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Abstract. Climate projections simulated by Global Climate

Models (GCMs) are often used for assessing the impacts of

climate change. However, the relatively coarse resolutions of

GCM outputs often preclude their application to accurately

assessing the effects of climate change on finer regional-scale

phenomena. Downscaling of climate variables from coarser

to finer regional scales using statistical methods is often per-

formed for regional climate projections. Statistical downscal-

ing (SD) is based on the understanding that the regional cli-

mate is influenced by two factors – the large-scale climatic

state and the regional or local features. A transfer function

approach of SD involves learning a regression model that

relates these features (predictors) to a climatic variable of

interest (predictand) based on the past observations. How-

ever, often a single regression model is not sufficient to de-

scribe complex dynamic relationships between the predictors

and predictand. We focus on the covariate selection part of

the transfer function approach and propose a nonparamet-

ric Bayesian mixture of sparse regression models based on

Dirichlet process (DP) for simultaneous clustering and dis-

covery of covariates within the clusters while automatically

finding the number of clusters. Sparse linear models are par-

simonious and hence more generalizable than non-sparse al-

ternatives, and lend themselves to domain relevant interpreta-

tion. Applications to synthetic data demonstrate the value of

the new approach and preliminary results related to feature

selection for statistical downscaling show that our method

can lead to new insights.

1 Introduction

Climate change is one of most challenging problems fac-

ing humankind. Its impacts are expected to influence pol-

icy decisions on critical infrastructures, management of natu-

ral resources, humanitarian aid, and emergency preparedness

along with numerous regional-scale human economic and so-

cial activities. Therefore, it is imperative to accurately assess

the impacts of climate change at regional scale in order to in-

form stakeholders for appropriate decision making related to

mitigation policies. Global climate models (GCMs) are the

most credible tools at present for future climate projection

that accounts for the effects of greenhouse gas emissions

under different socio-economic scenarios. Although GCMs

perform reasonably well in projecting climate variables at

a larger spatial scale (> 104 km2), they perform poorly for

regional-scale climate projections. Such poor performance

of the GCMs, coupled with the importance of regional cli-

mate projections for impact studies, has led to development

of limited area models (LAMs) or regional climate models

(RCMs), where finer spatial grids over a limited spatial area

are embedded within a coarser GCM grid. This method is

also known as dynamic downscaling. However, these mod-

els are complex, computationally expensive and require re-

running for each new region. Moreover, regional models

inherit the basic gaps in understanding of climate physics

that limit the performance of GCMs. A couple of recently

published studies (Kumar et al., 2014; Knutti and Sedláček,

2013) rigorously compared the projections of the latest gen-

eration of climate models (CMIP5) with the previous gener-

ation (CMIP3) but found no significant improvement in the

Published by Copernicus Publications on behalf of the European Geosciences Union & the American Geophysical Union.



1146 D. Das et al.: Non-parametric Bayesian mixture of sparse regressions

majority of statistical performance metrics even with higher

spatial resolutions and addition of new physical processes

in the computational model. Uncertainties in sub-grid-scale

cloud-microphysics and ocean eddy processes and poor un-

derstanding of the effect of carbon cycle and other biogeo-

chemical processes on climate systems still limit the ability

of the physics-based climate models to reliably project future

climate (Bader et al., 2008), especially at regional scale.

A complementary approach for regional projection is sta-

tistical downscaling that uses statistical models to learn em-

pirical statistical relationships between large-scale GCM fea-

tures (predictors) and regional-scale climate variable(s) (pre-

dictands) to be projected. The statistical approaches of down-

scaling can be categorized into three broad classes – weather

typing, weather generators, and the transfer function ap-

proaches (Wilby et al., 2004). Weather typing approaches

have originally been developed for weather forecasting and

generally involve classifying days into similar clusters or

weather states based on their synoptic similarity. Typically,

weather patterns are clustered based on their similarity with

nearest neighbors while the statistical models they use vary

in their definition of similarity measures. On the other hand,

weather generators replicate the statistical properties of the

daily predictand variable by using a stochastic model, such

as Markov processes (Greene et al., 2011), that uses wet–dry

and dry–wet transition probabilities as input for training

while conditioning its parameters on large-scale predictors.

In this paper, however, we are interested in transfer func-

tion based regression models that learn a linear or nonlinear

mapping between large scale predictors and regional scale

predictand variables. Regression models are conceptually the

simplest of the three classes since they provide a direct map-

ping between the predictor and predictand values. However,

the success of the regression models depends on the accurate

choice of predictors. Sparse regressions based on constrained

L1-norm (Tibshirani, 1994) of the coefficients became pop-

ular due to their ability to simultaneously select covariates

and fit parsimonious linear models that are more general-

izable and easily interpretable. Although sparse regression

models have been applied widely in many disciplines, their

application to climate, and especially to statistical downscal-

ing, has remained very limited. In a recent paper (Ebtehaj

et al., 2012), sparse regularization has been shown to be ef-

fective for downscaling rainfall fields for weather forecast-

ing, whereas sparse variable selection has been used for sta-

tistical downscaling of climate variables (Phatak et al., 2011)

in a separate paper. To our knowledge, there is no other pub-

lished work on use of sparse regularization for statistical

downscaling.

However, large complex climate data sets often exhibit dy-

namic behavior (Kannan and Ghosh, 2010) which may not be

modeled well by a single regression model. Here we propose

a nonparametric model for mixture of sparse regressions that

can accommodate multiple sparse linear relationships inher-

ent in the data set. Nonparametric models are more flexible

than the finite mixture models (Bishop and Svenskn, 2002)

since they assume no prior knowledge about the number of

distinct components in the data. We used a Dirichlet process

mixture (DPM) (Antoniak, 1974) with stick-breaking con-

struction (Ishwaran and James, 2001) to accommodate an un-

known number of sparse regression models in the data. DPM

start by assuming infinite components in the data but ends

up discovering a finite number of components supported by

the data. We used the Bayesian version of sparse regression

(Park and Casella, 2008) to smoothly integrate the sparse

regression model with the DPM, which is a nonparametric

Bayesian approach where each component is represented by

a set of distribution parameters specific to the corresponding

component.

Although the number of different components may not be

known, prior knowledge often exists about whether a pair of

observations belong to the same component. For example, it

is reasonable to assume that two observations close in time

from the same location may exhibit similar behavior. We al-

low soft “must link” constraints between pairs of data-points

that encourage the pair to belong to the same mixture com-

ponent. Such constraints are incorporated in our Bayesian

model with the help of a Markov random field (MRF) prior

over the cluster indicator variables (Ross and Dy, 2013; Basu

et al., 2006).

Variational Bayesian (VB) inference has been shown to

be much faster than stochastic alternatives for nonparametric

Bayesian models (Blei and Jordan, 2006). The major contri-

bution of this paper is to develop a fully Bayesian formula-

tion for nonparametric mixture of a sparse regression model

and designing an efficient variational inference algorithm to

obtain posterior distributions over the regression coefficients

of potentially multiple regression components as well as the

component membership probabilities of each data-point.

We have extensively demonstrated the performance of our

algorithm on synthetic data. We have also applied our method

to the feature selection problem for statistical downscaling

of annual average rainfall over two regions on the west coast

of the USA. Preliminary results from the application of our

algorithm to select features for regression based statistical

downscaling show that our method may lead to improved

prediction and discovery of new insights.

2 Background

In this section, we provide brief descriptions of the methods

in the context they were used to build our model.

2.1 Bayesian sparse regression

Let us assume that we are given a data setD={xn, yn : n =

1, . . . N} that has been generated from a linear model iden-

tified by sparse coefficients vector β. In a non-Bayesian set-

ting, sparsity is enforced by a constraint on the L1-norm of
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the coefficients which is given by

yn = β
>xn+ ε, subject to ||β||11 ≤ t, (1)

where ε∼N (0, τ−1).

However, in a Bayesian setting, the sparsity can be im-

posed by a Laplace prior (also known as double exponential

distribution) on β which is given by (Park and Casella, 2008):

p(β|γ ,τ )=

D∏
j=1

√
γj τ

2
exp

(
−
√
γj τ |βj |

)
. (2)

However, due to the analytical intractability of the Laplace

prior, it is often represented in the following scale-mixture

(of Gaussians) form using an additional random variable α.

p(β|τ, γ )=

D∏
j=1

√
γj τ

2
exp

(
−
√
γj τ |βj |

)
=

D∏
j=1

∫
N
(
βj ;0,τ

−1α−1
j

)
InvGa

(
αj ;1,

γj

2

)
dαj

For a fully hierarchical Bayesian setting, Gamma prior is im-

posed on parameter τ as well as on individual penalty param-

eters γj . So the joint distribution over all the parameters can

be given by

p(β,τ,α,γ )= Ga(τ ;c0,d0)

D∏
j=1

{
N
(
βj ; ,0,τ

−1α−1
j

)
×InvGa

(
αj ;1,

γj

2

)
Ga
(
γj ;a0,b0

)}
. (3)

2.2 Markov random fields

An MRF is represented by an undirected graphical model in

which the nodes represent variables or groups of variables

and the edges indicate dependence relationships. An impor-

tant property of MRFs is that a collection of variables is

conditionally independent of all others in the field given the

variables in their Markov blanket. The Hammersley–Clifford

theorem states that the distribution, p(Z), over the variables

in an MRF factorizes according to

p(Z)=
1

Z
exp

(
−

∑
c∈C

Hc (zc)

)
, (4)

whereZ is a normalization constant called the partition func-

tion,C is the set of all cliques in the MRF, zc is the set of vari-

ables in clique c, and Hc is the energy function over clique c

(Geman and Geman, 1984). A clique is a set of nodes in a

graph that are fully connected. The smallest clique in a graph

is an edge. The energy function captures the desired configu-

ration of local variables. Partition function Z normalizes the

probability measure and it is computed by summing the ex-

ponentiated energy functions of all possible configurations.

2.3 Dirichlet process mixture (DPM)

The Dirichlet process (DP) was first introduced in statistics

literature as a measure on measures (Ferguson, 1973). It is

parameterized by a base measure, G0, and a positive scaling

parameter λ:

G| {G0,λ} ∼ DP(G0,λ) . (5)

The notion of a DPM arises if we treat the kth draw from

G as a parameter of the distribution over some observation

(Antoniak, 1974) representing a particular mixture compo-

nent. DPMs can be interpreted as mixture models with an

infinite number of mixture components in the sense that data

exhibit a finite number of components but previously unseen

components represented by new data can still be accommo-

dated. More recently, a variational inference algorithm for

DPMs was introduced (Blei and Jordan, 2006) using the

stick-breaking construction (Sethuraman, 1994) which uses

two infinite collections of random variables Vk ∼Beta(1, λ)

and η∗k ∼G0 to construct G as

θk = Vk

k−1∏
j=1

(
1−Vj

)
(6)

G(η)∼

∞∑
k=1

θkδ
(
η,η∗k

)
. (7)

For a mixture of sparse regression models, if the parameters

for each components are given by ηk , the subsequent data

generation process for such a mixture model can be described

in the following steps using a stick-breaking construction:

1. Draw vk ∼Beta(1, λ) k={1, 2, . . .∞}

2. Draw ηk ∼G0, k={1, 2, . . .∞}

3. Generate θk = vk
k−1∏
m=1

(1 − vm).

4. For each data-point n:

a. Draw zn∼Mult(θ )

b. Draw yn∼N (yn; xn, ηzn).

We can truncate the construction process at k=K by en-

forcing vK−1= 0 which forces all θk for k >K to be zero

(see step 3). The resulting construction is called a truncated

DP (TDP), which can be shown to approximate the true DP

quite well givenK is large relative to the number of the data-

points (Ishwaran and James, 2001).

3 Methodology

Now, let us assume that we are given a data setD={xn, yn :

n = 1, . . . N} which has been generated from a mixture of
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K different sparse models identified by sparse coefficients

β(1), β(2), . . . , β(K). Let us also assume that the number

of components K is unknown. We use a Bayesian formula-

tion of the sparse regression model for each component β(k),

with k= 1, 2, . . . K . Let us first state the Bayesian version

of the kth sparse model. The linear regression model of the

kth component can be represented by the following Gaussian

distribution.

p
(
yn|xn,β

(k)
)
∼N

(
yn;β

(k)>xn,τ
−1
k

)
(8)

3.1 Mixture of sparse regressions

We introduce K-dimensional latent indicator variables {zn :

n = 1, . . . N} to represent the component membership of

each data-point {xn, yn}. If the data-point belongs to the kth

component, then znk will be 1 and all other elements of zn
will be 0. We further denote Z= [z1 z2 . . . zn]. We can now

rewrite Eq. (8) in terms of zn as

p
(
yn|xn,

{
β(k)

})
∼

K∏
k=1

{
N
(
yn;β

(k)>xn,τ
−1
k

)}znk
. (9)

For this mixture of sparse regressions model, each compo-

nent has a separate parameter set {β(k), τk}. Moreover, after

adding the parameters related to the scale-mixture represen-

tation of the Laplace prior on β(k) (refer to Sect. 2.1), the

set of parameters is finally given by ηk ={β
(k), τk, αk, γ k}.

The prior distribution G0 from which these parameters can

be drawn jointly is given in Eq. (3). We can now use the stick-

breaking construction described in Sect. 2.3 to formulate our

mixture model. The overall generative process is then:

p
(
y,Z,v,

{
β(k)

}
,τ ,

{
α(k)

}
,
{
γ (k)

}
,λ|X

)
= p

(
y|X,

{
β(k)

}
,τ
)
p(Z|v)p(v|λ)p (λ|m0)

×p
({
β(k)

}
|τ ,
{
α(k)

})
p
({
α(k)

}
|

{
γ (k)

})
×p

({
γ (k)

}
|a0,b0

)
p(τ |c0,d0) . (10)

The graphical model that represents the dependence rela-

tionships between all the parameters involved in this current

mixture model is shown in Fig. 1. The shaded circles de-

note observed variables; the unshaded circles denote unob-

served variables. We have used a Gamma prior on λ having a

hyper-parameter m0. We have omitted the hyper-parameters

a0, b0, c0, d0, and m0 from the list of conditioning variables

in the left side to avoid clutter. The individual distributions in

Figure 1. Graphical representation of the complete Bayesian hier-

archical model.

Eq. (10) are given below.

y|X,
{
β(k)

}
,τ ∼

N∏
n=1

K∏
k=1

{
N
(
yn;x

>
n β

(k),τ−1
k

)}znk
(11a)

Z|v ∼

N∏
n=1

K∏
k=1

{
vk

k−1∏
j=1

(
1− vj

)}znk
(11b)

v|λ∼

K∏
k=1

Beta(vk;1,λ) (11c)

λ∼ Ga(λ;m0,1) (11d){
β(k)

}
|τk,

{
α(k)

}
∼

K∏
k=1

D∏
j=1

N
(
β
(k)
j ;0,

(
τkα

(k)
j

)−1
)

(11e)

τ ∼

K∏
k=1

Ga(τk;c0,d0) (11f)

({
α(k)

}
,
{
γ (k)

})
∼

K∏
k=1

D∏
j=1

InvGa

(
α
(k)
j ;1,

γ
(k)
j

2

)

×Ga
(
γ
(k)
j ;a0,b0

)
(11g)

3.2 Accommodating “must link” constraints

Prior knowledge about must link constraints between pairs of

data-points can be enforced via an MRF prior on the indica-

tor variables zn, where each data-point is considered a node

and each constraint between a pair of data-points is regarded

as an edge between the respective nodes. We denote the col-

lection of edges by C and the MRF prior is given by Eq. (4).

We define the energy function as:

H
(
zi,zj

)
=

{
−1, z>i zj = 1 and (i,j) is ML

0, otherwise
. (12)
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Here ML means must link. This prior encourages similar val-

ues of indicator variables zi and zj if they happen to share a

“must link” edge. Since the MRF prior is assigned only on

the indicator variables Z, it only alters Eq. (11b) and the new

prior on Z is given by

Z|v ∼
1

Z
exp

− ∑
(i,j)∈C

H
(
zi,zj

)
×

N∏
n=1

K∏
k=1

{
vk

k−1∏
j=1

(
1− vj

)}znk
. (13)

3.3 Variational inference

Let us consider all the unknown parameters in our model

as latent variables and denote all the latent variables

by H={Z, v, {β(k)}, τ , {α(k)}, {γ (k)}, λ}. Moreover, from

now on, we will ignore feature variables X from the list of

conditioning variables as they are observed. Using Jensen’s

inequality, we can find a lower bound of the log-marginal

ln p(y) which is given as

lnp(y) >

∫
q(H) ln

{
p(y,H)

q(H)

}
dH (14)

for any arbitrary distribution q(H). The variational inference

is performed by restricting q(H) within a parametric family

so that the maximization of the lower bound given in Eq. (14)

is tractable. We consider only those q(H) that factorize over

some disjoint groups of the component random variables of

H in the following way:

q(H)=

L∏
j=1

qj
(
hj
)
. (15)

We can now maximize the lower bound given in Eq. (14) with

respect to each component qj (hj ) in Eq. (15) and obtain the

parametric form of qj (hj ) given by

q∗j
(
hj
)
=

exp
(
Ei 6=j

[
lnp(y,H)

])∫
exp

(
Ei 6=j

[
lnp(y,H)

])
dhj

, (16)

where the expectation is taken with respect to all the other

factors {qi} for i 6= j . It can be shown that the q(H) obtained

this way is the closest approximation of the actual posterior

p(H|y) in terms of KL-divergence out of all possible alterna-

tives of the form given by Eq. (15). Therefore this is a deter-

ministic but approximate posterior inference method, unlike

stochastic inference methods such as MCMC, which samples

from the actual posterior. However, variational inference is

much faster and approximates the true posterior reasonably

well for practical purposes.

Once we apply Eq. (16) to the joint distribution described

in Eqs. (10) and (11), we can get the update equations for

the approximate posterior distributions for each of the latent

variables involved.

1. Distribution of z:

qZ(Z)=
∏
V∈V

 1

ZV
exp

−∑
(i,j)∈C
i,j∈V

H
(
zi,zj

)
∏
n∈V

K∏
k=1

ρ
znk
nk

]
(17)

with

ρnk =
rnk∑
k

rnk
(18)

lnrnk =
1

2
〈lnτk〉−

1

2
ln2π −

〈τk〉

2(
y2
n − 2〈β(k)〉>xnyn+ x

>
n 〈β

(k)
(
β(k)

)>
〉xn

)
+〈lnvk〉+

k−1∑
j=1

〈ln
(
1− vj

)
〉. (19)

2. Distribution of {β(k)}:

qβ

({
β(k)

})
=

K∏
k=1

N
({
β(k)

}
;µk,6

(k)
)

(20)

with

6(k) =

(
〈τk〉

N∑
n=1

xnx
>
n E[Z]nk +〈τk〉

diag
(
〈α(k)〉

))−1

(21)

µk =6
(k)

(
N∑
n=1

xnynE[Z]nk

)
〈τk〉. (22)

Here diag(〈α(k)〉) corresponds to the LASSO (Tibshirani,

1994) shrinkage. The moments are given by1

〈β(k)〉 = µk;

〈(
β(k)p

)2
〉
=6(k)pp +µ

2
kp

〈β(k)
(
β(k)

)>
〉 =6(k)+µkµ

>

k .

3. Distribution of τ :

qτ (τ )=

K∏
k=1

Ga(τk;ck,dk) (23)

1
〈f (s)〉 means expected value of f (s) with respect to the distri-

bution of s.
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with

ck = c0+
1

2

(
N∑
n=1

E[Z]nk +p

)
(24)

d = d0+
I

2
+
J

2
(25)

where

I =

N∑
n=1

(
y2
nE[Z]nk − 2E[Z]nkx

>
n yn〈β

(k)
〉

+E[Z]nkx
>
n 〈β

(k)
(
β(k)

)>
〉xn

)

J =

D∑
p=1

〈
α(k)p

〉〈(
β(k)p

)2
〉
.

The relevant moments are

〈τk〉 = ck/dk and 〈lnτk〉 = ψ (ck)− ln(dk) .

4. Distribution of v

qv(v)=

K∏
k=1

Beta(vk;ξk,κk) (26)

with

ξk = 1+

N∑
n=1

E[Z]nk and κk = 〈λ〉+

K∑
j=k+1

N∑
n=1

E[Z]nj .

Relevant moments are given by 〈lnvk〉=ψ(ξk)−ψ

(ξk + κk) and 〈ln(1 − vk)〉=ψ(κk)−ψ(ξk + κk). 5. Distri-

bution of {α(k)}:

qα

({
α(k)

})
=

K∏
k=1

D∏
p=1

InvGaussian(
α(k)p ;g

k
p,h

k
p

)
(27)

with

gkj =

√√√√√√
〈
γ
(k)
j

〉
〈τk〉

〈(
β
(k)
j

)2
〉

hkj =
〈
γ
(k)
j

〉
where InvGaussian(α

(k)
j ; gkj , hkj ) denotes inverse Gaussian

distribution with mean gkj and shape parameter hkj having the

following density function.

pIG

(
α
(k)
j ;g

k
j ,h

k
j

)
=

√√√√√ hkj

2π
(
α
(k)
j

)3

× exp

−hkj
(
α
(k)
j − g

k
j

)2

2
(
gkj

)2

α
(k)
j

(α(k)j > 0
)

The relevant moments are given by〈
α
(k)
j

〉
= gkj and

〈(
α
(k)
j

)−1
〉
=

(
gkj

)−1

+

(
hkj

)−1

.

6. Distribution of {γ (k)}:

qγ ({γ
(k)
})=

D∏
p=1

Ga
(
γ
(k)
j ;a

k
j ,b

k
j

)
(28)

with

akj = a0+ 1

bkj = b0+
1

2

〈(
α
(k)
j

)−1
〉

and the relevant moment is 〈γ
(k)
j 〉 = a

k
j /b

k
j . 7. Distribution of

λ:

qλ(λ)= Ga(λ;u,w) (29)

where

u=m0+K; w =−

K∑
k=1

〈ln(1− vk)〉 .

Relevant moment is 〈λ〉= u
w

.

The first part of the variational posterior of qZ(Z) in

Eq. (17) arises from the MRF prior and contributes towards

enforcing “must link” constraints. Note that V in Eq. (17) is

a set of sets and V is a component set of connected nodes

within V . Basically, V denotes the set of connected com-

ponents within the constraint graph described in Sect. 3.2.

Therefore the partition function ZV needs to be computed

only for the connected components, not for the entire graph.

Computing ZV becomes tractable if the connected compo-

nents are small (i.e., the constraint set is sparse).

In order to automatically generate a sparse constraints

set, we first implemented all the constraints in the form of

edges and then used a graph partitioning algorithm (Hes-

panha, 2004) to partition the constraint graph in such a way

that none of the partitions are left with more than a prede-

fined number of nodes. At the time of inference we used a

“backtracking” algorithm (Tarjan, 1972) to find the strongly

connected components within the graph. To compute the ex-

pectation E[z], we first computed the multinomial probabil-

ities ρnk and then did an MRF update on each connected
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component by computing the probabilities of each possi-

ble state combination and summing the probability-weighted

state matrices. The partition function is computed by sum-

ming the exponentiated sum of energy function of each state

matrix. Note that isolated nodes (not part of any connected

components) will not need their ρnk updated.

The parameters of each of the distributions has depen-

dency on moments of one or more of the other variables. We

therefore find a locally optimum solution via an iterative pro-

cess that starts with random initial values of the relevant mo-

ments and stops when the indicator variables Z stop chang-

ing. Note that once the approximate solution is reached, we

can compute the marginal distributions over coefficients β
(k)
p

which is a Gaussian with mean µ
(k)
p and variance 6

(k)
pp for

each k. We can thereby perform a t test to determine whether

the corresponding feature has a non-zero coefficient.

3.4 Computational considerations

One computational bottleneck of the proposed VB algorithm

is the inversion of the D×D matrix in Eq. (21). If D<N ,

then faster matrix inversion can be achieved by first apply-

ing a Cholesky decomposition and then inverting the result-

ing upper triangular matrix. However, if D>N , we can first

apply a fast (approximate) singular value decomposition on

6(k)−1 and then use Woodbury matrix inversion identity so

that we now have to invert a N ×N matrix instead.

We have truncated the infinite DP at K = 20 for most of

our experiments. The speed of the algorithm can be further

improved by parallelizing the updates for each of K compo-

nents, which is straightforward as they are updated indepen-

dent of each other. Another major computational challenge

was the MRF updates. Apart from controlling the maximum

size of the connected components, we parallelized the MRF

updates over each subgraph by making the state generation

independent of the previous state.

4 Experiments

We have evaluated our method on both synthetic and climate

data sets. Typical values used for the hyper-parameters were

a0= b0= c0= d0= 0.01 and λ= 1. Selecting these values

within a reasonable range does not affect the results signifi-

cantly. We made sure that the cardinality of the largest con-

nected component in the constraints graph never exceeds 8.

4.1 Synthetic data set

We compared the performance of both constrained and un-

constrained versions of our method with the non-parametric

mixture of linear regression (NPMLR) model without any

regularization. We set up three experiments: (1) to test

whether or not our algorithm can learn the correct number

of clusters; (2) to evaluate the effect of constraints; and (3) to

check the sensitivity of our approach to noise.

For all our experiments involving synthetic data, we used

N = 1000 data-points and D= 30 features. In our first set

of experiments we tested our method for K = 2 . . . 5 actual

clusters. Each column of the N ×D input matrix X is gen-

erated from a uniform distribution. For each value of K , we

partitioned the input matrix X in K equal parts X1 . . . XK .

Then for each partition Xk (k= 1 . . . K), we generate sparse

coefficients βk by randomly selecting 10 out of 30 compo-

nents to be non-zero. We assign a value of 5 k (where k is the

index of the cluster, k= 1, . . . , K) to the non-zero compo-

nents within the kth cluster so that two clusters are distinctly

identifiable in case the indices of non-zero components of the

clusters are the same. We then generate the output yk for the

kth cluster using the linear regression model of Eq. (1). The

fixed noise variance τ−1
k for the first experiment was gener-

ated by randomly choosing a number between 0 and 0.1 to

introduce diversity. A final data set was obtained by merg-

ing {Xk, yk} for all k= 1 . . . K . The process is repeated

30 times and mean and variance of the evaluation metrics

were reported in the form of error bars for each value of K

in Fig. 2. For all these experiments, the total number of con-

straints was kept at 20 per cluster while the size of the largest

subgraph was kept below 7.

The second experiment was performed to evaluate the ef-

fect of number of “must link” constraints on the performance

of the constrained version of the algorithm. Here, the actual

number of clusters was fixed at K = 3 along with the base

noise variance (0.1) and the number of constraints per clus-

ter was varied from 0 to 30 incremented by 5, although the

actual number of constraints may be less since we removed

some constraints to achieve sparsity in the constraint graph.

The result is reported in Fig. 3.

In our third experiment, we evaluated the effect of noise on

the performance of our algorithm. Again, we kept the num-

ber of clusters fixed at K = 3 and the number of constraints

fixed at 20 per cluster (for the constrained version). We varied

the base noise level in each cluster from 0 to 0.5 and added

a randomly generated value between 0 and 0.1 with the base

noise level for each cluster to maintain diversity among the

clusters. Average and variance of 30 repetitions are reported

in Fig. 4.

4.1.1 Evaluation metrics

We measured two aspects of the performance of our algo-

rithm. First,we measured whether it can cluster the data-

points correctly. We put a data-point into one of the pos-

sible 20 components (since we truncated the infinite DP at

K = 20 for all experiments) depending on the value of the

row E[Z]n (a vector) in the N × 20 matrix E[Z] estimated

by the variational inference algorithm. The estimated cluster

membership ĉn (a scalar) is given by ĉn= argmaxkE[Z]nk .

We retain all the valid components out of 20 possible, which

have at least one member initially. Then we run an update

algorithm to merge very small clusters with the closest larger
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Figure 2. Left panel: ability of nonparametric unregularized and sparse regressions (unconstrained and constrained) to correctly identify

clusters in presence of increased number of actual components in the data. Right panel: ability of nonparametric unregularized and sparse

regressions (unconstrained and constrained) to correctly retrieve the sparse structure within each cluster.

Figure 3. Performance of the constrained version of the algorithm

(in terms of NMI (more the better)) with number of “must link”

constraints.

ones. Note that the estimated cluster indices (a value be-

tween 1 and 20) may not correspond directly to the actual

cluster indices (a value between 1 to actual value ofK) since

the variational inference algorithm is not aware of the actual

order of the cluster indices (e.g., actual cluster index 1 may

correspond to estimated cluster index 9). So we use a met-

ric called normalized mutual information (NMI) that evalu-

ates the match between estimated cluster memberships ĉ and

actual ones c without needing direct correspondence. NMI

is given by NMI(c, ĉ)=
H(c)−H(c|ĉ)
√
H(c)H(ĉ)

, where H(·) is the en-

tropy. Higher NMI values mean that the clustering results are

more similar to ground-truth. The metric reaches its maxi-

mum value of one when there is perfect agreement.

A second metric is used to evaluate the quality of the

sparse regression model estimated within each discovered

cluster. Here we are only interested in finding whether our

algorithm picks the non-zero coefficients correctly. We use

F score to measure the match between actual and estimated

non-zero coefficients within each cluster. F score for the kth

component is given by Fk =
2Pk Rk
Pk +Rk

, where Pk is the preci-

sion and Rk is the recall of the estimated coefficients for the

kth component. We reported the average of Fk values over all

components discovered by our algorithm. Unlike the previ-

ous metric, here we need to know the direct correspondence

between the cluster indices so that we can match the actual

and estimated coefficient vectors. We developed an algorithm

to find such a correspondence based on bipartite matching.

4.1.2 Discussion of results

We can see the performance of all three algorithms are com-

parable in terms of identifying the clusters correctly, al-

though the NMI value of NPMLR degrades significantly

for K = 5. However, as desired, our method outperforms

NPMLR in terms of correctly retrieving the sparse structure

of regression coefficients within each cluster. There is a gen-

eral downward trend of performance for all algorithms with

increasing number of actual components in the data. This is

an inherent problem with the DPM models as it tends to at-

tach each new data-point to the largest current component,

thereby favoring models with fewer components. Also, as the

number of actual components grows, the probability of two

components being similar increases.

The increased flexibility of non-parametric methods

comes at a cost of hitting local optima being more likely and

finding solutions that are not interpretable. Adding more con-

straints may decrease this probability but at the same time

restricts the variational method from finding solutions lead-

ing to a larger lower bound, especially in the presence of

more components in the data. Therefore increasing the num-

ber of constraints may result in more interpretable solutions,

but not improved accuracy. It is also encouraging to see that
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Figure 4. Left panel: ability of nonparametric unregularized and sparse regressions (unconstrained and constrained) to correctly identify

clusters (indicated by NMI) with increasing noise. Right panel: ability of nonparametric unregularized and sparse regressions (unconstrained

and constrained) to correctly retrieve the sparse structure within each cluster (indicated by average F score).

our method is relatively robust to added noise, a major chal-

lenge with the real data sets, especially in terms of correctly

identifying the sparse structure.

4.2 Feature selection for downscaling rainfall

A grand challenge in climate science relevant for adapta-

tion and policy remains our inability to provide credible

stakeholder-relevant “statistical downscaling”, or to develop

statistical techniques for more accurate, precise and inter-

pretable high-resolution projections with lower-resolution

climate model data (Benestad et al., 2008). Regression mod-

els of statistical downscaling (Benestad et al., 2008; Ghosh,

2010) work by first selecting a set of climate variables that

have information about the target variable, and then fitting a

regression model to predict the target variable at higher res-

olution. In this application, selecting the right set of predic-

tors is as important as building a prediction model since even

a good prediction with a model that is physically not inter-

pretable is less desirable as it may not generalize well. We

focus on the feature selection problem for statistical down-

scaling of annual average rainfall. The use of annual averages

reduces the amount of noise in the observed rainfall data,

which enables us to examine the robustness of our methods

with less ambiguity.

Existence of multiple states or patterns is acknowledged

in regression-based statistical downscaling literature for rain-

fall (e.g., Kannan and Ghosh, 2010) where parametric meth-

ods such as k-means were used to find distinct clusters. Here

we used our model to simultaneously find clusters, if any,

and select features for the purpose of statistical downscaling

of station-observed annual average rainfall over two climato-

logically homogeneous regions over the continental US. Fig-

ure 5 shows the climatologically homogeneous regions over

the US.

Figure 5. Map showing climatologically homogeneous regions over

continental US.

Since rainfall follows a log-normal distribution (Kedem

and Chiu, 1987), the target variable we used is logarithm of

annual average rainfall. In Fig. 6, we show the distribution of

average rainfall over all sites in western US before and after

taking the logarithm.

Potential features used can fall in one of two broad cate-

gories – local atmospheric variables and large-scale climate

indices. Local covariates originate from each station and ex-

hibit both spatial and temporal variability. Annual and sea-

sonal averages of maximum temperature fall in this category

along with sea level pressure (SLP), and convective available

potential energy (CAPE). A dependence on any of these vari-

ables roughly indicates dominance of local convective rain-

fall in the region. Daily rainfall station data were obtained

from US Historical Climatology Network (USHCN) (Easter-

ling et al., 1996). All other features are described in Table 1.
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Figure 6. Left panel: distribution of average rainfall over all sites in the western US. Right panel: distribution of average rainfall after

transformation.

Table 1. Potential features used for statistical downscaling of rainfall.

Atmospheric (Easterling et al., 1996; Mesinger et al., 2006)

MATmax Mean Annual Maximum Temperature

DJFTmax Mean Winter Maximum Temperature

MAMTmax Mean Spring Maximum Temperature

JJATmax Mean Summer Maximum Temperature

SONTmax Mean Autumn Maximum Temperature (Easterling et al., 1996)

SLP Sea Level Pressure

CAPE Convective Available Potential Energy (Mesinger et al., 2006)

Climate indices (NOAA, 2014)

NAO North Atlantic Oscillation

EA East Atlantic Pattern

WP West Pacific Pattern

EPNP East Pacific/North Pacific Pattern

PNA Pacific/North American Pattern

EAWR East Atlantic/West Russia Pattern

SCA Scandinavia Pattern

TNH Tropical/Northern Hemisphere Pattern

POL Polar/Eurasia Pattern

PT Pacific Transition Pattern

PDO Nino 1+2, Nino 3, Nino 3.4, Nino 4

SOI Southern Oscillation Index

PDO Pacific Decadal Oscillation

NP Northern Pacific Oscillation

TNA Tropical/Northern Atlantic Index

TSA Tropical/Southern Atlantic Index

WHWP Western Hemisphere Warm Pool

GlobalMeanTemp Global Mean Temperature Anomaly (NOAA, 2014)

Climate indices are global variables that represent large-

scale signals in climate variables. A list of covariates used

for each category is given in Table 1. A dependence on any

of these variables roughly indicates rainfall due to large-scale

circulation. In addition to these covariates, we have used el-

evation as a potential feature which falls under none of the

above categories. This is the only feature that represents the

geography of the region.

We could use the covariates between 1979 and 2011 as

SLP and CAPE is available only for that period. Also, if more

than 50 % of the daily observations in a year are found to

be missing for any covariate at a specific location, we sim-

ply discarded all covariates for that year and for that specific

location. We averaged monthly climate indices and daily lo-

cal variables over a year. Finally the annual/seasonal aver-

age time-series of predictors for each station were merged

for a homogeneous region under consideration. West (CA,
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Figure 7. Left panel: location of stations and their cluster membership in the western region. Right panel: location of stations and their cluster

membership in the northwestern region.

NV) and northwest (WA, OR, ID) regions are shown by gray

shaded areas over the US map in Fig. 7 (left and right panels,

respectively).

Results and discussion

We applied spatial “must-link” constraints among pairs of

data-points from the same location. Ideally, if there are

n points in a cluster, we will be required to put
(
n
2

)
con-

straints to cover all pairs of data-points. To reduce complex-

ity, initially we kept only those constraints that connect data-

points from consecutive years. However, this reduced set of

constraints proved to be too restrictive and all data-points

tended to merge into a single cluster. So, we kept remov-

ing the constraints in an intuitive manner until more than one

cluster emerged for a region. We found more than one clus-

ter for all regions except the southern region. We stopped

removing constraints until new clusters stopped emerging

for a region. Here we show only the clusters in the western

and northwestern regions, since the majority of stations were

mostly split into obtained clusters in these regions. In other

regions, almost all stations had mixed membership. We as-

sign a station to a cluster if more than 80 % of its data-points

belong to that cluster.

A quick look at the histogram of target variable (right

panel in Fig. 6) also supports the possibility of two distinct

rainfall modes in the region. As mentioned earlier, we ob-

tained one sparse linear model for each of the discovered

components within a region. Since a non-zero coefficient in

the sparse model implies dependence on the corresponding

covariate, we can obtain interesting insights about the depen-

dence of average rainfall on various atmospheric and climate

indices from the coefficients of the individual sparse mod-

els within each cluster. Interestingly, in the northwest region

there is only a single member station in the first component

that exhibits dependence on the local temperature variables

and SLP, whereas the larger cluster shows dependence on

a larger number of climate indices. In the western region, the

first cluster shows dependence on local temperature variables

and the second cluster shows more dependence on large-

scale variables. Both clusters show dependence on elevation.

While dependence on large-scale indices is not surprising

for both these coastal regions due to the known effect of

westerlies, dependence of smaller clusters (especially in the

northwest) on local variables may hint at the existence of

some regional small-scale atmospheric mechanisms. While

spatially coherent clusters are more likely to occur in na-

ture, geographical features such as mountains and lakes and

even man-made structures such as large dams and reservoirs

may abruptly disturb the spatial smoothness of clusters, since

their presence may alter the climate pattern of the nearby ar-

eas with respect to the surrounding regions. However, before

we can build statistical downscaling models, more rigorous

statistical and physical analysis is required based on these

preliminary insights obtained using our method. The clusters

discovered here, and the corresponding covariates, can be uti-

lized to develop individual non-linear prediction models per

cluster.

DPMs automatically find the number of clusters K and

adapt to varying values of K . However, DPMs prevent the

model from “learning” an unnecessarily large value of K if

a smaller K is sufficient to describe the model, thus manag-

ing complexity. Based on the results of experiments on the

synthetic data set shown in Fig. 2, we found that the per-

formance of the method degrades as the number of compo-

nents K grows larger. We believe it is reasonable to expect

that there will only be a limited number of distinct relation-

ships between average rainfall and their covariates when we

apply our method at the regional scale. However, even in sit-

uations where a large number of relationships exist within

a particular region, our method may not be able to identify

all of the distinct methods, but it can nevertheless be ex-

pected to outperform the use of a single model. The single

model will attempt to learn a relationship that is the average

of all distinct relations, while our approach will still attempt
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to distinguish among major categories of relationships even

though some of them may be lumped together.

5 Conclusions

In this paper, we propose a nonparametric Bayesian mix-

ture of sparse regression models for simultaneous cluster-

ing and discovery of covariates within each cluster using a

DP mixture model. Moreover, our model can accommodate

prior knowledge about “must link” constraints between the

pair of data-points using a Markov Random Field prior on

the cluster membership variables. Our major contribution is

to develop an efficient and scalable variational inference al-

gorithm for inference on the fully Bayesian model. We ap-

plied our method to both synthetic and real climate data

and successfully discovered multiple underlying behaviors

in the data. Preliminary results of applying our method to

feature selection for statistical downscaling of rainfall show

promise towards finding new climate insights with appropri-

ate caveats. Going forward, we would like to incorporate pri-

ors for diversity among the clusters in order to discourage

merging of close but dissimilar clusters. We intend to extend

our model for predictive analysis and build a full-scale statis-

tical downscaling method using the features selected by the

current model.
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