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Abstract. Recent theoretical studies of the nonlinear wave-
particle interactions for relativistic particles have shown that
Landau resonant orbits could be efficiently accelerated along
the mean background magnetic field for propagation angles
θ in close proximity to a critical propagationθc associated
with a Hopf–Hopf bifurcation condition. In this report, we
extend previous studies to reach greater modeling capacities
for the study of electrons in radiation belts by including lon-
gitudinal wave effects and inhomogeneous magnetic fields.
We find that even though both effects can limit the surfatron
acceleration of electrons in radiation belts, gains in energy of
the order of 100 keV, taking place on one tenth of a millisec-
ond, are sufficiently strong for the mechanism to be relevant
to radiation belt dynamics.

1 Introduction

The following report aims at extending a theoretical model
for wave-particle coherent interaction (Osmane and Hamza,
2012a; Osmane and Hamza, 2012b) to characterize electron
dynamics in the Earth’s radiation belts. Electrons with en-
ergies in the MeV range have been frequently measured in
the inner and outer component of the radiation belt. An in-
crease in relativistic electron flux observed for short time
scales (from few hours to few days) and in correlation with
an increase of magnetic activity during the recovery phase
of geomagnetic substorms (Friedel et al., 2002; O’brien et
al., 2003). Not only relativistic electrons constitute a threat
to satellites and spacecrafts in orbit, but their production has
to be understood in order to account for the magnetospheric
energy budget. Thus far, numerous theoretical models have
been proposed. They can be grouped into two categories:

mechanisms relying on radial transport alone as well as those
that rely on internal mechanisms such as wave-particle in-
teractions and recirculation models (see, e.g.,Friedel et al.,
2002and reference therein,Albert, 2002; Shprits et al., 2006;
Summers and Omura, 2007). Radial transport is often de-
scribed as a diffusion mechanism driven by the fluctuations
in the large scale magnetosphere electric and magnetic fields.
As the particles spread from the outer magnetosphere to
smaller equatorial radial distances,L, the first two adiabatic
invariants are conserved while the third one is violated, re-
sulting in an increase of energy (Kulsrud, 2005). On the other
hand, local wave-particle interactions, and other local mech-
anisms accelerate particles already present in the inner mag-
netosphere. Even though it is accepted that radial diffusion
is an important transport mechanism, particle energization
on time scales shorter than the drift period predicted by ra-
dial diffusion has lead to hold wave-particle interaction re-
sponsible for a number of observables. Events occurring on
time scale of days are believed to originate from electromag-
netic cyclotron waves and whistler waves through pitch an-
gle scattering, whereas the more intense and monochromatic
chorus waves are believed to be the source of the strong en-
ergy increase occurring on the shortest time scales (Miyoshi
et al., 2002; Thorne et al., 2005; Albert, 2002; Summers
and Omura, 2007). More recently, observations of peaks of
phase space density, in contradiction with inward radial dif-
fusion, have shown that wave-particle interactions are dom-
inant mechanisms (Green and Kivelson, 2004; Horne et al.,
2005; Chen et al., 2007).

Aside from the outstanding problem of flux enhancement
of relativistic electrons in the radiation belt, wave-particle in-
teraction could also be proven to hold a decisive role in a
number of other magnetospheric problems. Among them lies
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the generation of relativistic electron microbursts observed in
association with VLF chorus waves (Lorentzen et al., 2001;
Summers and Omura, 2007; Omura Hikishima et al., 2010)
as well as precipitation rates of electrons entering the loss
cone in pitch angle.

Perhaps more importantly, the most recent waveforms
measured in the radiation belts have revealed additional mo-
tivating reasons to consider the wave-particle interaction as
a dominating energy-momentum exchange mechanism in
radiation belt problems. Large-amplitude, monochromatic,
obliquely propagating, and bursty waveforms were not only
repeatedly measured in the radiation belt (Catell et al., 2008;
Kellog et al., 2010; Kersten et al., 2011; Wilson III et al.,
2011), but appeared correlated with electron energization
(Wilson III et al., 2011) as well as relativistic microbursts
events (Kersten et al., 2011). The correlation between cho-
rus waves and electron energization in the radiation belts is
not recent, but it is suspected that if such waveforms were
more commonly present in the radiation belts they could be
the dominant trigger responsible for the energization of elec-
trons on short timescales. A study byYoon(2011) has shown
that if one solves the plasma equations self-consistently, such
waveforms were indeed capable of accelerating electrons on
kinetic time scales consistent with the observations. Even
though our study lacks the levels of self-consistency pro-
vided by the numerical method developed byYoon (2011),
we will show hereafter that we arrive at similar conclusions
if we choose parameters consistent with the radiation belt-
measured waveforms.

The large-amplitude wave forms are observed with a lon-
gitudinal component and the analysis above needs to be con-
ducted with the addition of this compressive electric compo-
nent. Whereas the addition of the electrostatic field with the
same phase as the electromagnetic components of the fields
would result in the same condition for the surfatron process, a
difference in phase would shift the Hopf bifurcation and have
non-trivial effects that need to be scrutinized. Moreover, ra-
diation belt electrons are confined in the magnetic field of the
Earth, and one must take into account the effect of field in-
homogeneities. We therefore proceed in this in this report by
modifying a previously derived dynamical system (Osmane
and Hamza, 2012a) to allow a study of relativistic electrons
in radiation belts.

2 Longitudinal effects

We follow the procedure described inOsmane and Hamza
(2012a); Osmane and Hamza(2012b) for the derivation of
a dynamical system to study the interaction of an ion with
an obliquely propagating wave composed of a transverse and
longitudinal component. As shown in Fig. 1, the electromag-
netic wave is composed of a transverse component along
the (x̂, ŷ) plane and a longitudinal component along theẑ
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Fig. 1. Electromagnetic field configuration. A circularly polarized
wave propagating obliquely to a background magnetic fieldB0 with
a longitudinal component.

direction superposed onto a background magnetic fieldB0 in
the (ŷ, ẑ) plane:

E(x, t) = δEem(x, t) + δEk(x, t)

B(x, t) = B0 + δB(x, t). (1)

We write the longitudinal component as a function of param-
etersη and9 as follows:

δEk(x, t) = ηδE sin(k z − ωt + 9) ẑ. (2)

The parameterη quantify the amplitude of the longitudi-
nal component of the wave with respect to the electromag-
netic component. Settingη = 1 would therefore result in hav-
ing equal electric field amplitudes parallel and perpendic-
ular to the wave vectork. Settingη = 0 recovers the case
treated inOsmane and Hamza(2012b). The parameter9 is
a phase difference between the longitudinal component and
the transverse component. It is added for the sake of com-
pleteness. The dynamical system equation is therefore not
fundamentally modified. The difference resides in the addi-
tion of an electric field component along thez component of
the Lorentz force. It is easy to show that the dynamical sys-
tem takes the following form (Osmane and Hamza, 2012b)
(see Appendix for detailed derivation of the purely transverse
case):

ṗ′
x = �0p

′
y cos(θ) − �1p

′
z cos(k z′) + �0

(
p′
z + pφ

)
sin(θ)

ṗ′
y = −�0p

′
x cos(θ) + �1p

′
z sin(k z′)

ṗ′
z = −p′

x�0 sin(θ) + �1
n2

−1
n2

(
px cos(k z′) − p′

y sin(k z′)
)

−
1
n2 �1ηp

′
z sin(kz′ + 9) + �1

n2
−1
n2 ηpφ sin(k ′

+ 9)

ż′ = p′
z v8/p8

(3)

for the dynamical gyrofrequencies�0 = eB0
mγ c

and�1 = eδB
mγ c

,
relativistic momentumpi =mγ v′

i , refractive indexn= c
vφ

,
phase speedv8 =ω/k and dots indicating time derivatives.
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The time evolution of the dynamical gyrofrequency can then
be written as:

d�0

dt
=

−�0�1p8

m2γ 2c2

(
p′
x cos(k z′) − p′

y sin(k z′)

+η
(
pφ + p′

z

)
sin(k z′ + 9)

)
. (4)

We can now proceed by studying the dynamical system prop-
erties in terms of the fixed points and their stability as well
as the dependence on wave parameters such as wave obliq-
uity θ and normalized wave amplitudeδ1 = δB/B0. More
importantly, we would like to know whether the surfatron
acceleration mechanism, the processes by which a particle
is trapped along the wave vector and accelerated uniformly
along the background magnetic field by the parallel electric
field (Osmane and Hamza, 2012b), is also available when a
longitudinal component is added. The surfatron is a trapping
effect, and is therefore only achievable if a parallel electric
field of sufficiently large amplitude is present. If the propaga-
tion of the wave is parallel, the parallel electric field is zero,
and neither trapping along the wave vector nor acceleration
along the background magnetic field is possible. We there-
fore assume that the longitudinal component can for various
parameters either enhance or destroy the surfatron.

A quick look at the dynamical system (Eq.3) shows that
the fixed point for the electromagnetic case (p′

x =p′
z = 0,

p′
y =−pφ tan(θ), k z′ = 0) exists for9 = 0. For 9 6= 0 no

fixed points exist. Hence, one would expect the accelera-
tion mechanisms associated with Hopf–Hopf bifurcation to
be available for sufficiently large wave amplitude capable of
trapping when9 = 0. Whenever9 6= 0, one can think of the
longitudinal component as a perturbation to uniformly accel-
erated particles (orbits). Hence, particles (orbits) could still
be energized, but the longitudinal component could break the
locking eventually. Additionally, if the longitudinal compo-
nent of the wave, for given parametersη and9, cancels the
parallel component of the electric field with respect to the
background magnetic field due to the electromagnetic com-
ponent, no uniform acceleration should take place. This con-
dition can be written as follows:

δE · b0 = −δEy sin(θ) + δEk cos(θ) = 0. (5)

Setting 9 = 0, one finds that this condition translates to
η =− tan(θ), for which neither trapping nor uniform accel-
eration should be possible. We therefore expect the lack of a
parallel electric field component to translate into unstable or-
bits for linear perturbation around the fixed points. In the next
section we apply the stability analysis to the dynamical sys-
tem (Eq.3) for the fixed point (p′

x =p′
z = 0,p′

y =−pφ tan(θ),
k z′ = 0).

2.1 Stability analysis

We now proceed similarly as for the electromagnetic case
(Osmane and Hamza, 2012b) to quantify the linear stability

of the fixed point1. In order to do so we linearize the
dynamical system and assume a perturbation of the form

4∑
i=1

ξi e
λi t , for which an imaginary eigenvalue translates into

marginally stable orbits, negative eigenvalues into linearly
stable orbits, and positive eigenvalues linearly into unsta-
ble orbits. Computing the resulting Jacobian evaluated at the
fixed pointJ = ∂F

∂xi
|x0 for the longitudinal case, we find the

following matrix:

J =


0 a b 0
c 0 0 0
d 0 0 e
0 0 f 0


for the parametersδ1, δ2 = mωc

eB0
, θ andη:

a =
cos(θ)

δ2γ0

(
1 −

tan(θ)2

n2 − 1

)
(6)

b =

∓δ1 + sin(θ) n2

n2−1

δ2γ0
(7)

c = −
cos(θ)

δ2γ0
(8)

d =

(
−sin(θ) ± δ

n2
− 1

n2

)
1

δ2γ0
(9)

e = ∓
δ1

δ2

n2
− 1

n2
(tan(θ) + η) − λ (10)

f =
1

γ0
=

√
1 −

v2
8

c2

(
1 + tan2(θ)

)
. (11)

Once again the dark± and∓ correspond to the fixed points
components forZ = (0,π ), that is the upper sign forZ = 0 and
the lower one forZ =π . Hence, all four fixed points are rep-
resented in this Jacobian matrix and their stability can be an-
alyzed by choosing the right± symbols. In order to find the
eigenvalues, we need to solve the characteristic polynomial
given by the following expression:

χ(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣

−λ
cos(θ)
δ2γ0

(
1 −

tan(θ)2

n2−1

)
∓δ1+sin(θ) n2

n2−1
δ2γ0

0

−
cos(θ)
δ2γ0

−λ 0 0(
−sin(θ) ± δ1

n2
−1
n2

)
1

δ2γ0
0 ∓

δ1
δ2

n2
−1
n2 (tan(θ) + η)

0 0 1
γ0

−λ

∣∣∣∣∣∣∣∣∣∣∣∣
.

A little algebra results in the following bi-quadratic
expression:

χ(λ) = λ4
+ ζ1λ

2
+ ζ2 = 0 (12)

with the valuesζ1 andζ2 given by the following expressions:

1The fixed points are located by setting the four equations of
motions as zero and resolving the remaining algebraic equations.
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Fig. 1. Electromagnetic field configuration. A circularly polarized wave propagating obliquely to a background

magnetic field B0 with a longitudinal component.
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Fig. 2. Eigenvalues’ dependence on the propagation angleθ for
fixed parametersδ1 = 0.07,δ2 = 0.21,n2 = 2, η = 0.9 and the fixed
point of componentZ0 = 0. A Hopf–Hopf bifurcation takes place
for tan(θc)2 =n2

− 1 and a second bifurcation takes place for
η =− tan(θ), corresponding to a null parallel electric field. The fixed
point is stable forθ < θc andη>− tan(θ) and unstable forθ > θc
andη>− tan(θ).

ζ1 =
δ1

δ2γ0

n2
− 1

n2
(tan(θ) + η)

+
1

δ2
2 γ

2
0

(
δ1
n2

− 1

n2
+ 1 ∓ 2δ1 sin(θ)

)
ζ2 =

δ1

δ3
2 γ

5
0

n2
− 1

n2

(
sin(θ) cos(θ) + ηcos(θ)2

)
.

One can compare the Jacobian matrix as well as the charac-
teristic equation for the purely electromagnetic case with the
expressions above for an additional longitudinal component
with 9 = 0. It is clear that minimal differences arise, as de-
noted in the appearance of a factor ofη in the Jacobian and
the characteristic equation. The characteristic equation once
again has four roots given by the following equation:

λ1,2,3,4 = ±

√√√√−ζ1 ±

√
ζ 2

1 − 4ζ2

2
. (13)

Figure2 shows the dependence of all four eigenvalue solu-
tions for typical parameters relevant to space plasmas on the
propagation angle. It is clear that the Hopf–Hopf bifurcation
takes place once again for parameters resulting inγ0 = 0. That
is, whenever parameters are such thatn2

− 1 = tan2(θ), the
fixed point evolves from marginally stable to linearly unsta-
ble when we add a longitudinal component withψ = 0. Addi-
tionally, a second bifurcation takes place whenη =− tan(θ).
Settingη =− tan(θ) in the coefficientsζ1 andζ2 results in the
following characteristic equation:λ4

+ ζ1λ
2 = 0. Withζ1>0

for δ1 ∼O(1), it is clear that two eigenvalues are null and two
eigenvalues are imaginary. As noted in the previous section,
this expression denotes a null parallel electric field result-
ing in the destructive interference of the parallel longitudinal
component and the parallel electromagnetic component. We
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Fig. 2. Eigenvalues’ dependence on the propagation angle θ for fixed parameters δ1 = 0.07, δ2 = 0.21, n2 = 2,

η = 0.9 and the fixed point of component Z0 = 0. A Hopf-Hopf bifurcation takes place for tan(θc)
2 = n2− 1

and a second bifurcation takes place for η =−tan(θ), corresponding to a null parallel electric field. The fixed

point is stable for θ < θc and η >−tan(θ) and unstable for θ > θc and η >−tan(θ).

Fig. 3. Orbit for parameters δ1 = 0.1,vφ = 0.33c,θ =−31o, δ2 = .1 for η >−tan(θ) (right panel) and η <

−tan(θ) (left panel). A transition from untrapped to trapped orbit is observed as we evolve the parameter η.
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Fig. 3. Orbit for parametersδ1 = 0.1,vφ =0.33c, θ =−31◦, δ2 = 0.1
for η>− tan(θ) (right panel) andη<− tan(θ) (left panel). A tran-
sition from untrapped to trapped orbit is observed as we evolve the
parameterη.

now investigate the nonlinear effects of the longitudinal com-
ponents on the surfatron process for various parametersη and
ψ .

2.2 Landau resonant orbits

In this section we determine whether the addition of the lon-
gitudinal component enhances or prevents the uniform accel-
eration for orbits caught in the basin of attraction centered at
Landau resonance. As noted in the stability analysis, a Hopf–
Hopf bifurcation does indeed take place when a longitudinal
component is added. The main difference in the linear stabil-
ity around the fixed points resides in the addition of a par-
allel electric field capable of canceling the electromagnetic
component parallel to the background field. Hence, when-
everη =− tan(θ), the parallel component of the electric field
is zero and the surfatron process cannot take place. Indeed,
choosing the parameterη to coincide with

√
n2 − 1 results

in reducing the Hopf–Hopf bifurcation to a single Hopf bi-
furcation (one pair of imaginary eigenvalues crossing the real
plane instead of two pairs). For such a parameter the surfa-
tron process is not expected to be applicable because a paral-
lel electric field causing the uniform acceleration is now set
to a null value.

Figure 3 shows two orbits forη>− tan(θ) (in the right
panel) andη<− tan(θ) (in the left panel). A transition from
untrapped to trapped orbit is observed as we evolve the pa-
rameterη. For η = tan(θ) the particle located sufficiently
close to the fixed point (Landau resonant velocity) is trapped,
but small perturbation results in untrapped orbits.

In Fig. 4, the four panels represent a seeded particle with
energy of the order of 100 keV but forθ = 40◦ (up and left),
θ = 55◦ (up and right),θ = 70◦ (down and left) andθ = 85◦

(down and right). The particle gains a maximum amount
of energy forθ = 70◦, which corresponds to a propagation
angle close toθc and to the surfatron process. The lon-
gitudinal component for parametersδ1 = 0.045,vφ = 0.33c,
η =−1, andδ2 = 0.1 enhances the parallel electric field com-
ponent and results in smaller range of values inδ1 = δB/B0

Nonlin. Processes Geophys., 21, 115–125, 2014 www.nonlin-processes-geophys.net/21/115/2014/
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Fig. 4. Orbit for parameters δ1 = 0.045,vφ = 0.33c,η =−1, δ2 = .1 and θ = 40o(up and left), θ = 55o(up

and right), θ = 70o(down and left) and θ = 85o(down and right). Each case is seeded with a particle of energy

of the order of 100 keV. The particle gains a maximum amount of energy for θ = 70o, which correspond to a

propagation angle close to θc. The longitudinal component can enhance the parallel electric field component

and result smaller range of values δ1 = δB/B0 for which the surfatron process is accessible. In this case the

ratio δ1 ∼ 4%.
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Fig. 4.Orbit for parametersδ1 = 0.045,vφ = 0.33c, η =−1, δ2 = 0.1
andθ = 40◦ (up and left),θ = 55◦ (up and right),θ = 70◦ (down and
left) andθ = 85◦ (down and right). Each case is seeded with a parti-
cle of energy of the order of 100 keV. The particle gains a maximum
amount of energy forθ = 70◦, which corresponds to a propagation
angle close toθc. The longitudinal component can enhance the par-
allel electric field component and result in a smaller range of values
δ1 = δB/B0 for which the surfatron process is accessible. In this
case the ratioδ1 ∼ 4 %.

for which the surfatron process is accessible. In this case
the ratioδ1 is of the order of 4 %. This order of magnitude
for the electromagnetic wave component is comparable to
large-amplitude bursty waves observed in the radiation belts
(Catell et al., 2008; Kellog et al., 2010; Kersten et al., 2011;
Wilson III et al., 2011).

However, before concluding that the longitudinal compo-
nent preserves the surfatron mechanism forθ = θc, we need
to evaluate the effects of the phase difference9. In Fig. 4
the parameter9 has been set to zero. Yet, when9 6= 0, the
dynamical system possesses no fixed points and the acceler-
ation observed for the surfatron process should not arise uni-
formly. Panels in Fig.5 show particles forη = 1, δ1 = 0.06,
δ2 = 0.1,n2 = 9, andθ =−71◦ and three different values for
9 =−π/4, 0 andπ/4. It is seen that depending on the phase
difference, the surfatron process can still take take place for
sufficiently long time to energize the particle. As for the
purely electromagnetic case, a charged particle in this field
would gain a significant amount of energy (from keV lev-
els to MeV) on small kinetic time scalesωt ∼ 0.1�0t ∼ 10.
Hence a particle can be energized in such a field on time
scales of the order of the 1/100 of a second for a wave
frequencyω∼ 3 kHz. Since the acceleration takes place on
very small time scales, inhomogeneous effects should not
prevent the mechanism entirely. We therefore conclude this

section by suggesting that the large-amplitude electromag-
netic waves observed in the radiation belts can energize par-
ticles efficiently on kinetic time scales for propagation an-
gles close to the critical Hopf–Hopf bifurcation valueθc. If
the propagation angle is not sufficiently close toθc, then the
particle will just oscillate back and forth in the potential of
the electric field and no significant gain in energy should be
observed. We now proceed in the next section by quantifying
the inhomogeneous effects on the surfatron herein described.

3 Inhomogeneous magnetic field effects on the
surfatron

In this section we want to include the effects of a non-
homogeneous magnetic field on the acceleration process de-
scribed in the previous section. We first discuss the motion of
a particle in an inhomogeneous magnetic field with no wave-
particle interaction. We then provide an approximation for
the time scales for which inhomogeneous effects can result
in surfatron breaking and a discussion on numerical integra-
tion of a particle trajectory interacting with a large-amplitude
electromagnetic wave in an inhomogeneous magnetic field.

3.1 Particle orbits in an inhomogeneous magnetic field

Relativistic electrons trapped in the radiation belts bounce
back and forth along the (approximately) dipolar magnetic
field of the Earth. Before addressing the more complicated
motion of relativistic electrons bouncing back and forth in
the Earth’s magnetic field and at the same time interacting
with an obliquely propagating wave, we would like to quan-
tify the impact of the magnetic field inhomogeneities on the
relativistic motion. Assuming that the magnetic moment

µ =
p2

⊥

2B
=
mc2(γ 2

− 1) sin(α)2

2B
(14)

is an adiabatic invariant, we can derive the forces due to the
magnetic field inhomogeneities as follows.

The magnetic force perpendicular to the magnetic field can
be deduced from the conservation of the magnetic moment:

ṗ⊥ = mγ µḂ/p⊥. (15)

Replacingµ in terms ofB andp⊥, andḂ = v‖ ∇‖B, we find
the following expression for the force perpendicular to the
magnetic field:

ṗ⊥ =
p‖p⊥ ∇‖B

2mBγ
. (16)

Using the above equation and assuming that the energy of the
particle is conserved to first order inµ for a particle moving
in an inhomogeneous magnetic field, we can write:

γ γ̇ = p‖ ṗ‖ + p⊥ ṗ⊥ = 0. (17)
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Fig. 5. Effect of the phase angle ψ for the longitudinal component on the surfatron process for parameters

(δ1 = 0.06, δ2 = 0.1,n2 = 9,θ =−71o). The phase-angle for a given parameter η determines whether the

longitudinal parallel component is enabling or breaking the locking of particles into the surfatron.

Fig. 6. Slab geometry for the dipolar magnetic field
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Fig. 5. Effect of the phase angleψ for the longitudinal component on the surfatron process for parameters (δ1 = 0.06, δ2 = 0.1, n2 = 9,
θ =−71◦). The phase angle for a given parameterη determines whether the longitudinal parallel component is enabling or breaking the
locking of particles into the surfatron.

Therefore, the equation of motion in the parallel direction
can be written as:

ṗ‖ = −p⊥ ṗ⊥/p‖

= −
p2

⊥
∇‖B

2mBγ
= −µ∇‖B. (18)

Settingγ = 1 in Eqs. (18) and (16) recovers the expressions
for non-relativistic particles (Bell and Inan, 1981). We can
show that similarly to the non-relativistic case, the conserva-
tion of magnetic moment results in magnetic trapping. As-
suming a slab geometry for the magnetic field as shown in
Eq. (6) for z∼ s‖, i.e., the component along the parallel co-
ordinate, and the magnetic field of the formB(s‖)=B0(1 +

9
2 s

2
‖
/R2) to mimic the dipolar field, for whichR is equal

to the Earth’s radius, we can solve both Eqs. (18) and (16).
Hence, replacing the expression forB(s‖) in Eq. (18) results
in the following equation:

d2 s‖

dt2
+

9µB0

mγ R2
s‖ = 0. (19)

The solution of the above equation is therefore of the form

s‖ ∼ cos(
√

9µB0
mγ R2 t). Replacing the expression for the mag-

netic field in Eq. (16) for the perpendicular momentum, we
find the following differential:

dp⊥

p⊥

=
9

2R2
d

(
s2
‖

)
(20)

with a perpendicular momentum solution

p⊥ = p⊥0e

(
9

2R2 s
2
‖

)
. (21)

Replacing the solution fors‖ in the above equation provides
for a complete solution for the particle motion in the inho-
mogeneous fieldB(s‖)=B0(1 +

9
2 s

2
‖
/R2). We see that the

particle oscillates back and forth along the parallel direction,
while the perpendicular momentum increases as the particle
reaches regions of larger magnetic field strength correspond-
ing to s‖ ∼R.

3.2 Surfatron breaking due to inhomogeneous B field
effect

Numerous effects can cause the breaking of the surfatron pro-
cess: dispersive wave effects, dissipation of the wave ampli-
tude, inhomogeneous magnetic fields damping the acceler-
ation along the field line, or simply the result of precipita-
tion into the atmosphere. Because of the slow time scales
upon which the surfatron process becomes interesting to sus-
tain particle precipitation, and since other effects would take
place on longer time scales, we now focus solely on the in-
homogeneous effect. That is, we want to obtain time scales
for which the surfatron would not be prevented by field
inhomogeneities.

The surfatron results in the parallel acceleration of a par-
ticle caused by the parallel component of the electric field.
As demonstrated in the previous section, magnetic field in-
homogeneities result in a−µ∇B force that can reduce the
surfatron process, in the same way that the parallel elec-
tric field from a longitudinal component can prevent parallel
acceleration. Hence, wheneδE‖ ∼µ∇B, parallel accelera-
tion becomes marginal. This condition translates as follows:

s‖

R
∼
δ1

n

�0R(
γ 2

0 − 1
)

sin(α0)
2 c

(22)
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Fig. 5. Effect of the phase angle ψ for the longitudinal component on the surfatron process for parameters

(δ1 = 0.06, δ2 = 0.1,n2 = 9,θ =−71o). The phase-angle for a given parameter η determines whether the

longitudinal parallel component is enabling or breaking the locking of particles into the surfatron.

Fig. 6. Slab geometry for the dipolar magnetic field
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Fig. 6.Slab geometry for the dipolar magnetic field.

for the parametersδ1 = δB/B0 and n= c/vφ , the gyrofre-
quency�0 = eB0/mc as well as the pitch angleα0 and
Lorentz factorγ0 of the particle at the equatorial region.
Settingn= 3, δ1 ∼ 0.01, R∼ 6000 km,�0 ∼ 3× 104 for a
particle with an initial energy of the order of 100 keV and
pitch angle of 45◦, we find s‖ ∼ 104 km. Therefore, we can
conclude that a particle would gain energy of the order of
W ∼ eδE‖ s‖, which corresponds to a gain in energy of the
order of 100 keV for an electron interacting with an electric
field of 100 mV m−1. This approximation is comparable to
energization of electrons reported byArtemyev et al.(2013)
who found gains of the order of 80–100 keV for particles go-
ing through several Landau resonance in an inhomogeneous
field. The difference with our result hereafter, however, is that
the particle gains energy during the time of one Landau reso-
nance, making the process much more efficient, even though
less probable.

We now write a dynamical system for a relativistic charged
particle interacting with an obliquely propagating wave in an
inhomogeneous field. In order to make the set of equations
more transparent to the reader, we write them in a coordinate
axis for whichẑ ‖ b̂, that is the background magnetic field is
parallel to thez axis. We denotêy = ⊥̂1 andx̂ = ⊥̂2. Rewrit-
ing the magnetic field in terms of this coordinate system, we
obtain: δBx = δB sin(8)
δBy = δB cos(8) cos(θ)
δB‖ = −δB cos(8) sin(θ)

(23)

and similarly, using Faraday’s laws, we obtain the following
components for the electric field: δEx = −v8 δB cos(8)/c
δEy = v8 δB sin(8) cos(θ)/c
δE‖ = −v8 δB sin(8) sin(θ)/c

(24)

for the phase8= k‖ z+ k⊥1y−ωt = k z− k y−ωt . We
choose the background magnetic field to be writ-
ten as B0 =−yB0g

′(z) ŷ+B0g(z) ẑ, for the function
g(z)= 1+ z2/R2 and its partial derivative with respect to
z, g′(z), denoting the background magnetic field variation

Fig. 7. Orbits for parameters δ1 = 0.01,vφ = 0.33c,δ2 = 0.1 and θ = 71.9o. The left panel shows the perpen-

dicular component of momentum Py against the perpendicular position Y . The right panel shows the parallel

component of momentum Pz against the parallel position Z. Initially the parallel component of momentum

increases because of surfatron, until the −µ∇B force becomes sufficiently strong to break the trapping due to

the parallel electric field. The particle gains energy of the order of 76 keV during the process.

Fig. 8. Orbits for parameters δ1 = 0.01,vφ = 0.33c,δ2 = 0.1 and θ = 71.9o. The left panel shows relativistic

Lorentz factor γ against normalized time τ = ωt. The right panel shows the three dimensional orbit in velocity

space V x,V y,V z. For τ < 12, the particle is uniformly accelerated through the surfatron process along the

parallel direction. Once the surfatron is made inoperable, the magnetic field gradient dictates the particle orbits

and conservation of µ leads to transfer of energy to the perpendicular direction. The gyroradius of the particle

increases (Vy� Vz) as the particle comes out of the surfatron.
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Fig. 7. Orbits for parametersδ1 = 0.01, vφ = 0.33c, δ2 = 0.1 and
θ = 71.9◦. The left panel shows the perpendicular component of mo-
mentumPy against the perpendicular positionY . The right panel
shows the parallel component of momentumPz against the parallel
positionZ. Initially the parallel component of momentum increases
because of surfatron, until the−µ∇B force becomes sufficiently
strong to break the trapping due to the parallel electric field. The
particle gains energy of the order of 76 keV during the process.

as the particle propagates along the field line and away
from the equatorial regionz∼ 0. We can then write the
dynamical system in terms of the variables (px , py , pz, z,
y, �0 = eB0/mγ c, �1 = eδB/mγ c) and the functionsg(z)
andq(y, z)=y g′(z):

ṗx = −pφ�1cos(8)+py�0g(z)−pz�0q(y,z)−py�1cos(8)sin(θ)
−pz�1cos(8)cos(θ)
ṗy = pφ�1sin(8)cos(θ)−px�0g(z)+pz�1sin(8) + px�1cos(8)sin(θ)
ṗz = px�0q(y,z)−pφ�1sin(8)sin(θ)+px�1cos(8)cos(θ)−py�1sin(8)
ẏ = py v8/p8
ż= pz v8/p8

(25)

and

�̇0 =
d

dt

(
eB0

mcγ

)
= −

(
eB0

mcγ

)
1

γ

dγ

dt

= −�0
p ṗ

m2γ 2c2

= −�0
pc2

m2c4 + p2c2
ṗ

=
−�0�1p8

m2γ 2c2

(
sin(8)

(
py cos(θ) − pz sin(θ)

)
− px cos(8)

)
. (26)

We then proceed by normalizing the variables as follows:
pi/mvφ =Pi , k z=Z, k y =Y , �0/ω = δ3 and ωt = τ , and
write the dynamical system in terms of the normalized vari-
ablesPx , Py , Pz, Y , Z, andδ3 and the parametersδ1, δ2 and
n as previously defined.

Ṗx = −δ1cos(8)/δ2 +Pyδ3g(Z)−Pzδ3q(Y, Z)−Pyδ1δ3cos(8)sin(θ)
−Pzδ1δ3cos(8)cos(θ)
Ṗy = δ1sin(8)cos(θ)/δ2 −Pxδ3g(Z)+Pzδ1δ3sin(8)+Pxδ1δ3cos(8)sin(θ)
Ṗz = Pxδ3q(Y,Z)− δ1sin(8)sin(θ)/δ2 +Pxδ1δ3cos(8)cos(θ)− Pyδ1δ3sin(8)
Ẏ = δ2δ3Py
Ż = δ2δ3Pz

δ̇3 = −
δ1δ2δ

3
3

n2

(
sin(8)

(
Py cos(θ)−Pz sin(θ)

)
− Px cos(8)

)
(27)

We can now integrate this dynamical system for parame-
ters relevant to radiation belt electrons with large-amplitude
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obliquely propagating waves to study the surfatron process
in an inhomogeneous magnetic field mimicking the Earth’s
magnetic field. Figure8 show orbits for parametersδ1 = 0.01,
vφ = 0.33c, δ2 = 0.1 andθ = 71.9◦. The left panel shows the
perpendicular component of momentumPy against the per-
pendicular positionY . The right panel shows the paral-
lel component of momentumPz against the parallel posi-
tion Z. Initially the parallel component of momentum in-
creases because of surfatron, until the−µ∇B force becomes
sufficiently strong to break the trapping due to the parallel
electric field. The particle gains energy of the order of 76 keV
during the process. This gain in energy is of similar order
(∼ 100 keV) as the one computed above for a simple balance
of forces. Even though this gain appears modest, it should be
kept in mind that it takes place on a time scale of the order of
τ ∼ 12, hencet ∼ 10 ms for a wave frequencyω∼ 3 kHz. As
the surfatron acceleration is lost, the conservation of the adi-
abatic invariant leads to a transfer of energy from the parallel
direction to the perpendicular as noted by the continuous in-
crease of the perpendicular momentum forτ >12. Since the
gain in energy is irreversible, the particle uplifted by tens of
keV can only oscillate back and forth in the potential of the
wave and transfer energy along the perpendicular or parallel
direction to preserve adiabatic invariance.

This point is clearly demonstrated in the right panel of
Fig. 8. As the particle is uniformly accelerated,γ increases.
Once the surfatron is broken, the particle resides in a state
of higher energy. The left panel of the figure shows the three-
dimensional orbit in velocity spaceV x,V y,V z. Forτ <12,
the particle is uniformly accelerated through the surfatron
process along the parallel direction. Once the surfatron is
made inoperable, the magnetic field gradient dictates the par-
ticle orbits and conservation ofµ leads to transfer of energy
to the perpendicular direction. As denoted by the left panel
of Fig. 8, the gyroradius of the particle increases (Vy �Vz)
as the particle comes out of the surfatron.

Even though the surfatron accelerates particles parallel to
the magnetic field, the inhomogeneous field results in redis-
tributing the energy perpendicularly to the magnetic field.
Hence, such a process, if statistically common in the radi-
ation belts, could provide for an explanation to anisotropic
distribution resulting in whistler wave turbulence without the
need to resort to cyclotron resonance. Indeed, both resonant
and nonresonant electron whistler instabilities require an ini-
tial anisotropy withK⊥, the perpendicular kinetic energy
density, to exceedK‖, the parallel kinetic energy density by a
certain amount. As the waves are being triggered by the insta-
bility andK‖/K⊥ reaching marginal stability levels, particles
in the tail can be accelerated through the surfatron, travel to-
ward a region of larger magnetic field and gain greater gyro-
radius, bounce back to equatorial region and contribute to the
breaking of the marginal stability state of the whistler turbu-
lence. This back and forth mechanism could then be stopped
by precipitating the particles in the atmosphere, instead of
having them bounce back toward the equatorial region.

Fig. 7. Orbits for parameters δ1 = 0.01,vφ = 0.33c,δ2 = 0.1 and θ = 71.9o. The left panel shows the perpen-

dicular component of momentum Py against the perpendicular position Y . The right panel shows the parallel

component of momentum Pz against the parallel position Z. Initially the parallel component of momentum

increases because of surfatron, until the −µ∇B force becomes sufficiently strong to break the trapping due to

the parallel electric field. The particle gains energy of the order of 76 keV during the process.

Fig. 8. Orbits for parameters δ1 = 0.01,vφ = 0.33c,δ2 = 0.1 and θ = 71.9o. The left panel shows relativistic

Lorentz factor γ against normalized time τ = ωt. The right panel shows the three dimensional orbit in velocity

space V x,V y,V z. For τ < 12, the particle is uniformly accelerated through the surfatron process along the

parallel direction. Once the surfatron is made inoperable, the magnetic field gradient dictates the particle orbits

and conservation of µ leads to transfer of energy to the perpendicular direction. The gyroradius of the particle

increases (Vy� Vz) as the particle comes out of the surfatron.
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Fig. 8. Orbits for parametersδ1 = 0.01, vφ = 0.33c, δ2 = 0.1 and
θ = 71.9◦. The left panel shows the relativistic Lorentz factorγ
against normalized timeτ =ωt . The right panel shows the three-
dimensional orbit in velocity spaceV x, V y, V z. For τ <12, the
particle is uniformly accelerated through the surfatron process along
the parallel direction. Once the surfatron is made inoperable, the
magnetic field gradient dictates the particle orbits and conservation
of µ leads to transfer of energy to the perpendicular direction. The
gyroradius of the particle increases (Vy �Vz) as the particle comes
out of the surfatron.

4 Conclusions

We extended a previous theoretical study (Osmane and
Hamza, 2012b) of nonlinear wave-particle interactions for
the study of electrons in radiation belts by including lon-
gitudinal wave effects and inhomogeneous magnetic fields.
We found that, similarly than for the electromagnetic case
in a uniform background field, the acceleration of particles
along the background magnetic field, for propagation angles
in close proximity to a critical propagationθc and associ-
ated with a Hopf–Hopf bifurcation condition, can arise on
sufficiently small timescales to be of relevance to radiation
belt dynamics. Even though longitudinal wave components
and inhomogeneous magnetic fields can limit the surfatron
acceleration of electrons in radiation belts, gains in energy
of the order of 100 keV, taking place on one tenth of a mil-
lisecond, are sufficiently strong for the mechanism to sustain
particle energization on timescales of the order of 0.1 ms. Fu-
ture studies will investigate the effect of wave obliquity and
field inhomogeneities on electron distribution functions for
parameters consistent with radiation belt dynamics.

Appendix A

Dynamical system derivation for a transverse
electromagnetic wave

Our starting point is the relativistic Lorentz equation for the
motion of a particle in an electromagnetic field. The force is
therefore written as

dp

dt
= e

[
E(x, t) +

v

c
× B(x, t)

]
(A1)
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for a particle of momentump =mγ v, rest massm and
chargee. The Lorentz contraction factorγ is defined as
follows:

γ =
1√

1 −
v2

c2

. (A2)

In order to avoid dealing with both the velocity and the mo-
mentum in the dynamical system, we simply write the equa-
tions in terms of the more physically relevant quantity of the
two, that is the relativistic momentump:

dp

dt
= e

[
E(x, t) +

p

mγ c
× B(x, t)

]
. (A3)

Similarly, the Lorentz factor can be written as follows:

γ =

√
m2c4 + p2c2

mc2
. (A4)

The electromagnetic field is superposed onto a background
magnetic fieldB0.

E(x, t) = δE(x, t) (A5)

B(x, t) = B0 + δB(x, t) (A6)

The electromagnetic wave vector points in theẑ direction and
the background magnetic field lies in they− z plane.

k · B0 = kB0 cos(θ) (A7){
δE = δEx x̂ + δEy ŷ

δB = δBx x̂ + δBy ŷ
(A8)

where{
δBx = δB sin(k z − ωt)

δBy = δB cos(k z − ωt)
. (A9)

Faraday’s law, expressed in terms of the Fourier components
gives the relation between the components of the electromag-
netic fields.

ck × δE(k, ω) = ωδB(k, ω) (A10)

The electric force is therefore written asFEx = evφ δB cos(k z − ωt)/c

FEy = −evφ δB sin(k z − ωt)/c

FEz = 0
(A11)

for which vφ =ω/k is the phase velocity. Taking the cross
product of the momentum and the magnetic field, the mag-
netic force is written as
FBx =

1
mγ c

(
py eB0 cos(θ) + pz eB0 sin(θ) − pz eδBy

)
FBy =

1
mγ c

(−px eB0 cos(θ) + pz eδBx)

FBz =
1

mγ c

(
−px eB0 sin(θ) + px eδBy − py eδBx

) . (A12)

We can write the dynamical system equations in terms
of the following variables:p8 =mγ v8; �1 = eδB/mcγ ;
�0 = eB0/mcγ , which results in the following equations:
ṗx = py�0 cos(θ) + (p8 − pz) �1 cos(k z − ωt) + pz�0 sin(θ)
ṗy = −px�0 cos(θ) + (pz − p8) �1 sin(k z − ωt)

ṗz = −px�0 sin(θ) + px�1 cos(k z − ωt) − py�1 sin(k z − ωt)

ż = pz v8/p8

. (A13)

In the classical case we have 4 equations to integrate, the
three components of the velocity plus the position coordi-
nate alongk. In the relativistic case, for a non-zero propa-
gation angle, the energy of the particle is not a constant of
the motion, that is,̇γ 6= 0. Hence, we can think of the rel-
ativistic dynamical system as composed of 4 equations, the
three components of the momentum plus the position coordi-
nate alongk, and one constraint relatingγ and the momen-
tum components. Without any loss of generality we take the
constraint into consideration by writing an equation for the
dynamical gyrofrequency:

�̇0 =
d

dt

(
eB0

mcγ

)
= −

(
eB0

mcγ

)
1

γ

dγ

dt

= −�0
p ṗ

m2γ 2c2

= −�0
pc2

m2c4 + p2c2
ṗ

= −
�0�1p8

m2γ 2c2

(
px cos(k z − ωt) − py sin(k z − ωt)

)
. (A14)

If we define the constantδ =�1/�0, it is straightforward to
see that

�̇1 = δ �̇0. (A15)

Sincep8 =p8(γ ), the time evolution of this quantity is writ-
ten as:

ṗ8 = mv8
dγ

dt

= mv8
p

γ m2c2
ṗ

= −mv8 γ
�̇0

�0
. (A16)

We can now eliminate the explicit time dependence of the
equations by making a transformation of variables. Even
though this transformation corresponds to a translation in
the wave frame for low phase speed of the wave (vφ � c),
it does not correspond to a physical frame of reference for
phase speeds similar to the speed of lightvφ ∼ c2. The ex-
plicit time dependence can therefore be eliminated by the
following change of variables:

2The transformation in the position coordinates alongz andvz
are Lorentz transformations in the wave frame, but because we
do not also transform the time component into the wave frame
(t ′ =γ (t + vφ z/c

2), the dynamical system does not correspond to
a particle orbit in the wave frame for relativistic regimes.
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p′
x = px, p

′
y = py, p

′
z = γw

(
pz − pφ

)
, z′ = γw (z − vφ t) (A17)

for the Lorentz factor:

γw =
1√

1 −
v8 2

c2

. (A18)

We can then write the equations of motion in terms of the
new variables as follows:
ṗ′
x = �0p

′
y cos(θ) − �1p

′
z cos

(
k z′/γw

)
/γw + �0

(
p′
z/γw + pφ

)
sin(θ)

ṗ′
y = −�0p′

x cos(θ) + �1p
′
z sin

(
k z′/γw

)
/γw

ṗ′
z/γw = −�0p

′
x sin(θ) + �1p

′
x cos

(
k z′/γw

)
− �1p

′
y sin

(
k z′/γw

)
− ṗ8

ż′ = p′
z v8/p8

. (A19)

If we absorb the Lorentz factorγw into p′
z andk, that is, we

write p′
z →p′

z/γw andk→ k/γw, and writeṗ8 in terms of
(p′
x , p

′
y , p

′
z, z

′, �0), we can write the dynamical system as
follows:
ṗ′
x = �0p

′
y cos(θ) − �1p

′
z cos(k z′) + �0

(
p′
z + pφ

)
sin(θ)

ṗ′
y = −�0p

′
x cos(θ) + �1p

′
z sin(k z′)

ṗ′
z = −�0p

′
x sin(θ) + �1

(
n2

−1
n2

) (
p′
x cos(k z′) − p′

y sin(k z′)
)

ż′ = p′
z v8/p8

(A20)

with the refractive indexn2 = c2/v2
8. The magnitude of the

momentum is now written asp′ =
√
p

′2
x + p

′2
y + (p′

z/γw)
2,

hence the Lorentz contraction factor also transforms from
γ (p)→ γ (p′).
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