing” to the *rhythm” of the perturbation. The tori whose fre-

the KAM and Nekhoroshev theorems are to play an impor_quencies are in resonance with those of the perturbation are
: e . __destroyed.” Jorba and Simdl996.
tant role, then the corresponding Hamiltonian must be time L i
Hence, the surviving invariant torfor one degree-of-

freedomp = 1, form “complete” barriers to transport in the

yvhereHl(I,G,m,...,d)m) is 27 periodic in eachyy, k =
1,...,m (for eachl, §) wheregy = wyt fork=1,...,m. Of
course, the case = 1 corresponds to the time-periodic case.
Some early results on periodic and quasiperiodic time de-

pendence of the KAM theorem are discussediinold et al.
(1988. More recent results can be found Broer et al.
(1996 andSevryuk(2007). A detailed discussion, and theo-
rem, for quasiperiodically time-dependent Hamiltonian sys-
tems with Hamiltonians of the form of ER®) can be found
in Jorba and Sim@1996. Concerning the nature of the tori
that persist under the perturbation, the situation is best de-
cribed by a passage from this paper.

“The frequencies of these tori are those of the unperturbed
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sense that these invariant tori are invariant manifolds (i.eever, they are infinite time objects in the sense that their ex-
they consist of trajectories) and therefore trajectories notistence is proved by an iterative or recursive process that re-
starting on the invariant tori cannot cross the invariant tori.quires a passage to a limit. Moreover, there is no existing
Moreover, by examining the regions of closed trajectories forversion of a KAM theorem for general aperiodically time-
the “unperturbed” steady flows shown in FRjone can see dependent Hamiltonian systems (other than for quasiperiodic
that the particular interpretation of these surviving invarianttime dependence). However, the Nekhoroshev theorem may
tori in terms of their influence on transport depends on thebe viewed as a type of finite time KAM theorem in the sense
geometry of the closed streamlines of the unperturbed flowthat an invariant torus is identified in the unperturbed system
and their relation to the global geometry of the flow. For anand a thickened region is constructed around that invariant
application of similar ideas to two-dimensional, quasiperiod-torus in which trajectories starting in that region will remain
ically time-dependent flows sd&eron-Vera et al(2010. At for an exponentially long time. As we have noted, this is sim-
present, there is no analogue of the KAM theorem for pertur-ilar in spirit to the issue of nonuniqueness for the stable and
bations having more general time dependence than quasipeninstable manifolds of finite time hyperbolic trajectories, and
odic, which is particularly notable for geophysical transport it is probably as good as one might expect for time-dependent
applications since one does not expect typical ocean variabilvector fields defined on a finite time interval.

ity to be either periodic or quasiperiodic. However, the ob- Of course, this raises the issue of how useful this is for
served similarities among the flow structures shown in Higs. applications, since one has not identified an exact barrier to
and 2 suggest that the transport properties associated witlransport that is valid for all time. However, practically, this
perturbed invariant tori can be related to important trans-may not be the essential important element. Rather, identi-
port questions such as, for example, the existence of crosdying regions of the flow where trajectories remain for very
jet transport of radiative isotopes in the Kuroshio current fol- long times may be more practical since one can only ever
lowing the Fukushima accidenBgesseler et 312012, or observe flow for a finite time.

the time of persistence of particles within the jet (this latter

problem is directly connected to the results of the Nekhoro-

shev theorem, as we will discuss later), or similar transport 1 he Nekhoroshev theorem for aperiodic time
issues. dependence

Next, we turn our attentpn to the Nekhorosh(_-:-v theorem'Giorgilli and Zehnder(1992 considered time-dependent
This theorem has not received as much attention from thg_| A ; ]
amiltonian systems of the following form:

point of view of perturbations with general time dependence,
with the major exception of the remarkable papeGairgilli 112

This Hamiltonian would appear to have little relevance to the
“Nearly invariant” tori fluid transport settings described earlier, since it would be un-
usual for a stream function to have the form of “kinetic plus

Roughly, the estimate in Eg8)implies that the action coor- Potential energy”. Moreover, there is no small parameter in
dinates stay “close” (as measured by some power of a smalffd- @4) that would give it the form of the problem of the
parameter) to their initial values for a time that is exponen-Perturbation of an integrable system. However, a closer ex-
tially long (where the exponent is a constant multiplied by @mination ofGiorgilli and Zehnder(1992 reveals that the

the inverse of a (possibly) different power of the same smalltechniques used in the paper are much more general than
parameter). The phrases “exponential stability” or ‘effective the stated results. The main goal Giorgilli and Zehnder
stability” are often used. This is a very special type of finite (1992 was to show that the action variables of E2d)(re-

time stability, as eloquently described by Littlewoddte- ~ Main bounded over exponentially long time intervals. Cast-
wood, 19598): “...while not eternity, this is a considerable ng this problem in the “Nekhoroshev setting” requifésto
slice of it.” be “large”, which will makeV (8,¢) a “small” perturbation

In this situation the term “nearly invariant tori” is used in of % (and this is why no small parameter appears in the
the literature (see, e.dDelshams and Gutierre2996, and  statement of this problem). Howevejorgilli and Zehnder
this notion is particularly relevant for the notion of “invariant (1992 showed that by rescaling the action variables and time
tori” finite time dynamics. by a small parameter, Eq24) could be transformed to the

The issue of the existence of invariant tori poses relatedorm of a “slow time varying” perturbation of an integrable
issues for finite time Hamiltonian vector fields with respect system in the “standard sense”.
to nonuniqueness and the associated inability to locate pre- There is still the issue of the special form of the Hamil-
cise invariant manifolds as discussed in S&c2 Invariant  tonian in Eq. 24). Recall from the earlier discussion that
tori are barriers to transport — they are invariant manifoldsthe proof of the Nekhoroshev theorem is in two parts — an
and, therefore, trajectories cannot cross invariant tori. How-analytic part and a geometrical part. The analytic part uses
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standard canonical perturbation theory to derive resonanthis form in order to understand the role that certain param-
normal forms on certain regions of phase space. The geometters play in the formulation of the result. Towards this end,
ric part shows that the regions on which the normal forms arewe re-write the Hamiltonian by redefining a new variable as
valid cover the entire phase space. In this way the evolutioré = ¢t and introducing a new extra variablein an extra

of trajectories on all of the phase space can be estimated frorterm in the following form:

the dynamics of the normal forms. _

It is easy to see that the analytical partGiorgilli and ~ H(0,1,&,n) = Ho(I) +&‘n+eH(0,1,§). (27)
Zehnder (1992 is very general and does not depend on
the special form of the Hamiltonian ER4). The proof of
the geometric part given iGiorgilli and Zehnder(1992 is . 9H g
greatly simplified with the special form of EQ4). However, 6 = ——()+&—(0,1,§),

L . al al
this is probably of no consequence for our needs for fluid .
transport, since in that case we only require- 1. Never-  j _ _ga_H(a 1,§),
theless, recentlounemourg2013 andFortunati and Wig- a0
gins(2013 have re-visited the work ddiorgilliand Zehnder £ = ﬁ(e LE ) =&

(1992 and provided a formulation of th@iorgilli and Zehn- an 7 '

der (1992 result for a standard perturbation of an integrable

Hamiltonian system with arbitrary, slowly varying, time de- 7 = —8¥(97 L,§). (28)
pendence.

Itis worth noting the issue of “slow time dependence”. The The variables(,6,&,n) are now extended to the complex
results ofGiorgilli and Zehnde(1992, Bounemourg2013  planeC. We define:
and Fortunati and Wigging2013 all require slow time de-
pendence (“slow” in the sense of the time dependence of th&/s
Hamiltonian where the explicit time variable is multiplied by
some positive power of the perturbation parametérgilli
and Zehndef1992 and Fortunati and Wigging2013 use
a different scheme thaBounemourg2013 to ar_rive at the .00 =0s x {1 €C) x {Im8] <o} x {Im&| <o} (29)
necessary normal form. So, at the moment, it appears that
slow time dependence is required to achieve a Nekhoroshegdditionally, we have the following assumptions.

result for aperiodically time-dependent systems and that this - Analyticity The Hamiltonian Eq.47) is analytic on the do-
should be regarded as the most general form for a Hamiltomain Eq. 9).

The corresponding Hamiltonian vector field is:

={IeC||I-D,| <34},

then the following domain for the Hamiltonian for EQ7)
is considered:

nian with arbitrary time dependence. _ Nondegeneracy of the Integrable P&tr» = 1 the non-
We now state the theorem in a form that is adequate folgegeneracy condition on the integrable part is particularly
our needs. simple:

We consider a one degree-of-freedom, aperiodically time-

- . ) 2
dependent Hamllton|an~of the following form: 7 % —m=>0. forsomed >m >0, (30)
H@®,1,t)=Ho(I)+eH(®,1,€), (25)
0,1,1) e TxD, xR, whereM andm are upper and lower bounds, respectively, on
) o 1 the magnitude of the frequency.
whereD, is a ball of radius '”Ra”d§ <c=1, We can now state the main result due Gaorgilli and
. . ) . . Zehndern(1992 (and refined byBounemoura2013andFor-
with corresponding Hamiltonian vector field: tunati and Wiggins2013.
. 9H i . Theorem 1Under the assumptions given above, there exists
0 = a_l(l) +88—I(9, 1,5), positive constantsg, c1, c2, c¢3 that depend o1, o, m, M
~ such that ife < ¢g such that for all solutiong6(z), 1(t)) of
I = —g%—lg(e, 1,6). (26) EQ.(26)if 1(0) € Dy then
It is well known that a time-dependent Hamiltonian can be |7 () — 1(0)| < Clg%’ (31)

cast in the form of a time-independent Hamiltonian with an

additional degree of freedom. This formulation allows one tofor all

treat the problem by an analytic part of the problem by stan- 1

dard canonical perturbation theory, as explaine@iorgilli 7] < caexplcze™ 2). (32)
and Zehnde(1992. We will not be pursuing the proof of

the theorem here. However, it is useful to cast the problem in
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We make several comments regarding this theorem.

— Itis important to understand what is meant by almost
invariant tori in the case where the time dependence
is not periodic, since by invariant torus typically it
is understood that the motion is quasiperiodic. Recall
our discussion of almost invariant tori at the end of
Sect.2.4. An almost invariant torus was identified in
the unperturbed system and the Nekhoroshev theorem
was used to define a thickened region around that in-
variant torus in which trajectories starting in that re-
gion remained for an exponentially long time. Since
the torus is identified in the unperturbed problem, this
definition still holds when the perturbation is not peri-
odic in time.

— The issue of the choice for the constaniscy, c3 is
important to note. They are of order 1 and do not de-
pend on the perturbation parameter. Functional forms
for them are derived during the course of the proof of
the theorem, but general choices are made for vari-
ous parameters that define the constants and inequal-
ities that arise at different steps in the proof in order to
provide a simple and convenient proof of the theorem.
Therefore in the proof of the general theorem no effort
is made to choose the constants in such a way that is
optimal for a specific problem. Moreover, the param-
eters that go into each constant need to be computed
explicitly for each specific example, and for some of
the parameters it is not entirely clear how to compute
such parameters for a specific example in an optimal
manner (e.g. analyticity parameters and ultraviolet cut-
off parameters for truncating Fourier series in the nor-
mal form). This is why the computations of all of the
constants involved in a specific example for applica-
tion of the KAM theorem (e.gCelletti and Chierchia
2007 or the Nekhoroshev theorem (elgpchak and
Porzig 1989 amount to a substantial research project
in their own right. It is worth mentioning that it is only
in the last 2 years that the nondegeneracy condition
for the KAM theorem in the context of the general
n body problem of celestial mechanics has been ver-
ified (the work ofChierchia and Pinzar2011). Never-
theless, even though its rigorous applicability to the
body problem was not established, the KAM theorem
provided a valuable theoretical framework for thinking
about the problem. We believe that the Nekhoroshev4
theorem will serve a similar role for finite dimensional
fluid transport problems, and this may serve to mo-
tivate work on verifying the conditions for the KAM
and Nekhoroshev theorems for specific examples tha
are more directly related to fluid mechanical equations
of motion.

For our example in Sect we take the constants in
Nekhoroshev’s theorem to b8 = c» = c3=1. This
choice is arbitrary. They are the simplest order 1
constants. Nevertheless, one can see directly from
Egs. B1) and @32) that confinement of trajectories over
exponentially long timescales still holds for general or-
der one choices of constants, co, c3 if we takee
sufficiently small. Indeed, for hyperbolic perturbation
methods (such as Melnikov's method for determining
the existence of transverse intersections of the stable
and unstable manifolds) soft analysis is all that is re-
quired (i.e. first-order regular perturbation theory, stan-
dard implicit function theorems) and, as a result, spe-
cific constants are not computed as the results hold for
¢ sufficiently small. For the KAM/Nekhoroshev theo-
rems one requires perturbation results to all orders and
in this case the constants must be estimated at each
step, and it is natural to include them in the statement
of the theorem (although that may make the theorem
extremely difficult to penetrate for a non-specialist).
Still, the results hold fog sufficiently small, but know-

ing the specific constants enables one to compute how
smalle must be.

The Nekhoroshev estimates hold regardless of whether
the unperturbed torus is resonant or not. This has
been investigated in detail for the casemofdegree

of freedom autonomous Hamiltonian systems, and the
results are surprising and somewhat counterintuitive.
Briefly, the most resonant regions are the most sta-
ble in the sense of Nekhoroshev estimates and the
least stable regions in the sense of Nekhoroshev es-
timates are the least resonant regions, e.g. the KAM
tori. This phenomena is described in detaiBenettin

and Gallavott(1986 andLochak(1992.

The Nekhoroshev estimates do not say anything about
the speed at which trajectories move away from an un-
perturbed invariant torus. For example, it is not ruled
out that a trajectory could rather quickly move to the
maximum stability radius and then move very little for
the rest of the stability time. Whether or not this hap-
pens needs to be considered in the context of specific
examples.

An example

Now we consider an example that “gives us an idea” of the
usefulness of Theore® We say “gives us an idea” because
e have not computed the threshold value for the perturba-
tions (gg) or the constantsy, ¢, c3 for this example. Com-
puting these constants would require careful consideration of

the proof of the theorem in the context of this particular ex-
ample. However, for our purposes it is sufficient to know that
these ar€)(1) constants. With this in mind, the example will
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illustrate some interesting features of Nekhoroshev’s result Figure 3a and b shows the graph of this function for
in the context of aperiodic time dependence. This theorem ¢ =0.01 andes = 0.1 respectively. It has a pulse-like
appears to have been unnoticed by the community dealing structure which is wider for the smaller. In both

with transport in finite time velocity fields, thus the example cases, after a time interval(t) becomes essentially
will allow us to study related issues in a setting where the zero and the systenB4) is essentially autonomous.
time dependence can be specified. It is our hope that this will For this reason the system approaches an integrable
inspire further work on the many issues related to finite time system, but it is still a perturbed version Hp.

transport associated with elliptic phenomena.

We consider a Hamiltonian of the following form: 2. A quasiperiodic time dependence:

72 _ 1 .
H(1,0.0) = = + (1= D(L+b()sing, (33) b=~ (sin(V3er) +cos(v2er)),  (37)
©. ) eTxR, Fig. 3c and d shows the graph of this function for
where the unperturbed HamiltoniaHy, is Ho = 1?/2. Note ¢ =0.01 ande =0.1. It is observed that due to the
that, at this point, the time dependence@f) is completely time scaling a largee produces higher oscillation

arbitrary and can be used to study different aspects of time frequencies.
dependence. For examplgy) can be chosen to be periodic,
quasiperiodic, aperiodic, or to exist only for a finite time. The
Hamiltonian vector field corresponding to E3J is given

3. An aperiodic time dependence that is obtained from
the chaotic time series of a differential equation. A
representation of this time series is shown in Bg.

by:
y This series is proportional to the second component of
6= s sing a chaotic trajectory that has been obtained from the
ol ’ integration of a periodically forced Duffing equation
. oH p - "o . .
i=—22 (1= D)1+ b)) cos. (34) (we say proporthnal since we normalise .the. signal
20 so that it has amplitude one). Since our choice is an ar-
We describe some of the important features of this exam- bitrary forcing, in this case we do not rescale the time
ple that play a role in our numerical experiments. with e.

An Invariant Torus:/ = 1. From Eq. 84) it is clear that
that for/ = 1, / = 0, which proves that = 1 is an invariant
torus. It is important to note that this is independent of both
¢ andb(1).

The Integrable Case: = 0. For the case = 0 the vector
field is integrable and is given by:

The perturbed systenB4) possesses kinematically dis-
tinct regions similar to those depicted in Figh and de-
noted byR;, Rz or R3, representing, respectively, jets and
eddies. In order to obtain a visual representation of the La-
grangian structures of the given examples, similar to what
is shown in Fig.2b, but for the time-dependent case, we

G oH / will use a recently developed approach based on functions
Y called Lagrangian descriptorgseeMendoza and Mancho
oH 201Q 2012 de la Camara et al2012 Mancho et al.2013.

I'= =0. (35) The Lagrangian descriptor that we use is based on arc length,

This system is clearly integrable. Each value fotorre- and 5 referrzdl\zo ayi]l '8 1Mazn(;:1ho et 3:1(2?1:2: orasM Ln |

sponds to an invariant circle, and the value of the frequenc;)(\/lzgg 20223 13” A parzcc:is(g de?‘initioﬁ 22 d ;szus:i?r?zeisa'

on the invariant circle is also given hencel =1 has . . ' L .

frequency one). Note that the ignvarialr)?': (circle correspondin given in the references. Contours of the Lagrangian descrip-

to I = 0 iis resonant since its frequency is zero. gtors highlight singular fegtures (which are related to the lack
We remark that we have avoided the issue described i f regularity of the function) and these have been shown to

Sect.2.4 since the unperturbed system is expressed explic: e directly related to “phase space structures”. Significantly

itly in terms of action-angle coordinates, and the perturbedf(.)r our situation, the method is directly applicable to the ape-

system is also expressed in these coordinates. riodically and finite time-dependent cases (unlike Poincaré

The Choice of Time Dependené@r the purpose of nu- ”;?)Fl)s)- Lagbran%:an ?r(]esc_:ntptorst'as r?porteq:l'anchod(la)t al. ded
merical experiments, we will consider three types of aperi—( 3 are based on the integration of a positive and bounde

odic time dependence of the following form: intrinsic property of a trajectory along the trajectory itself
' during a time interval of length2 Revealing the dynami-

1. Ouir first choice is a pulse-like time dependence of thecal features requires the use of a long enough order to
form: converge to the singular features.

90

b(t) = %i%gl) (sin(@st) + cos(ﬁgr)) , (36)
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Fig. 3. Representation of different forcing functiob&) in example 84). (a) Forcing as in Eq.36) for ¢ = 0.01; (b) forcing as in Eq. 86)
for e = 0.1; (c) forcing as in Eq. 7) for ¢ = 0.01; (d) forcing as in Eq. 87) for ¢ = 0.1; (e) chaotic forcing.

4.1 Numerical experiments

respectively, where we have set=c3=1. For each of
these values of the “confinement distance”, denoted By

We will be concerned with the stability properties of three and defined in Eq.31), is given by: for these values

different invariant circles in the unperturbed system:

I =0 For the unperturbed system this is a circle of fixed §~031623 §~0.1,

points (i.e. a resonant invariant circle).

(39)

respectively, where we have sgt= 1.

1= % For the unperturbed system this is an invariant circle The numerical experiments consist of the following. For

with frequencys.

each invariant circle, we integrate the initial condition given
above and plot the value of the resulting trajectory as a

I =1 For the unperturbed system this is an invariant circlenction of time. This is done for each time dependence and
with frequency 1, which also persists as an invariantyr the two values of. Moreover, in order to understand the

circle for any value ot.

nature of trajectories we have provided a “snapshot” of the

We are interested in the stability properties of these three inLagrangian structure through the use oLagrangian de-

variant circles. By stability we mean the intuitive idea @f “
you start close, you stay cldsdlore precisely, we are inter-

scriptor. We note that foe = 0.1 we illustrate the trajectory
for a time ofat least200 and in some cases up to 400. This

ested in the evolution of the action variables of trajectoriesis significantly longer than the estimated confinement time
that “start close” to these invariant circles and whether or notof 25. Similarly, fore = 0.01 for all cases we compute the
their evolution obeys the Nekhoroshev estimates for “con-trajectory for a time of 25000, which is longer than the esti-

finement” (Eq.31) over a given time (EB2).
We consider the following initial conditions for each in-
variant circle:

0,1)= (0,0

©,1) = (o, %)

6,1)=(0,0.99 For this case the action value is “slightly
offset” sincel = 1 is invariant fore # 0.

We wiill consider two values of:

¢=0.1,0.01

and for each of these values the “confinement time” denotecﬁl

by T and defined in Eq.32) is given by:

T ~ 25, T ~ 2200Q (38)

Nonlin. Processes Geophys., 21, 16835 2014

mated confinement time of 22 000. Fot= 0.01 we will see
excellent agreement with the Nekhoroshev estimates for all
initial conditions. Fore = 0.1 the quality of agreement will
vary with the initial condition. This is not unexpected since,
a priori, we do not have an estimate of the size,afs well as
the relevant constants, for each initial condition. The best we
can do, in the example under consideration, is to show that
"for ¢ sufficiently small” the Nekhoroshev estimates hold for
trajectories with a particular initial condition. This is typical
of how most perturbation theories are applied.

Results for the time dependence (B§) are shown in Fig.
4. The first column shows the results foe= 0.01 and the sec-
nd fore = 0.1. Itis easily seen that for the case- 0.01 the
ekhoroshev theorem is satisfied, as the trajectories remain
within a distance of§ ~ 0.1 from the initial condition for at
leastT ~ 22000 time units.

www.nonlin-processes-geophys.net/21/165/2014/
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Fig. 4. Results obtained for the time dependence given by &4). The first column is foe = 0.01, /¢ = 0.1. (a) Lagrangian descriptor
evaluated in the domaif®, 27] x [—1.1, 1.1] at¢ = 0 for t = 160; (b), (c), and(d) show thel component of the trajectory as a function
of time for the following initial conditions(b) 6 =0,7 =0; (c) 6 =0,1 =0.5; (d) # =0,1 =0.99. The second column is fer= 0.1,
/¢ =0.31623.(e) Lagrangian descriptor evaluated in the dom@rer] x [—1.1,1.1] at¢ = 0 for t = 160; (f), (g), and(h) show thel
component of the trajectory as a function of time for the following initial conditigf®: = 0,7 =0;(g)6 =0, = 0.5; (h) 6 =0, 7 = 0.99.
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Fig. 5. Results obtained for the time dependence given by &4. [The first column is foe = 0.01, /e = 0.1. (a) Lagrangian descriptor
evaluated in the domaifD, 2] x [-1.1,1.1] at¢t = 0 for r = 160; (b), (c), and(d) show thel component of the trajectory as a function
of time for the following initial conditions{(b) 6 =0,7 =0; (c) 6 =0,1 =0.5; (d) 6 =0,1 =0.99. The second column is far=0.1,
/&€ = 0.31623.(e) Lagrangian descriptor evaluated in the domi@ir2r] x [—1.1,1.1] at¢ = O for T = 160; (f), (g), and(h) show thel
component of the trajectory as a function of time for the following initial conditigf® = 0,7 = 0;(g)6 = 0,1 = 0.5; (h) 6 =0, = 0.99.
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Fig. 6. Results obtained for the time dependence given by the aperiodic forcing obtained from the chaotic output of a differential equation.
The first column is for = 0.01, /¢ = 0.1. (a) Lagrangian descriptor evaluated in the domi@if2z] x [-1.1, 1.1] atz = 0; (b), (c), and

(d) show thel component of the trajectory as a function of time for the following initial conditi@imsé = 0,7 = 0; (c) 6 =0, I = 0.5; (d)

6 =0, =0.99. The second column is fer= 0.1, ,/e¢ = 0.31623.(e) Lagrangian descriptor evaluated in the dom@2r] x [—-1.1,1.1]

atr = 0; (f), (g), and(h) show thel component of the trajectory as a function of time for the following initial conditi¢f)s? = 0, 7 = 0;
(9)0=0,1=0.5;(h)6 =0,7=0.99.
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In the second column similar agreement with the Nekhoro-5 Conclusions and outlook
shev estimates is shown for the trajectories in BEigind h. In
these figures the confinement is of order 0.3 (withc a  In this paper we have considered fluid transport in two-
constant of0 (1)) for a time of at least” = 25. The confine- dimensional flows from the dynamical systems point of view,
ment for Fig.4g with initial condition (I = 0.5 andé = 0) with the focus on elliptic behaviour and aperiodic and finite
does not satisfy the Nekhoroshev estimates, since the trdime dependence. We have given an overview of previous
jectory rap|d|y evolves away from the initial condition more work on general nonautonomous and finite time vector fields
than a distancé in time 7' < 25. The perturbation size istoo With the purpose of bringing to the attention of those work-
large for this initial condition. ing on fluid transport from the dynamical systems point of

An understanding of how the constants, including pertur-view a body of work that is very relevant, but appears not
bation size, affect the estimates of confinement distance antp be so well known. We then focused on the Kolmogorov—
stability time requires detailed estimates of the sizes of thesé\rnold-Moser (KAM) theorem and the Nekhoroshev the-
constants, taking into account exp]icit phase space strucerems. While there is no finite time or aperiodically time-
tures, i.e. resonances. Some results along these lines hagependent version of the KAM theorem, the Nekhoroshev
been obtained in the time-independent casBénettin and  theorem, by its very nature, is a finite time result, but for
Gallavotti(1986 andLochak(1992. Similar results have yet @ “very long” (i.e. exponentially long with respect to the
to be obtained for the time-dependent case (where the tim&ize of the perturbation) time interval. In this sense it pro-
dependence is aperiodic), but our simulations indicate thavides a rigorous description of the notion of “nearly invariant
this would be a fruitful direction for further research. tori” over a finite time interval. Moreover, there is an ape-

Figure5 shows results for the time dependence (&d. riodically time-dependent version of the Nekhoroshev the-
As before, the first column shows the resultsdfer 0.01and ~ orem due toGiorgilli and Zehnder(1992 (recently refined
the second for = 0.1. The agreement is as expected in the by Bounemourg2013 and Fortunati and Wigging2013)

first column and in the second one the confinement is agaifvhich is directly relevant to fluid transport problems. We give
not satisfied for the initial condition/(= 0.5 andg = 0), as @ detailed discussion of issues associated with the applicabil-

displayed in Fig5g. ity of the KAM and Nekhoroshev theorems in specific flows.
For an aperiodically time-dependent forcing obtained from Finally, we consider a specific example where we show that

a chaotic trajectory, as illustrated in F@’ the results are the results of the Nekhoroshev theorem hold. We note that the

shown in Fig.6. In the first column the results for = general aperiodic time dependence in this particular version

0.01 are in good agreement with what is expected from theof Nekhoroshev’s theorem is “slow” (in a sense that is made
Nekhoroshev theorem. In the second column the quality ofclear in the statement of the theorem). Work is underway to
the results for = 0.1 depends on the initial condition. The generalise this to more general aperiodic time dependence.
trajectory shown in Fig6f satisfies the confinement estimate
for T < 25, and shortly after that the trajectory no longer

obeys the estimate. Figuég confirms that the bound beyond AcknowledgementS. Wiggins would like to acknowledge useful
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confinement is maintained up 0~ 1500.
It is notable that for botle = 0.1 ande =0.01 the ac-
tion variables of trajectories initialised neéar=1 change
very little during the course of their evolution for the three acrivos, A, Aref, H., and Ottino, J. M. (Eds.): Symposium on Fluid

types of forcing considered. Recall that=1 is an invari- Mechanics of Stirring and Mixing, Phys. Fluids A, Part 2, 723—
ant torus even fog # 0. This result is reminiscent of results 1469, 1991.

on the “stickiness” of invariant tori in time-independent sys- Aref, H.: Stirring by chaotic advection, J. Fluid Mech., 143, 1-21,
tems; se@®erry and Wiggin$1994); Morbidelli and Giorgilli 1984.
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dependent systems (for any time dependence), so this result 1315-1325, 2002.
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