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Abstract. Recurrence-plot-based recurrence networks are an

approach used to analyze time series using a complex net-

works theory. In both approaches – recurrence plots and re-

currence networks –, a threshold to identify recurrent states is

required. The selection of the threshold is important in order

to avoid bias of the recurrence network results. In this paper,

we propose a novel method to choose a recurrence thresh-

old adaptively. We show a comparison between the constant

threshold and adaptive threshold cases to study period–chaos

and even period–period transitions in the dynamics of a pro-

totypical model system. This novel method is then used to

identify climate transitions from a lake sediment record.

1 Introduction

Recurrence-based approaches have taken an important place

in dynamical system analysis. Related approaches have been

used for several decades. The basis of this analysis is finding

recurrent points on a trajectory in the phase space of a dy-

namical system. The first recurrence-based analysis method

was introduced by Poincaré as the method of the first recur-

rence times (Poincaré, 1890). A Poincaré recurrence is the

sequence of time intervals between two visits of a trajectory

at the same interval (or volume, depending on the dimension

of the trajectories).

Among the different approaches of investigating dynam-

ical properties by recurrence, the recurrence plot (RP) is a

multifaceted and powerful approach to study different as-

pects of dynamical systems. RPs were first introduced as

a visualization of recurrent states of phase space trajecto-

ries (Eckmann et al., 1987), but then enriched by different

quantification techniques for characterizing dynamical prop-

erties, regime transitions, synchronization, and so on (Mar-

wan et al., 2007). In the study of complex systems, one of

the most important issues is finding dynamical transitions or

regime changes. Transitions in the dynamics can be detected

by different RP-based measures, which, in general, are very

useful to study complex, real-world systems (Trulla et al.,

1996; Marwan et al., 2002; Donges et al., 2011). Examples

of their successful application in real-world systems can be

found in life science (Riley et al., 1999; Marwan et al., 2002;

Neuman et al., 2009; Carrubba et al., 2012), earth science

(Marwan et al., 2003; Matcharashvili et al., 2008; Donges

et al., 2011), astrophysics (Asghari et al., 2004; Zolotova

et al., 2009), and others (Marwan, 2008).

The measures defined by the RP framework, called “re-

currence quantification analysis” (RQA), are based on point

density and on the length of diagonal and vertical line struc-

tures visible in the RP, being regarded as alternative measures

to quantify the complexity of physical systems. In order to

uncover their time-dependent behavior, RQA measures are

often computed by applying a sliding window on the time

series, which then can be used to identify dynamical transi-

tions, such as period–chaos transitions (Trulla et al., 1996) or

chaos–chaos transitions (Marwan et al., 2002).

Another popular method for analyzing complex systems

is the complex network approach (Watts and Strogatz, 1998;

Boccaletti et al., 2006). Complex network measurements

are useful for investigating and understanding the complex
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behavior of real-world systems, such as social, computer

(Newman, 2002), or brain networks (Singer, 1999). The adja-

cency matrix of a complex network explains the structure of

the system and thus determines the links between the nodes

of a network. For unweighted and undirected networks, the

adjacency matrix is binary and symmetric, hence very simi-

lar to an RP. In our previous work, we have shown that time

series can be analyzed by complex networks by identifying

the RP by the adjacency matrix of a network (Marwan et al.,

2009; Donner et al., 2011), forming so-called recurrence net-

works (RNs). Complex network measures applied on RNs

have been used to investigate real-world systems, such as the

climate system (Donges et al., 2011) or the cardiorespiratory

system (Ramírez Ávila et al., 2013). RNs have been shown

to be more sensitive for the detection of periodic–chaos or

chaos–periodic regime transitions than some of the standard

RQA measures (Zou et al., 2010; Marwan, 2011).

Although recurrence-based methods are powerful tools to

study complex systems, they come with an important, non-

trivial issue (Marwan, 2011). To identify recurrences, a spa-

tial distance (or volume, depending on the dimension of the

system) in the phase space is usually used, and a sufficient

closeness between the trajectories is determined by apply-

ing a so-called recurrence threshold ε to the distances (Mar-

wan et al., 2007; Donner et al., 2010). Several approaches

for selecting a meaningful threshold value has been sug-

gested (Marwan et al., 2007; Schinkel et al., 2008; Donges

et al., 2012). Of particular interest are such methods that help

one to overcome the problem of sliding-window-based anal-

yses of systems with varying amplitude fluctuations (as com-

ing from different dynamical regimes or non-stationarities);

e.g., those based on normalizing time series or fixing recur-

rence density. However, in real-world applications, time se-

ries are not usually smooth all the time. When considering

the time series by an RN representation, extreme points (very

high jumps or falls in the fluctuation of time series) in the

time series could break the connected components in the net-

work since the distance between an extreme point and other

points would be larger than the threshold value. The normal-

ization method would then result in non-optimal recurrence

thresholds biasing the recurrence analysis.

In this work, we will suggest a novel method of an adap-

tive threshold selection based on the network’s spectral prop-

erties (Boccaletti et al., 2006). We will present a comparison

between the constant and the adaptive threshold approach for

detecting certain regime transitions (chaos–periodic or peri-

odic–chaos). Finally, we will demonstrate the novel approach

for analyzing lake-sediment-based paleoclimate variation.

2 Recurrence plots, recurrence networks, and the

adaptive threshold

In them dimensional phase space reconstruction of a time se-

ries, a state is considered to be recurrent if its state vector falls

into the ε neighborhood of another state vector. Formally, for

a given trajectory xi (i = 1, . . . , N , xi ∈Rm), the recurrence

plot R is defined as

Ri,j (ε)=2
(
ε−

∥∥xi − xj
∥∥) , i, j = 1, . . ., N, (1)

where N is the trajectory length, 2(·) is the Heaviside func-

tion, and | · | is the norm of the adopted phase space (Marwan

et al., 2007). Thus, Ri,j = 1 if stated when times i and j are

recurrent, and Ri,j = 0 otherwise. The trajectory in the phase

space can be reconstructed via time delay embedding from a

time series {ui}
N
i=1 (Packard et al., 1980):

xi =
(
ui, ui+τ , . . ., ui+τ(m−1)

)
, (2)

wherem is the embedding dimension and τ is the embedding

delay. The embedding dimension m can be found by false

nearest neighbors and the delay τ by mutual information or

auto-correlation (Kantz and Schreiber, 1997).

The main diagonal of the RP, Ri,i = 1, represents the line

of identity (LOI). As we have mentioned, the RP is a sym-

metric, binary matrix. The structures formed by line seg-

ments, which are parallel to the LOI in an RP, character-

ize typical dynamical properties. We observe homogeneously

distributed recurrence points if the dynamics are white noise.

If the system is deterministic, diagonal line segments, which

are parallel to the LOI, will dominate. The dynamics are re-

lated to the length of the diagonal line segments; chaotic dy-

namics cause mainly short line segments, but, conversely,

regular (periodic) dynamics cause long line segments. The

RQA quantifies this relation and can be used to detect transi-

tions in the system’s dynamics (Trulla et al., 1996; Marwan

et al., 2007).

Recurrence networks are based on the recurrence matrix,

Eq. (1), which is an N ×N matrix, where N is the length

of the phase space trajectory (the number of time steps). We

now consider these time steps as nodes of a network; if the

nodes are sufficiently close to each other – in other words,

if the space vectors are neighbors –, there is a link between

them. In network theory, connections between network nodes

can be described with the adjacency matrix A, with Ai,j = 1

if there is a link between nodes i and j ; otherwise, Ai,j = 0.

To obtain the adjacency matrix from the recurrence matrix,

we discard self-loops in the recurrence matrix; i.e.,

Ai,j = Ri,j − δi,j , (3)

where δi,j is the Kronecker delta (δi,j = 1 if i= j , otherwise

δi,j = 0).

The number of links at the ith node (the degree) is given

by ki =
∑
j

Aij . In this paper, we use the eigenvalue spectrum
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of the Laplacian matrix L to find an adaptive threshold εc,

where Li,j = δi,j ki −Ai,j .

The crucial point in the paper is choosing the adaptive

threshold for calculating the RN. A threshold for recurrence-

based methods should be sufficiently small (Marwan et al.,

2007; Donner et al., 2010; Donges et al., 2012). Too small ε

causes very sparsely connected RN with many isolated com-

ponents; too large ε results in an almost completely con-

nected network. For data sets that are not smooth, choos-

ing a reasonable, small threshold could nevertheless result in

unconnected recurrence network components. These uncon-

nected components would cause problems for some complex

network measures, since some of them need a connected net-

work to be computed for the entire network. For example,

even if we have just one node that is not connected to the

network, the average path length will always be infinite for

the entire network. An even more important motivation for

avoiding isolated components in the RN is that the RN pro-

vides a large amount of information about the dynamics of

the underlying system, although it contains only binary infor-

mation. This has been demonstrated by reconstructing time

series from RPs (Thiel et al., 2004; Hirata et al., 2008). The

condition for reconstructing a time series from an RP is that

all points are connected by their neighborhoods; i.e., there are

no isolated components. By applying recurrence measures,

we would like to quantify the dynamics encoded by the RN.

This can be ensured by the above-mentioned condition.

To find a sufficiently small threshold ε that fulfills the

desired condition of connected neighborhoods, we will use

the connectivity properties of the network. In particular, we

choose the value for ε that is the smallest one for the RN

to be connected. In order to find such an adaptive threshold,

we start from very small values of the threshold and vary

the ε parameter until we get a connected network. In order

to apply this approach efficiently, we use an iterative bisec-

tion method in the simulations. The connectivity of a net-

work can be measured by the second-smallest eigenvalue λ2

of the Laplacian matrix. If the network is connected, λ2> 0

(Boccaletti et al., 2006). We choose the adaptive threshold

value as the minimum value of the sequence of thresholds

T= Ti , Ti+1, . . . when the second minimum eigenvalue λ2 is

positive:

εc =min(T) with T= {Ti |∀i : λ2 (Ti) > 0} . (4)

Values ε below the critical value εc are indicating the ex-

istence of unconnected components in the RN (Fig. 1). Af-

ter that critical threshold, λ2 becomes positive and, if we in-

crease the threshold even more, the connectivity of the RN

increases. By choosing the critical point εc as the recurrence

threshold, we ensure that the RN will be connected by the

smallest threshold possible.

𝛜c

Figure 1. Variation of the second-smallest eigenvalue of the Lapla-

cian λ2 due to changing threshold value, using the logistic map as an

illustrative example (control parameter a= 4.0). λ2= 0 for thresh-

olds below a critical value εc, indicating the existence of uncon-

nected components in the RN. For ε > εc, there are no unconnected

components in the RN anymore. The adaptive threshold value for

this time series is εc≈ 0.19.

3 Applications

3.1 Logistic map

As a first application, we compare some RN measures for

first using the adaptive and then the constant threshold ap-

proach by analyzing the logistic map:

xi+1 = a xi (1− xi) . (5)

It is one of the most popular iterated maps, which has dif-

ferent regimes for different control parameters a. The de-

tection of the transitions of the logistic map between these

different regimes was previously studied with RP and RN

(Trulla et al., 1996; Marwan et al., 2009). The logistic map

shows interesting dynamics in the range of the control pa-

rameter a ∈ [3.5, 4.0], which is studied here with a step size

of 1a= 0.0005; for example, periodic and chaotic regimes,

bifurcations, and inner and outer crises occur. We compute a

time series of length N = 5000 for each value of a. In order

to discard transients, we delete the first 2000 values, resulting

in time series consisting of 3000 values that have been used

for all analyses of the logistic map in this paper.

For the constant threshold selection method, we use the

recurrence rate method to choose a threshold value: a thresh-

old is selected in such a way that the recurrence rate (RR) is

constant even for different time series with different dynam-

ics (e.g., different values of a) (Marwan et al., 2007). In this

paper, we use RR= 5 % arbitrarily for further analysis.

Now we compute the RNs by using the given threshold

selection techniques ε and εc for each control parameter a.

We then calculate transitivity, T , and betweenness central-

ity (BC) as the complex network measures in order to de-

tect the transitions from periodic–chaotic, chaotic–periodic

states, bifurcations, and inner and outer crisis. The network

transitivity is given by

www.nonlin-processes-geophys.net/21/1085/2014/ Nonlin. Processes Geophys., 21, 1085–1092, 2014
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Figure 2. (a) Lyapunov exponent and transitivity using (b) an adaptive threshold and (c) a constant threshold for the logistic map. Dashed

lines show certain bifurcation points before the chaotic regime.

T =

∑
i,j,k

Ai,jAj,kAk,i∑
i,j,k

Ak,iAk,j
. (6)

The average betweenness centrality of network is

BC=
1

N

∑
v

∑
s 6=v 6=t

σst (v)

σst
, (7)

where σst is the total number of shortest paths from node s to

node t , and σst (v) is number of the paths that pass through v.

As mentioned in the previous chapter, not all complex net-

work measures can be applied to a disconnected network.

However, it would cause problems for computing the mea-

sures on RNs calculated by using the constant threshold tech-

nique, since the network could be disconnected. For instance,

to compute the average shortest path length or assortativ-

ity for an entire network, the network must be connected.

Disconnected nodes of the network could be discarded from

the calculation, but, in this case, we would lose information.

In the adaptive threshold case, we could calculate all these

measurements on the entire network, since the selection of

the adaptive threshold ensures that the recurrence network is

connected.

Both threshold selection methods could detect tran-

sitions between dynamical regimes (periodic–chaos or

chaos–periodic). Transitivity gives large values for the

chaotic regime and small values for periodic. In the

betweennesscentrality case, it is contrary to transitivity; large

values for periodic and small values for the chaotic regimes.

Although the constant threshold selection detects the peri-

odic windows (chaos–period transitions) more sharply than

the adaptive threshold case, the transitivity, Tconstant, and be-

tweenness centrality, BCconstant, for the constant threshold se-

lection case (in the constant threshold case, in general, the

threshold is arbitrarily chosen by RR= 5 %) cannot distin-

guish between different periodic dynamics; i.e., it cannot de-

tect certain bifurcation points, such as for period doublings

at a≈ 3.544, 3.564, and 3.84, for example. Conversely, in the

adaptively chosen threshold case, Tadaptive and BCadaptive are

sensitive to these bifurcations (Figs. 2 and 3). Thus, using the

adaptive threshold also allows the detection of period–period

transitions (i.e., the study of bifurcation points, where the

maximal Lyapunov exponent remains non-positive).

3.2 Application to paleoclimate record

The study of paleoclimate variation helps in understanding

and evaluating possible future climate change. Lake sedi-

ments provide valuable archives of past climate variations.

In the following, we will focus on a well-dated high-

resolution climate archive from paleolake Lisan located be-

neath the archaeological site of Masada in the Near East

(Prasad et al., 2004, 2009). The sediments from the up-

per member were deposited (26–18 cal ka BP) when the lake

reached its highest stands (Bartov et al., 2003; Torfstein

et al., 2013). The sedimentary sequence contains varves

Nonlin. Processes Geophys., 21, 1085–1092, 2014 www.nonlin-processes-geophys.net/21/1085/2014/
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Figure 3. (a) Lyapunov exponent and betweenness centrality using (b) an adaptive threshold and (c) a constant threshold for the logistic

map. Dashed lines show certain bifurcation points before the chaotic regime.

comprising seasonally deposited primary (evaporitic) arago-

nite and silty detritus (Prasad et al., 2004). The pure aragonite

sublaminae were precipitated from the upper layer of the lake

during summer evaporation. Their formation requires inflow

of HCO−3 ions into the lake from the catchment area dur-

ing winter floods (Stein et al., 2003) that also bring in silty

detrital material. One detrital and overlying aragonite sub-

laminae constitute a varve. Previous studies (Prasad et al.,

2004; Torfstein et al., 2013) indicate that small ice-rafting

events (denoted as a, b, c, and d), as well as prominent Hein-

rich events in the North Atlantic, are associated with the

eastern Mediterranean arid intervals. The study of seasonal

sublaminae yields evidence of decadal to century scale arid

events that correlate with cooler temperatures at higher lat-

itudes. Analyses in the frequency domain indicate the pres-

ence of periodicities centered at 1500, 500, 192, 139, 90, and

50–60 years, suggesting a solar forcing on climate (Prasad

et al., 2004).

We use the yearly sampled pure aragonite proxy (CaCO3)

from the paleolake Lisan for our RN analysis (Fig. 4a). We

use a time delay embedding with dimensionm= 3 and delay

τ = 2 – these parameters have been computed by a standard

procedure using false nearest neighbors and mutual informa-

tion (Packard et al., 1980; Kantz and Schreiber, 1997) – for

reconstructing the phase space. To detect dynamical transi-

tions in the paleoclimate data, we adopt a sliding window of

W data points with a step size of1W . RNs are computed one

by one for each window of the time series. We have chosen a

sampling window size of1T = 100 years, with 90 % overlap

corresponding to a time window size of W ≈ 100 data points

(since there are some gaps in the data, the number is not ex-

actly 100). The time series’ length is N = 7665 and the total

number of windows analyzed is

N −W

1W
≈ 755.

Transitivity and betweenness centrality are then calculated

within these windows (Fig. 4b and c). As we have shown for

the logistic map, transitivity and betweenness centrality are

both sensitive to detecting transitions. Larger values of tran-

sitivity, T , refer to regular behavior, whereas smaller values

refer to more irregular dynamics in the considered window

of the time series.

The gray shaded horizontal band in Figs. 4b and c is the

confidence interval of the network measures. We apply a

rather simple test in order to see whether the characteristics

of the dynamics at a certain time statistically differ from the

general characteristics of the dynamics. In order to apply this

test, we use the following approach. We create surrogate data

segments of lengthW by drawing data points randomly from

the entire time series, and we compute the RN and the net-

work measures from such a surrogate segment. We repeat this

10 000 times and have an empirical test distribution of tran-

sitivity, T , and BC. A confidence interval is then estimated

from these distributions by their 0.05 and 0.95 quantiles.

Previous studies (Prasad et al., 2004) had identified mul-

tiple climate fluctuations in the varved Lisan record and

correlated them with the Greenland oxygen isotope data

www.nonlin-processes-geophys.net/21/1085/2014/ Nonlin. Processes Geophys., 21, 1085–1092, 2014
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T
BC

₃

a b c dH2IS2 IS2

L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13

Time (cal ka BP)

Figure 4. (a) Aragonite (CaCO3) record from paleolake Lisan, (b) transitivity, and (c) betweenness centrality results of RN using the adaptive

threshold. Abrupt changes in T and BC indicate transitions between different climate regimes. Dry events in Lake Lisan (cooling of the higher

latitudes) are marked by blue bars and two interstadial peaks (warming) by orange bars. The gray shaded band is the 90 % confidence interval

for the networks measures.

(indicative of temperature changes; Stuiver and Grootes,

2000) and ice-rafting events in the North Atlantic (Bond

et al., 1997). The blue and orange vertical bars in Fig. 4 de-

lineate periods of cooling and warming, respectively, in the

higher latitudes that resulted in drier and wetter episodes in

the eastern Mediterranean.

The network measures, T and BC, both indicate abrupt

transitions well (Fig. 4b and c). In particular for T , the

values jump between high and low values. T reveals

epochs of significantly low values at around 25.8–25.6,

25.2–25.1, 24.3–24.2, 24.0–23.9, 22.8–22.6, 22.3–22.1,

21.5–21.1, 21.7, 20.6–20.5, 20.1–19.9, 19.8–19.6, and

19.3–18.9 cal ka BP. The periods 25.8–25.6, 22.3–22.1,

21.5–21.1, and 19.3–18.9 cal ka BP correspond to the known

Bond events d, c, b, and a, and the epoch between 24.3

and 23.9 cal ka BP coincides with the Heinrich H2 event.

During the interstadial peaks “IS2” event at 23.8–23.7 and

23.3–23.2 cal ka BP, T shows significant high values, almost

reaching the value 1. BC exhibits rather similar behavior of

abrupt transitions like T , but with opposite signs. A general

observation is that low values in T can be found during dry

but high values during wet regimes, and that such regimes

change abruptly.

A high transitivity value indicates a more regular de-

position of aragonite, and thus a more regular, or even

periodic, climate variability. This could be an indication for

a dominant role of the (more or less periodic) solar forcing

via its influence on the temperature in the higher latitudes.

During phases of a colder North Atlantic, the solar forcing

becomes less important, but regional climate effects become

more important and dominating, causing a more complex,

irregular climate variability, finally indicated by low values

of T .

Combining the maxima of T and minima of BC, we can

identify the above-mentioned periods of non-regular climate

dynamics. Most of these periods correspond to cold events;

e.g., the Bond and Heinrich events, and the found Lisan lake

events L3 to L13 (Prasad et al., 2004). Several regular pe-

riods can be identified, some of which coinciding with the

warm period during the interstadial IS2. Few remaining pe-

riods of high or low regularity have not yet been identified in

the literature so far and call for further investigation.

The abrupt changes in T are available due to the adap-

tive threshold. By using a constant threshold, T varies only

slowly and more gradually. Defining the time points of the

climate regime shifts becomes more difficult in this case.

Nonlin. Processes Geophys., 21, 1085–1092, 2014 www.nonlin-processes-geophys.net/21/1085/2014/
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4 Conclusions

We have represented a novel method to choose a recur-

rence threshold adaptively and compared it with the constant

threshold selection technique. The selection of recurrence

thresholds for recurrence plots and recurrence networks is

a crucial step for these techniques. So far, the threshold had

to be chosen arbitrarily, taking into account different criteria

and application cases, as well as requiring some expertise.

Here, we have proposed a novel technique to determine such

a threshold value automatically depending on the time se-

ries. Such an adaptive threshold is directly derived from the

topology of the recurrence network. It is selected in such a

way that the recurrence network does not have unconnected

components. We have discussed transitivity and betweenness

centrality measures of the complex network approach. Both

measures are related to the regularity of the dynamics.

Moreover, the proposed threshold selection can also be

useful for the recurrence quantification analysis. A system-

atic investigation of the different threshold selections re-

mains to be looked into in the future.

We have compared the novel adaptive threshold selection

with the arbitrarily selected threshold by applying them to

the logistic map. Although both methods distinguish the dy-

namical regimes clearly, the adaptively chosen threshold ap-

proach detects many more bifurcations in particular, such as

period doubling. Such bifurcations are important characteris-

tics of the dynamical systems, since these bifurcations route

to chaos from periodicity.

Moreover, we have used our approach to investigate a

paleoclimate proxy record from the paleolake Lisan rep-

resenting the climate variability in the Near East between

27 and 18 cal ka BP. Both transitivity and betweenness cen-

trality measures clearly identified transitions between wet

and dry (and vice versa) periods by an abrupt decrease of

dynamical regularity, perhaps due to a reduced solar influ-

ence. Our method identified some transitions that have not

been known so far from the literature and require further in-

vestigation; e.g., by analyzing other proxy records from this

region. By choosing the adaptive threshold, we have been

able to identify the transitions more clearly than by using the

arbitrary selected threshold approach.
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