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Abstract. The deterministic chaotic behavior and dynamical
complexity of the space plasma dynamical system over Nige-
ria are analyzed in this study and characterized. The study
was carried out using GPS (Global Positioning System) TEC
(Total Electron Content) time series, measured in the year
2011 at three GPS receiver stations within Nigeria, which lies
within the equatorial ionization anomaly region. The TEC
time series for the five quietest and five most disturbed days
of each month of the year were selected for the study. The
nonlinear aspect of the TEC time series was obtained by de-
trending the data. The detrended TEC time series were sub-
jected to various analyses for phase space reconstruction and
to obtain the values of chaotic quantifiers like Lyapunov ex-
ponents, correlation dimension and also Tsallis entropy for
the measurement of dynamical complexity. The observations
made show positive Lyapunov exponents (LE) for both quiet
and disturbed days, which indicates chaoticity, and for differ-
ent days the chaoticity of the ionosphere exhibits no definite
pattern for either quiet or disturbed days. However, values of
LE were lower for the storm period compared with its near-
est relative quiet periods for all the stations. The monthly
averages of LE and entropy also show no definite pattern for
the month of the year. The values of the correlation dimen-
sion computed range from 2.8 to 3.5, with the lowest values
recorded at the storm period of October 2011. The surrogate
data test shows a significance of difference greater than 2 for
all the quantifiers. The entropy values remain relatively close,
with slight changes in these values during storm periods. The
values of Tsallis entropy show similar variation patterns to
those of Lyapunov exponents, with a lot of agreement in

their comparison, with all computed values of Lyapunov ex-
ponents correlating with values of Tsallis entropy within the
range of 0.79 to 0.81. These results show that both quantifiers
can be used together as indices in the study of the variation of
the dynamical complexity of the ionosphere. The results also
show a strong play between determinism and stochasticity.
The behavior of the ionosphere during these storm and quiet
periods for the seasons of the year are discussed based on the
results obtained from the chaotic quantifiers.

1 Introduction

In our real world, most natural systems are nonlinear. How-
ever, a natural system can be either deterministic or stochas-
tic. There is usually no distinction between the two in our
natural system since all systems in one way or the other in-
teract with their surroundings. Although few natural systems
have been found to be low-dimensional deterministic in the
sense of the theory, the concept of low-dimensional chaos has
been proven to be fruitful in the understanding of many com-
plex phenomena (Hegger et al., 1999). This is also evident
in the study on magnetospheric dynamics and the ionosphere
in the past decade. The study of chaos in magnetospheric in-
dex time series such as the AE index and the AL index was
initially conducted byVassiliadis et al.(1990), Shan et al.
(1991), Pavlos et al.(1992) andUnnikrishnan(2008). These
efforts have led to further advances in the study of chaos in
the upper atmosphere. The development of this framework is
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based on the advances in the study of chaos in the ionosphere,
revealing its complexity.

Excellent studies have been carried out relating to this
framework, by some investigators likeBhattacharyya(1990),
who studied chaotic behavior of ionospheric density fluc-
tuation using amplitude and phase scintillation data, and
found the existence of low-dimension chaos. Also,Wernik
and Yeh(1994) further revealed the chaotic behavior of the
ionospheric turbulence using scintillation data and numerical
modeling of scintillation at high latitudes. They showed that
the ionospheric turbulence attractor (if it exists) cannot be re-
constructed from amplitude scintillation data, and their mea-
sured phase scintillation data adequately reproduce the as-
sumed chaotic structure in the ionosphere. Also,Kumar et al.
(2004) reported the evidence of chaos in the ionosphere by
showing the chaotic nature of the underlying dynamics of the
fluctuations of the TEC power spectrum, indicating exponen-
tial decay and the calculated positive value of the Lyapunov
exponent. This is also supported by the results of the compar-
ison of the chaotic characteristics of the time series of vari-
ations of TEC with the pseudochaotic characteristic of the
colored noise time series. Also,Unnikrishnan et al.(2006a,
b) analyzed the deterministic chaos at mid-latitude. Also,Un-
nikrishnan(2010); Unnikrishnan and Ravindran(2010) ana-
lyzed some TEC data from some Indian low-latitude stations
for quiet and major storm periods, and found in their results
the presence of chaos, which was indicated by a positive Lya-
punov exponent and also showed storm periods with lower
values compared with quiet periods.

A good number of investigators have also worked on the
dynamical complexity of magnetospheric processes and the
ionosphere.Balasis et al.(2008) investigated the dynamical
complexity of the magnetosphere by using Tsallis entropy as
a dynamical complexity measure inDst time series;Balasis
et al. (2009) also investigated the dynamical complexity in
Dst further by considering different entropy measures.Coco
et al. (2011), using the information theory approach, stud-
ied the dynamical changes of the polar cap potential, which
is characteristic of the polar region ionosphere, by consid-
ering three cases: (i) steady IMFBz < 0, (ii) steady IMF
Bz > 0 and (iii) a double rotation from negative to positive
and then positive to negativeBz. They observed a neat dy-
namical topological transition when the IMFBz turns from
negative to positive and vice versa, pointing to the possible
occurrence of an order–disorder phase transition, which is
the counterpart of the large-scale convection rearrangement
and of the increase in the global coherence. Further studies
of the chaotic behavior are however needed to improve our
understanding of the dynamical behavior of the ionosphere
of the low-latitude ionosphere, especially over Africa during
quiet and storm periods for different seasons of the year, so
as to be able to characterize chaoticity for different seasons.

The Nigerian subcontinent of Africa is situated in the low-
latitude region of the globe within the equatorial anomaly
region where the magnetic field B is almost totally parallel

to the Earth’s surface. In a low-latitude region such as this,
off the Equator map along the F region, the eastward elec-
tric field (E) of the E region interacts with the magnetic field
B during the day. This results in the electrodynamic lifting
of the F region plasma over the Equator, which is known as
EXB drift. The uplifted plasma over the Equator moves along
the magnetic field lines in response to gravity, diffusion and
pressure gradients and hence, the fountain effect. The foun-
tain effect being controlled by the EXB drift shows the dy-
namics of the diurnal variation equatorial anomaly (Abdu,
1997; Unnikrishnan, 2010). There is a reduction in the F re-
gion ionization density at the magnetic Equator and much
enhanced ionization density at the two anomaly crests within
±15◦ of the magnetic latitude north and south of the Equator
(Rama Rao et al., 2006).

The equatorial ionization anomaly and other natural pro-
cesses, which include various ionization processes and re-
combination, the influx of solar wind, and photoionization
processes among many others have a great influence on the
internal dynamics of the systems of the ionosphere, and form
the natural internal dynamics of the ionosphere. However, as
mentioned before, there is no system in the real world with-
out interaction with its external environment, which leads us
to further study of the influence of the Sun on the ionosphere.
Therefore in this study the Lyapunov exponent and Tsallis
entropy from the TEC data from the ionosphere were stud-
ied for storm and quiet periods throughout the months of the
year for a better understanding of the deterministic chaotic
behavior and dynamical complexity of the ionosphere.

The motivation for this work is based on the fact that there
is a significant level of nonlinear variability in the ionosphere
that needs more investigation. Characterizing the ionosphere
is of utmost importance due to numerous complexities as-
sociated with the region (Rabiu et al., 2007). The concept
of chaos applied to ionospheric and magnetospheric studies
of the quiet and stormy conditions is limited. The review of
the works mentioned earlier shows that a good number of
investigations has been carried out on the chaoticity of the
upper atmosphere, especially in the magnetosphere and the
ionosphere, and a number of investigations have also been
carried out on the dynamical complexity of the upper atmo-
sphere, but mainly on the magnetosphere.

To the best of our knowledge no extensive study has been
carried out for all geomagnetic conditions, including quiet
days, disturbed days and stormy conditions. Most investiga-
tions have only been based on quiet and storm conditions,
and for all studies carried out none of the investigators has
carried out a study of these concepts using the geomagnet-
ically quiet and disturbed day classification to enable the
proper characterization of the ionosphere. Secondly, this con-
cept has not been used to study the ionosphere over the low-
latitude region of Africa, and finally the study of dynamical
complexity using the Tsallis entropy of the ionosphere has
not been carried out using the total electron content in low-
latitude Africa or any other part of the world. However, for
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Fig. 1.A typical daily time series plot for TEC data measured from
Lagos showing the typical pattern of variation.

the first time these issues mentioned are considered in this
work.

2 Data and methodology

In Nigeria a number of GPS receivers are installed in dif-
ferent parts of the country, which falls within the equatorial
ionization anomaly region. These receiver stations are called
the NIGNET stations. The TEC values are gotten from these
GPS receivers taking the measurement of slant TEC within a
1 m2 columnar unit of the cross section along the ray path of
the satellite and the receiver, which is given by

STEC=

Satellite∫
Receiver

Ndl. (1)

The observation of the total number of free electrons
along the ray path is derived from the frequenciesL1
(1572.42 MHz) andL2 (1227.60 MHz) of the GPS that pro-
vide the relative ionospheric delay of electromagnetic waves
travelling through the medium (Saito et al., 1998). The slant
TEC is projected to vertical TEC using the thin shell model
assuming a height of 350 km (Klobuchar, 1986).

VTEC = STEC· cos[arcsin(Recos2/Re+ hmax)], (2)

whereRe = 6378 km (radius of the Earth),hmax = 350 km
(vertical height assumed in the model) and2 = the elevation
angle at the ground station.

In this study, three stations were considered: Birnin Kebbi
(12◦32′ N, 4◦12′ E and 0.62◦ N geomagnetically), Enugu
(6◦26′ N, 7◦30′ E and−3.21◦ N geomagnetically) and La-
gos (6◦27′ N, 3◦23′ E and−3.07◦ N geomagnetically) within
the low-latitude region. The TEC data obtained for January
to December 2011 were considered for this study and the
data are given at 1 min sampling time. The values of the five
quietest days of each month were taken and the same was
done for the five most disturbed days using the list of Inter-
national Quiet Days (IQD) and International Disturbed Days

(IDD) data provided by Geoscience Australia to compare the
chaotic behavior of quiet days with that of disturbed days.
The TEC data were subjected to various analyses that will be
discussed in the next section.

3 Data analysis and results

3.1 Time series analysis

A given time series Sn can be defined as a sequence of scalar
measurement of the same quantity taken as a series at differ-
ent portions in time for a given time interval (δt). The time
series describe the physical appearance of an entire system.
However, it may not always describe the internal dynamics of
that system. A system like the ionosphere possesses a domi-
nant dynamics that can be seen as diurnal, so the data should
be treated so as to be able to see its internal dynamics. The
measured TEC time series were plotted to see the dynamics
of the system. A typical plot of TEC usually has a dominant
dynamics (see Fig.1), which may be seen as the diurnal be-
havior. However, it can also be seen that there is a presence of
fluctuations (which appear to be nonlinear) in the system as
a result of the internal dynamics of the ionosphere and space
plasma system due to different activities in the ionosphere.
Therefore there is a need to minimize the influence of the
diurnal variations, since we are more interested in the non-
linear internal dynamics of the system in this study. To do so
the TEC time series was detrended by carrying out the anal-
ysis below, since it is known that there are 1440 data points
in a day for daily data of 1 min sampling time, if we letai

andti , i = 1, 2, 3,. . . , 1440 represent the actual and observed
values, respectively, of the time series of TEC. The diurnal
variation reduced time is given by

Ti = ti − aj , (3)

wherej = mod (i, 1440) if mod (j , 1440)6= 0, andj = 1440
if d (j , 1440) = 0.

This method will give the detrended time series from the
original TEC data as shown in Fig.2. This method is similar
to that used byUnnikrishnan et al.(2006a, b); Unnikrishnan
(2010). Further explanations of the dynamical results can be
found inKumar et al.(2004).

3.1.1 Phase space reconstruction and nonlinear time
series analysis

The chaoticity and dynamical complexity of a system are
nonlinear phenomena that can describe the state of some dy-
namical systems. Such systems may be seen as nonlinear
complex systems. The magnetosphere and the ionosphere are
good examples of such systems. To be able to study such phe-
nomena, some nonlinear time series analyses can be carried
out on the time series data describing such a system. The de-
trended time series of TEC measurement is subjected to some
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Fig. 2. A typical daily time series plot for the detrended TEC data
measured from Lagos showing the typical pattern of variation.

nonlinear time series data analyses to obtain the mutual in-
formation and false nearest neighbors, embedding dimension
and delay coordinates for the phase space reconstruction, and
the evaluation of other chaotic quantifiers: Lyapunov expo-
nents, entropy. The phase space reconstruction helps to reveal
the multidirectional aspect of the system. The phase space re-
construction is based on the embedding theorem, such that
the phase space is reconstructed to show the multidimen-
sional nature as follows:

Y n = (sn−(m−1)τ , sn−(m−2)τ , . . ., sn), (4)

whereY n are vectors in phase space. The proper choice of
embedding dimension (m) and delay time (τ ) is essential
for phase space reconstruction (Fraser and Swinney, 1986;
Kennel et al., 1992). If a plot showing the time-delayed mu-
tual information shows a marked minimum, that value can
be considered as a responsible time delay. Figure3 shows
the mutual information plotted against time delay. Likewise,
the minimal embedding dimension, which corresponds to the
minimum number of the nearest false neighbors as shown in
Fig. 4, can be treated as the optimum value of the embedding
dimension inUnnikrishnan et al.(2006a, b) andUnnikrish-
nan(2010). It was observed that for all the daily detrended
TEC time series the choice ofτ ≥ 25 andm = 3 values of
delay and embedding dimension above these values are suit-
able for analysis of data for all stations. The choice ofτ = 30
andm = 5 was also used for further analysis for most of the
stations. The reconstructed phase space trajectory is shown
in Fig. 5.

3.1.2 Lyapunov exponents

The Lyapunov exponent is an important chaotic quantifier. It
indicates divergence of trajectory in one dimension, or alter-
natively an expansion of volume, which can also be said to
indicate repulsion, or attraction from a fixed point. A positive
Lyapunov exponent indicates that there is evidence of chaos
in a dissipative deterministic system, where the positive Lya-
punov exponent indicates divergence of trajectory in one di-

Fig. 3.Plot of mutual information against time delay obtained from
the detrended TEC data measured from Lagos.

Fig. 4.Plot of fraction of false nearest neighbors against embedding
dimension obtained from the detrended TEC data measured from
Lagos.

rection or expansion of values, and a negative value shows
convergence of trajectory or contraction of volume along an-
other direction. The largest Lyapunov exponent(λ1) can be
used to determine the rate of divergence as indicated byWolf
et al.(1985) where

λ1 = lim
r→inf

1

t
log

1x(t)

x(0)
= lim

r→inf

1

t

t∑
i=1

log
1x(ti)

1x(ti−1)
. (5)

The Lyapunov exponent was computed for the TEC values
measured from different stations. The evolution in state space
was scanned withτ = 30,m = 5, as shown in Fig.6. The val-
ues of the Lyapunov exponent were computed for all stations
for the five quietest and five most disturbed days of every
month of the year according to the International Quiet Days
(IQD) and International Disturbed Days (IDD) classification
by Geoscience Australia. The difference in values was stud-
ied for these situations and compared. This was done using
the implementation introduced byRosenstein et al.(1993),
andHegger et al.(1999), both algorithms using very simi-
lar methods. The values of the Lyapunov exponent plotted
for the five quietest and five most disturbed days are shown
in Fig. 8a–d and show the plot values of the computed Lya-
punov exponent from January to April 2011 for Birnin Kebbi
station. The monthly averages of Lyapunov exponents for
quiet and disturbed periods are shown in Fig.8e.
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Fig. 5.Delay representation from the phase space reconstruction of
the detrended time series.

Fig. 6. Lyapunov exponent and its evolution, computed as the state
space trajectory withτ = 30, andm = 5 for detrended time series
measured at Lagos with the largest Lyapunov exponent equal to
0.1035.

3.1.3 Correlation dimension

Another relevant method for studying the underlying dynam-
ics or internal dynamics of a system is to have a good knowl-
edge of its dimension. The correlation dimension gives a
good approximation of this as suggested byGrassberger and
Procaccia(1983a, b). The correlation dimension D is defined
as

D = lim r → 0
lnC(r)

lnr
. (6)

The termC(r) is the correlation sum for radiusr where for a
small radiusr the correlation sum can be seen asC(r) ∼ rd

for r → 0. The correlation sum is dependent on the embed-
ding dimensionm of the reconstructed phase space and is
also dependent on the length of the time seriesN as follows:

C(r) =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

2(r − ||yi − yj ||) (7)

where2 is the Heaviside step function, with2(H) = 0 if
H ≤ 0 and2(H) = 1 if H > 0. The correlation dimension
was computed using the Theiler algorithm approach, with
Theiler windoww at 180. The Theiler window was chosen
to be approximately equal to the product ofm andτ . A sim-
ilar approach to the computation of correlation dimensions
was used byUnnikrishnan and Ravindran(2010) to deter-
mine the correlation dimension of detrended TEC data for

Fig. 7. Correlation dimension for (upper panel) the quietest day of
October 2011 for TEC measured at Lagos that saturates atτ = 30,
andm ≥ 5 (lower panel) the most disturbed day of October 2011
for TEC measured at Lagos that saturates atτ = 32, andm ≥ 4.

some stations in India, which lies within the equatorial re-
gion, like Nigeria. The correlation dimension for data taken
for the quietest day of October 2011 and the most disturbed
day of October 2011 from Lagos GPS TEC measuring sta-
tion are represented by Fig.7. The correlation dimension
saturates atm ≥ 5 for the quietest day of the month and at
m ≥ 4 for the most disturbed day. In this illustration the most
disturbed day of this month falls within the storm period of
October 2011. The use of quiet and disturbed day classifica-
tions in the month of October 2011 enables us to compare the
quiet and storm periods together while comparing the quiet
days with some relatively disturbed days.

3.1.4 Computation of Tsallis entropy and other entropy
measures

Entropy measures are very important statistical techniques
that can be used to describe the dynamical nature of a sys-
tem. Tsallis entropy can be used to describe the dynamical
complexity of a system and also to understand the nonlinear
dynamics like chaos that may exist in a natural system. The
use of entropy measure as a method to describe the state of
a physical system has been employed in information theory
for decades. Since entropies allow us to describe the state
of disorderliness in a system, one can generalize this same
concept to characterize the amount of information stored in
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Fig. 8. Lyapunov exponents for the five quietest days (red) and the five most disturbed days (blue) for(a) January,(b) February,(c) March,
and(d) April. (e)Monthly mean values of Lyapunov exponents for the entire year at Birnin Kebbi.
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Table 1. Results of the surrogate data test for Lyapunov exponents
for TEC data for the quietest days of October 2011 at Lagos station.

Original Data Surrogate Data

0.1118 0.3397± 0.0325
0.0896 0.3493± 0.0594
0.1382 0.4091± 0.0684
0.1162 0.2967± 0.0588
0.2232 0.3914± 0.0207

more general probability distributions (Kantz and Schreiber,
2003; Balasis et al., 2009). The concept of information the-
ory is basically concerned with these principles. Information
theory gives us an important approach to time series analy-
sis, if our time series, which is a stream of numbers, is given
as a source of information such that these numbers are dis-
tributed according to some probability distribution, and tran-
sitions between numbers occur with well-defined probabili-
ties. One can deduce the same average behavior of the system
at a different point and for the future.

The term entropy is used in both physics and information
theory to describe the amount of uncertainty or information
inherent in an object or system (Kantz and Schreiber, 2003).
The state of an open system is usually associated with a de-
gree of uncertainty that can be quantified by the Boltzmann–
Gibbs entropy, a very useful uncertainty measure in statistical
mechanics. However, Boltzmann–Gibbs entropy cannot de-
scribe non-equilibrium physical systems with large variabil-
ity and multifractal structure such as the solar wind (Burlaga
et al., 2007; Balasis et al., 2008). One of the crucial proper-
ties of the Boltzmann–Gibbs entropy in the context of clas-
sical thermodynamics is extensivity, namely proportionality
with the number of elements of the system. The Boltzmann–
Gibbs entropy satisfies this prescription if the subsystems are
statistically (quasi-)independent, or typically if the correla-
tions within the system are essentially local. In such cases the
system is called extensive. In general, however, the situation
is not of this type and correlations may be far from negligi-
ble at all scales. In such cases, the Boltzmann–Gibbs entropy
is nonextensive (Balasis et al., 2008, 2009). These genraliza-
tions above were propsed byTsallis(1988, 1998, 1999), who
was inspired by the probabilistic description of multifractal
geometries. He introduced an entropy measure by presenting
an entropic expression characterized by an indexq that leads
to a nonextensive statistics,

Sq = k
1

q − 1
(1−

W∑
i=1

p
q
i ), (8)

where pi are the probabilities associated with the micro-
scopic configurations,W is their total number,q is a real
number, andk is Boltzmann’s constant. The valueq is a mea-
sure of the nonextensitvity of the system:q → 1 corresponds
to the standard extensive Boltzmann–Gibbs statistics. This is

Table 2. Results of the surrogate data test for Lyapunov exponents
for TEC data for the most disturbed days of October 2011 at Lagos
station.

Original Data Surrogate Data

0.0563 0.3314± 0.0433
0.0370 0.1641± 0.0323
0.1763 0.3426± 0.0424
0.0872 0.2772± 0.0193

the basis of the so-called nonextensive statistical mechanics,
which generalizes the Boltzmann–Gibbs theory. The entropic
indexq characterizes the degree of nonadditivity reflected in
the following pseudoadditivity rule:

Sq(A + B) = Sq(A) + Sq(B) + (1− q)Sq(A)Sq(B). (9)

The casesq > 1 andq < 1 correspond to subadditivity (or
subextensivity) and superadditivity (or superextensivity), re-
spectively, andq = 1 represents additivity (or extensivity).
For subsystems that have special theory probability correla-
tions, extensivity is not valid for Boltzmann–Gibbs entropy,
but may occur forSq with a particular value of the index
q. Such systems are sometimes referred to as nonextensive
(Boon and Tsallis, 2003; Balasis et al., 2008, 2009). The pa-
rameter q itself is not a measure of the complexity of the
system, but measures the degree of nonextensivity of the sys-
tem. It is the time variations of the Tsallis entropy for a given
q(Sq ) that quantify the dynamic changes of the complexity
of the system. LowerSq values characterize the portions of
the signal with lower complexity. In this presentation we es-
timateSq on the basis of the concept of symbolic dynamics
and by using the technique of lumping (Balasis et al., 2008,
2009).

Considering the fact that Tsallis entropy has been used ex-
tensively for magnetospheric studies to obtain interesting re-
sults for the dynamical complexity byBalasis et al.(2008,
2009), we find it necessary to consider its application to the
study of ionospheric dynamics. It is also necessary to com-
pare the results obtained from the computation of Tsallis en-
tropy with those of the Lyapunov exponent. A comparison
of the relationship between the values of the Lyapunov ex-
ponent and Tsallis entropy was carried out to show their re-
lationship as measures of complexity. This is based on the
fact that Tsallis entropy has been linked to a significant de-
gree of response to the edge of chaos and chaotic regime dy-
namical systems due to its non-extensive nature (Baranger
et al., 2002; Anastasiadis et al., 2005), and it has been linked
to weak chaos and the vanishing largest Lyapunov exponent
(Kalogeropoulos, 2012, 2013). It has been established that
the Lyapunov exponent varies directly as the Tsallis entropy
(complexity) of a system, based on the variation of the en-
tropic index q introduced byTsallis(1988) and the nature of
the system’s dynamics.Baranger et al.(2002) were able to
show that the non-extensive case of Tsallis entropy has been
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Fig. 9.Tsallis entropy for the five quietest days (red) and the five most disturbed days (blue) for(a) January,(b) February,(c) March, and(d)
April. (e)Monthly mean values of Tsallis entropy for the entire year at Birnin Kebbi.
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Fig. 10.Entropy values for five window intervals for the most quiet
day in January 2011 from detrended TEC taken from Birnin Kebbi.

found to vary directly as Kolmogorov–Sinai generated from
Lyapunov exponents for logistic maps and dynamical sys-
tems in the threshold of chaos whereλ = 0, with direct vari-
ation whenq = 1 during a chaotic regime. They were able
to show that for all cases of the positive Lyapunov exponent
λ there will be an average exponential increase of any small
initial distance, which can be given as

ξ(t) =
xt − x′

t

x0 − x′

0
(10)

for ξ(t) = exp(λt) wherext andx′
t are positions of two ini-

tially closed trajectories. They were able further to relate q
to the exponential increase in small distances at the edge of
chaosλ = 0 as

ξ(t) = [1+ (1− q)λq t]1/(1−q). (11)

A similar Tsallis generalization was made for Lyapunov ex-
ponents inCoraddu et al.(2006), further explaining that the
exponential behavior for the chaotic regime is recovered for
q → 1

lim
q→1

exp(λq t) = exp(λt). (12)

It was stated in their paper that a large class of generalized
exponentials shows similar behavior. However,Anastasiadis
et al. (2005) explored different q index values for complex
networks forλ < 0 (periodic case) orλ = 0 (edge of chaos)
andλ > 0 (chaotic regime), where they foundq = 2 to be ap-
propriate for a well-distinguished variation in Tsallis entropy
between chaos and edge of chaos regimes.

The values of these entropy measures were also computed
in order to study the dynamical complexity of the system un-
der observation (the ionosphere). This will help us to obtain

Fig. 11.Entropy values for five window intervals for the most dis-
turbed day in January 2011 from detrended TEC taken from Birnin
Kebbi.

some more information on the state of the system. The values
of Tsallis entropy were computed for the five quietest days
and five most disturbed days of the month also according
to the International Quiet Days (IQD) and International Dis-
turbed Days (IDD) classification by Geoscience Australia.
The computed values of Tsallis entropy representing the dy-
namical complexity of a system for the quiet and disturbed
days are shown in Fig.9a–d, with monthly averages for the
year in Fig.9e. The entropy measures were also computed for
some daily data, which were split into five time window in-
tervals to be able to study the changes in the pattern of the en-
tropy values in these intervals within a day (Figs.10and11).

3.1.5 Nonlinearity test using surrogate data

The test for nonlinearity using the method of surrogate data
according toKantz and Schreiber(2003) has been proven
to be a good test for nonlinearity in time series describing
a system. It has been accepted that the method of a sur-
rogate data test could be a successful tool for the identifi-
cation for nonlinear deterministic structure in experimental
data (Pavlos et al., 1999). This method involves creating a
test of significance of difference between a linearly devel-
oped surrogate and the original nonlinear time series to be
tested. The test is done by carrying out the computation of
the same quantity on both surrogates and the original time
series and then checking for the significance of difference
between the results obtained from the surrogates with the
original data.Theiler et al.(1992) suggested the creation of
surrogate data by using Monte Carlo techniques for accurate
results. According to this method, typical characteristics of
data under study are compared with those of stochastic sig-
nals (surrogates), which have the same auto-correlation func-
tion and the power spectrum of the original time series. One
can safely conclude from the test of significance carried out
on the surrogate and the original data that a stationary linear
Gaussian stochastic model cannot describe the process under
study provided that the behavior of the original data and the
surrogate data are significantly different.
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In this work 10 surrogate data were generated from the
original data set. The geometrical and dynamical character-
istics of the original data were then compared with those of
the surrogates using the statistical method of significance of
difference, which can be defined as

S =
αSurr− αOriginal

σ
. (13)

WhereαSurr is the mean value of the computed quantity
for the surrogate data andαOriginal is the same quantity com-
puted for the original TEC data,σ is the standard deviation
of the same quantity computed for the surrogate data. The
significance of difference considered for the null hypothesis
to be rejected here is greater than 2, which enables us to re-
ject the null hypothesis that the original TEC data describing
the ionospheric system can be modeled using a Gaussian lin-
ear stochastic model with confidence greater than 95 %. The
surrogate data test for all stations used in this study shows
that the Lyapunov exponent of the surrogate data for the se-
lected days in October are shown in Tables 1 and 2. The re-
sults show that the surrogate data test for the Lyapunov expo-
nent shows a significance of difference greater than 2 for all
the selected days for all the stations. Similar results were ob-
tained for mutual information, fraction of false nearest neigh-
bors and correlation dimension. This result gives us the con-
fidence to reject the null hypothesis that the data used cannot
be modeled using a linear Gaussian stochastic model, which
shows that the system is a nonlinear system with some level
of determinism. Figure12 shows the plots comparing the
mutual information plotted against time delay for the orig-
inal detrended data blue with the mutual information for the
surrogate data for TEC data measured at Lagos for the qui-
etest day of March 2011, while Fig.13compares the fraction
of false nearest neighbors for the same set of data. Table 1
shows the values of Lyapunov exponents for both original
detrended and its surrogate data for TEC measured in Lagos
during the quietest days of October 2011.

3.1.6 Contour/spatial plots

The contour plots for Lyapunov exponents and Tsallis en-
tropies for quiet and disturbed days were plotted against the
months of the year. This will enable us to see the behavior.
The plots were done to show the variation of the values of
these parameters with variations in quietness or disturbance
and also to show how this varies with each month. These
plots are made to show the response of the two parameters to
storms and other variations describing changes in the internal
dynamics of the ionosphere. These plots will also reveal the
extent of the similarities in the response of these two quan-
tifiers to ionospheric changes. The contour plots were made
in this work to show the effect of the degree of quietness and
monthly variation of solar activities on the variation of the
two quantifiers. Figures14and15show the contour plots for
Lyapunov exponents and Tsallis entropy for 2011 at Birnin
Kebbi station.

Fig. 12.The plots comparing the mutual information plotted against
time delay for the original detrended data (blue curve) with the mu-
tual information for 5 surrogate data (red curves) for TEC data mea-
sured at Lagos for the quietest day of March 2011.

Fig. 13.The plots comparing the fraction of false nearest neighbors
plotted against the embedding dimension for the original detrended
data (blue curve) with the mutual information for 5 surrogate data
(red curves) for TEC data measured at Lagos for the quietest day of
March 2011.

4 Discussion

The results presented in this work show that the ionosphere
shows a great degree of complexity for different times of the
day and for different geophysical conditions. The time series
plot in Fig.1 shows the dominant characteristics of the iono-
sphere. The time series plot shows the rise in TEC to peak
at the sunlit hours of the day; however, it can be seen that
the rising to the peak of the ionosphere, which is the domi-
nant dynamics during the day, make it impossible to see the
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Fig. 14. Contour plot of Lyapunov exponents at Enugu station for
quiet days of 2011.

internal dynamics of the system from the TEC time series
plot. It can be seen that the TEC time series curve is not a
smooth curve with tiny variations, which probably describes
a part of the internal dynamics. These visible tiny variations
around the edges of the time series plot can be regarded as the
rate of change of TEC, which is a phenomenon that can de-
scribe the influence of scintillations in the ionosphere. These
variations are however more obvious during the night time
between the 1100th and 1440th min of the day. It should be
noted here that scintillations have been described as a night-
time phenomenon. The detrended data shows the internal dy-
namics of the system more clearly, with a pattern similar to
the values around the night period mentioned earlier. The val-
ues after sunset at night time in Fig.1 show a pattern simi-
lar to the detrended TEC plot. It has been established that
TEC does not decrease totally throughout the night as ex-
pected normally through the simple theory of the fact that
TEC builds up during the day, but it shows some anomalous
enhancements and variations and this can occur under a wide
range of geophysical conditions (Balan and Rao, 1987; Balan
et al., 1991; Unnikrishnan and Ravindran, 2010).

The positive values of the Lyapunov exponent indicate
the presence of chaos (Wolf et al., 1985; Rosenstein et al.,

Fig. 15. Contour plot of Tsallis entropy at Enugu station for quiet
days of 2011.

1993; Hegger et al., 1999; Kantz and Schreiber, 2003). The
ionosphere is a dynamic system controlled by many param-
eters, including acoustic motions of the atmosphere electro-
magnetic emission and variations in the geomagnetic field.
Because of its extreme sensitivity to solar activity, the iono-
sphere is a very sensitive monitor of solar events. The iono-
sphere is that part of the upper atmosphere where free elec-
trons occur in sufficient density to have an appreciable influ-
ence on the propagation of radio frequency electromagnetic
waves. This ionization depends primarily on the Sun and its
activity. Ionosphere structure and peak densities in the iono-
sphere vary greatly with time (sunspot cycle, seasonally and
diurnally), with geographical location (polar, auroral zones,
mild latitudes, and equatorial regions), and with certain solar-
related ionospheric disturbances. During and following a ge-
omagnetic storm, the ionospheric changes around the globe
as observed from the ground site can appear chaotic (Fuller-
Rowell et al., 1994; Cosolini and Chang, 2001; Unnikrishnan
and Ravindran, 2010). The presence of chaos is indicated by
the positive values of the Lyapunov exponent found in all the
computations for all the TEC values obtained for the selected
days for all the measuring stations used in this work. This can
be expected, as it agrees with results from previous works
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that show that there is a reasonable presence of chaos in the
ionosphere, even in the midst of the influence of stochastic
drivers like solar winds (Bhattacharyya, 1990; Wernik and
Yeh, 1994; Kumar et al., 2004; Unnikrishnan et al., 2006a, b;
Unnikrishnan, 2010).

However, these values vary from day to day due to varia-
tions in ionospheric processes for different days on the same
latitude as seen in Fig.8a–d, with 8e showing the monthly
averages for the entire year. There are also latitudinal varia-
tions due to spatial variations in the various ionospheric pro-
cesses taking place simultaneously. The ionosphere is said
to have a complex structure due to these varying ionospheric
processes. One would expect all stations to have higher val-
ues of the Lyapunov exponent during quiet days; however,
the values are sometimes higher for disturbed days, and for
some stations the reverse may be the case. The values of
Lyapunov exponents are however always lower for storm pe-
riods. The higher values of Lyapunov exponents during the
quiet or relatively disturbed days indicate that the rate of ex-
ponential growth in infinitesimal perturbations in the iono-
sphere leading to chaotic dynamics might be of a higher de-
gree during those days compared with days with lower values
of Lyapunov exponents. The variation along the latitude also
shows the inconsistency and complexity of the ionospheric
processes. This is why for the same day of the month the val-
ues of Lyapunov exponents vary from one station to another.

The results of the correlation dimension show that the val-
ues computed are within the range of 2.8 to 3.5, with the
lower values occurring mostly during the storm periods. The
lower dimension during the storm periods compared with the
quiet days may be due to the effect of stochastic drivers like
strong solar winds and solar flares that occur during geomag-
netic storms on the internal dynamics of the ionosphere; this
must have been as a result of the fact that the internal dy-
namics must have been suppressed by the external influence.
The restructuring of the internal dynamics of the ionosphere
might be responsible for low-dimension chaos during storms
and also the lower values of other measures like the Lya-
punov exponents. The relatively disturbed day might how-
ever have a higher dimension so long as it is not a storm pe-
riod, and sometimes a relatively disturbed day of the month
might be a day with storms, and in this case there is usu-
ally a lower value of chaoticity and sometimes lower values
of the correlation dimension as well. The surrogate data test
shows a significance of difference greater than 2 for all the
computed measures and we were able to reject the null hy-
pothesis that the ionospheric system can be represented with
a linear model for all the data used from the stations. How-
ever, we found that the lower significance of difference cor-
responds to the lower values of Lyapunov exponents during
storms and extremely disturbed periods. This may be due to
the rise in stochasticity during the storm period as a result of
drop in values of computed quantities like Lyapunov expo-
nents. Our ability to reject the null hypothesis for all stations

shows however the presence of determinism and also that the
underlying dynamics of the ionosphere is mostly nonlinear.

Tsallis entropy, which is an information theory approach
derived from statistical mechanics, has been discovered to be
one of the best entropy measures that can be used to describe
magnetospheric dynamics, especially usingDst time series.
The major explanation for this is the fact that Tsallis entropy
is based on non-extensive statistical mechanics (Balasis et al.,
2009). The ionosphere is a system that can also be described
by similar dynamical processes as the magnetosphere, as
both systems are also coupled (Unnikrishnan, 2010). Some
of the investigations carried out on the chaoticity of both the
ionosphere and the magnetosphere have yielded similar re-
sults for storm and quiet periods (Unnikrishnan, 2008, 2010).
It implies that one can use similar methods to study the iono-
sphere and magnetosphere, and this informs the use of Tsallis
entropy to study the ionosphere in this work, since it has been
used to describe the magnetosphere.

Tsallis entropy is also studied for the five quietest and five
most disturbed days, just as the Lyapunov exponent and the
result show a similar variation to that of the Lyapunov ex-
ponent, as seen in Fig.9a–d with the monthly averages for
the entire year in Fig.9e. The daily five window intervals
for Tsallis entropy show no extensive increase in values of
Tsallis entropy, but rise and fall due to changes in the inter-
nal dynamics ad dynamical complexity of the ionosphere as
seen in Figs.10 and 11. These changes can indicate some
level of determinism in the ionosphere. The rise and fall in
the computed values of Tsallis entropy daily five window in-
tervals indicate the interplay between stochasticity and deter-
minism (Unnikrishnan and Ravindran, 2010). The Tsallis en-
tropy was able to show the deterministic behavior of the iono-
sphere considering its response during storm periods com-
pared with other relatively quiet periods, as the rapid drop
in values of Tsallis entropy during storms show that there
is a transition from higher complexity during quiet periods
to lower complexity during storms. This response in the val-
ues of Tsallis entropy is similar to the response of Lyapunov
exponent values during storms. This reaction to storms of
entropy computed for TEC was also described by the reac-
tion of Tsallis entropy computed forDst during storm peri-
ods (Balasis et al., 2008, 2009). This shows the deterministic
nature of the ionosphere as mentioned before.

The reaction to storms may be due to the influence of
stochastic drivers like strong solar winds flowing into the
system as a result of solar flare or CMEs that produce the
geomagnetic storms. Although there is always an influence
of corpuscular radiation in the form of solar wind flowing
from the Sun into the ionosphere, the influence is usually
low for days without storms coming compared with days
with geomagnetic storms as a result of solar flares, CMEs,
etc. However, during months with high solar activities within
the year, that is, during the equinoxial months, it can be seen
that there is a drop in the values of Tsallis entropy that can
also be clearly seen in the contour plots for quiet days. The
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presence of chaos even at quiet periods in the ionosphere may
be due to the internal dynamics and inherent irregularities of
the ionosphere, which exhibit nonlinear properties. However,
this inherent dynamics may be complicated by external fac-
tors like geomagnetic storms. This may be the main reason
for the drop in the values of Lyapunov exponents and Tsal-
lis entropy during storms. According toUnnikrishnan et al.
(2006a, b), geomagnetic storms are extreme forms of space
weather, during which external driving forces, mainly due to
solar wind, subsequent plasmasphere–ionosphere coupling,
and related disturbed electric field and wind patterns, will
develop. This in turn creates many active degrees of freedom
with various levels of coupling among them, which alters
and modifies the quiet time states of the ionosphere during
a storm period. This new situation developed by a storm may
modify the stability/instability conditions of the ionosphere,
due to the superposition of various active degrees of freedom.

The contour plots show a lower value for March and
September equinoxes in months in which storms were
recorded for all stations. This can also describe the influence
of solar wind (the major external factor) on the ionosphere,
since a stronger influence of solar wind on the ionosphere is
expected for those periods of the year. It is obvious from the
results that to a great extent the influx of solar wind modi-
fies the ionosphere or that it influences the internal dynamics
of the ionosphere during geomagnetic storms (Unnikrishnan
et al., 2006a, b; Unnikrishnan and Ravindran, 2010).

There are also many variations in the internal dynamics
of the ionosphere that could lead to changes in chaotic be-
havior. The variations of Lyapunov exponents during quiet
days might be a result of different variations in the intrinsic
dynamics of the ionosphere. Variation patterns at different
stations for the same quiet day might also be due to the same
reason. It can be affirmed that the ionosphere is a complex
system that varies with a short latitudinal or longitudinal in-
terval such that even stations with one or two degrees of lati-
tudinal differences might record different values on the same
day for both quiet and disturbed periods. The same might
also occur for storm periods. This is illustrated by the dif-
ferent pattern of variation of TEC recorded from different
stations within such a close range, as used in this study.

One might experience a more sporadic rate of change in
TEC as seen in the time series plots, and this is also reflected
in the TEC as a result of irregularities in the internal dy-
namics of the ionosphere, and these might be as a result of
plasma bubbles. Irregularities develop in the evening hours
at F region altitudes of the magnetic Equator, in the form of
depletions, frequently referred to as bubbles. The edges of
these depletions are very sharp, resulting in a large time rate
of TEC in the equatorial ionosphere, even during magneti-
cally quiet conditions. The large gradient of the equatorial
ionization persists in the local post-sunset hours till about
21:00 LT (DasGupta et al., 2007; Unnikrishnan and Ravin-
dran, 2010). The TEC data for one station might experience
an extremely sharp rate of change in TEC that may be due to

some plasma bubbles in that region, while the TEC from the
other station stays normal. These variations in the various in-
ternal dynamics like plasma bubbles leading to scintillation
can cause variations in the dynamical response of the TEC.
Hence, the irregular variation in the values of the Lyapunov
exponent and Tsallis entropy even in quiet periods for two
relatively close stations may be due to these irregularities.
This might also be responsible for the quiet days in the same
station having lower values of the Lyapunov exponent com-
pared with higher values recorded for disturbed days without
the external influence of storms.

As mentioned earlier, the disturbed day might be without
a storm for months without a record of a geomagnetic storm,
but might be the most disturbed day relative to the other
days of the same month according to the IQD and IDD clas-
sification. Higher values during such a disturbed day com-
pared with lower values of quiet days show that the variation
might be due to the inherent internal dynamics causing such
variations. This can also be affirmed fromUnnikrishnan and
Ravindran(2010), who stated that in the deterministic pic-
ture, irregularity can be generated automatically by the non-
linearity of the intrinsic dynamics, and an ionospheric scin-
tillation is caused by irregularities of the ionospheric electron
density along the signal propagation path.

The variations of these chaos and dynamical complexity
parameters might also be a result of the anomalous TEC en-
hancements that might occur at night. This is because there
can be anomalous TEC enhancements even at various geo-
physical conditions, as recorded byBalan and Rao(1987);
Balan et al.(1991). These effects can also be seen more
clearly in the Tsallis entropy values for the five window pe-
riod for quiet days of January 2011, because the night-time
value is higher and also shows a much higher series of fluc-
tuations during this period compared with other periods. As
mentioned inUnnikrishnan and Ravindran(2010), the irreg-
ular changes in the dynamical characteristics of TEC from
the results of the Lyapunov exponent and Tsallis entropy may
also be due to the collisional Raleigh–Taylor instability that
may give rise to a few large irregularities in L band mea-
surements (Rama Rao et al., 2006; Sripathi et al., 2008). All
these can be seen as internal factors responsible for varia-
tions in the dynamical response of TEC, as recorded from
the values of the Lyapunov exponents and Tsallis entropy
completed for days without storms, which might be quiet or
disturbed according to classification and which could also
account for higher values of these qualifiers during disturbed
days compared with quiet days. During storms however the
values were much lower.

The five window interval was able to show the detailed
dynamical behavior of the ionosphere within those intervals
of the day. It was also able to show the response to rate
of change in TEC for those intervals of the day. A drop
in Tsallis entropy values shows a response to a very sharp
fluctuation, showing the rate of change in TEC that can be
seen for the segmented TEC plots and the detrended TEC
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segments. Sudden drops in Tsallis entropy values at evening
and night time might also be due to night-time TEC enhance-
ment or other interval factors like plasma bubbles as men-
tioned before, since this can occur for all geophysical con-
ditions. From the results of the daily five window interval
computation of the Tsallis entropy, we can infer that the en-
hancement and the sporadic rate of change of TEC at any
time of the day (even at night), as seen in the detrended time
series, can lead to sudden changes in the values of Tsallis
entropy.

All the daily values of Tsallis entropy correlate positively
with the values of Lyapunov exponents at values between
0.78 and 0.81. The contour plots also show similarities for
both Lyapunov exponents and Tsallis entropy (Figs.12 and
13). This indicates that both the values of Lyapunov expo-
nents and Tsallis entropy can be used together as measures
to describe the determinism and dynamical complexity of the
ionosphere.

5 Conclusions

The chaotic behaviour and dynamical complexity of low-
latitude ionospheric behavior over some parts of Nigeria
was investigated using TEC time series measured at three
different stations, namely Birnin Kebbi (12◦32′ N, 4◦12′ E
and 0.62◦ N geomagnetically), Enugu (6◦26′ N, 7◦30′ E and
−3.21◦ N geomagnetically) and Lagos (6◦27′ N, 3◦23′ E and
−3.07◦ N geomagnetically) within the low-latitude region.
The time series data obtained from the GPS data measure-
ment were studied for chaoticity using phase space recon-
struction techniques, computation of Lyapunov exponents,
correlation dimension, and Tsallis entropy, and implemen-
tation of the surrogate data test was carried out. However, the
Tsallis entropy was extensively used for the study of dynam-
ical complexity of the ionospheric system described by the
TEC data. The detrending analysis of the TEC data was car-
ried out to reduce the influence of the diurnal variations so
as to be able to reflect the inherent dynamics of the system
for all the days considered in this work before it could be
subjected to the various nonlinear time series analyses men-
tioned above for quantification of deterministic chaos and to
show the presence of dynamical complexity. The detrended
time series were subjected to further analysis for phase space
reconstruction from which the choice of time delay of 30
was obtained, and an embedding dimension of 5 was con-
sidered in this study. The computed values of Lyapunov ex-
ponents show that there was the presence of chaos, since
all the results are positive values. The correlation dimension
computed was observed to be between the range of 2.8–3.5,
where the lowest values were recorded for the storm periods,
showing a transition to a lower dimension during the storm
period of October 2011.

The results of Tsallis entropy show that the changes in the
ionospheric response to disturbances may be due to geomag-

netic storms and other phenomena like changes in the inter-
nal irregularities (like plasma bubbles or scintillations) of the
ionosphere. The response of the Tsallis entropy to various
changes in the ionosphere also shows the deterministic na-
ture of the system. The results of the Tsallis entropy show
a lot of similarities to those of the ionosphere. Both results
show that equinoxial months and other months with geomag-
netic storms indicate low values of the Lyapunov exponent,
and the same was observed for Tsallis entropy. The results
of the values of the Lyapunov exponent were expected to
be lower for the days of the months in which a storm was
recorded, and it was found to be the same, which agrees with
previous works by other investigators. A similar pattern of
results was obtained for the computed values of Tsallis en-
tropy. However, the values of the two quantifiers for most
disturbed days of some months from the IDD classification
were higher than those of the quietest from the IQD classifi-
cation. This shows that a more relatively disturbed day of the
month without storms might be more chaotic.

The random variations in the values of chaoticity in the
detrended TEC describing the internal dynamics of the iono-
sphere as seen in the result obtained from both the Lyapunov
exponent and Tsallis entropy show that the ionosphere is not
totally deterministic but also has some elements of stochas-
ticity. The variation in the dynamical complexity can be seen
clearly from the rise and fall in the values of Tsallis entropy,
which demonstrates an inconsistent pattern. It can also be
seen that the results of Tsallis entropy following the same
pattern with the Lyapunov exponent show that both quanti-
fiers can be used simultaneously and comparatively as mea-
sures of chaos and dynamical complexity, as the correlation
of all the values obtained for both quantities gives values be-
tween 0.78 and 0.81, and observation of their similarities in
response to changes in the ionosphere can also be deduced
from the contour plots.

Considering the response of the chaotic quantifiers and en-
tropy to the changes in the geophysical conditions, namely
quiet, disturbed and storm periods, it can be seen that the
ionospheric internal dynamic is chaotic, with some measure
of complexity. However, change in the ionospheric response
due to external influence mainly occurs due to stochastic
drivers like solar wind. The intermittent variations between
stochasticity and determinism from the sudden rise and fall
in the value of the chaotic quantifiers and entropy measures
show the dynamical complexity of the ionosphere, and these
changes may occur not only due to changes in the three geo-
physical conditions, namely the quiet, disturbed and storm
periods, but also due to changes as a result of the irregulari-
ties in the internal system of the ionosphere.

The knowledge of being able to characterize the iono-
spheric behavior using Lyapunov exponents and Tsallis en-
tropy comparatively in work and the similarities in their re-
sponse to the dynamical changes in the ionosphere show their
ability to measure levels of determinism when used to com-
plement each other. The ability of these two quantifiers to
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describe the ionospheric response to changes in geophysical
conditions and also their ability to describe the changes in the
internal dynamics of the ionosphere indicate that these quan-
tifiers might be useful as indices for the description of the
state of the ionospheric conditions in the near future. The re-
lationship between these two quantifiers as established from
this work calls for more research in using the two qualifiers to
enable proper description and characterization of the state of
the ionosphere. Therefore there is a need for further work on
the use of these two parameters as indices that can describe
the state of the ionosphere from time to time.
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