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Abstract. Resonant excitation of coastal Kelvin waves by and dissipation in the coastal zones, is of potential impor-
free inertia—gravity waves impinging on the coast is studiedtance for understanding the routes to dissipation in the ocean.
in the framework of the simplest baroclinic model: two-layer  The paper is organized as follows. In Seztwe present
rotating shallow water with an idealized straight coast. It isthe model and deduce its wave spectrum. In Slaek sketch
shown that, with respect to the previous results obtained witlthe resonances leading to the excitation of Kelvin waves and
the one-layer model, new resonances leading to a possibldevelop in some detail the cases of the barotropic Kelvin
excitation of Kelvin waves appear. The most interesting oneswave excitation by a baroclinic inertia—gravity wave inter-
described in the paper, are resonances of a baroclinic inertiaacting with another one, or with a coastal current. Section
gravity wave with either another wave of this kind, or with a contains the conclusions and discussion.

coastal current, leading to generation of a barotropic Kelvin

wave. A forced Hopf equation results in any case for the evo- .
lution of the Kelvin wave amplitude. 2 The model and its wave spectrum

The equations of the two-layer rotating shallow water model,
which is schematically represented in Flgare:

1 Introduction %v1+ fZAv1+gV (hi+ho) =0,

The present work is a development of the results of the paperp, +fIA ajrhlé_(vh (1121; B 8
by Reznik and Zeitlin(2009 where a mechanism of reso- D¢ V2T JeAv2T gV raL T A2) =,
nant excitation of the coastal Kelvin waves by inertia—gravity dthz +V - (hav2) = 0.
waves was shown to exist in the simplest rotating shallow Here v; = (u;,v;), i = 1,2 are the velocities in the re-
water model with an idealized straight coast. The main ob-spective layers (layer 1 on top of layer 2), are the thick-
servation below is that including baroclinic effects again in nesses of the layers with unperturbed valiesr = 2 < 1

the simplest two-layer rotating shallow water model allows s the density ratio of the layers characterizing stratification,
for new resonances leading to the excitation of Kelvin waves y — const> 0 (Northern Hemisphere) is the Coriolis param-
by inertia—gravity waves impinging on the coast. Probablyeter, and is the gravity acceleratior: denote the advec-

the most interesting of these new resonances is the one iNga gerivatives with corresponding velociti%': —3,4v-V.
cluding an inertia—gravity wave, a Kelvin wave and a coastal By introducing the time scal¢ 2, the velotcity scald

current. Coastal currents being ubiquitous in the ocean, suc . . -
X g ubiq . H']e vertical scaleH = H1+ H, and corresponding dimen-
a resonance provides a mechanism of universal nature for

. . _ H2 _
Kelvin wave excitation, which to our knowledge was previ- smnles_s unperturbed th{gc;mesgﬁs_ d g =1-d d<1,
ously unnoticed in the literature. The process of excitationth® horizontal scalé. ~ %, the Rossby numbeko = ¢ =
of Kelvin waves which are dispersionless and thus prone tof%, which will be supposed to be small in what follows, and
breaking, with formation of the zones of enhanced mixing assuming that typical perturbations, n» of the thicknesses
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Fig. 1. A side view of the two-layer rotating shallow water model
with a straight coast on thg plane.

of the layers ar@(¢), we obtain from Eq.J) the following

. . . Fig. 2. Dispersion relatiow (k, /) for the waves in the 2-layer sys-
non-dimensional equations:

tem atr = 0.5. Upper surface: barotropic IG waves, lower surface:
. baroclinic IG waves. Inclined plane: barotropic Kelvin waves. An
(0 +evi-V)va+ fZAv1+V (n1+n2) =0, inclined plane with lesser slope, corresponding to the baroclinic
dn1+V-((d+envy) =0, ) Kelvin waves, is not displayed beneath the dispersion surface for
(0 +ev2-Vyva+ fZAv2+V(rni+n2) =0, baroclinic IG, to avoid overcharging the figure.
2+ V-((1—d+enz)vp) =0.

For illustrative purposes, in what follows we will choose out from the coast. As follows from Eqs4)((7), in the
the most simple casé, = 3, although calculations may be |inear limit e — O the system decouples into two rotating
carried out, with some more effort, for an arbitraty shallow water subsystems (the barotropic and the baroclinic

The linear part of the equationg)( remaining after tak-  50q) with different dimensionless effective gravitfég”,

ing the limite — 0, may be factorized by means of decom- oqhectively, The wave spectrum of rotating shallow water in
position into barotropic (+) and baroclinie-§ components, the semi-infinite domain is well known, cf. e Gill (1982.

. . 1.
which reads in the casé= 3 It consists of incident and is reflected by the coast barotropic
(upper sign) or baroclinic (lower sign) inertia—gravity (IG)

+ _ +_
vt =Vt gt =2(VrmEn), (3 waves with the dispersion relation:
where we introduced an additional factor 2 in the secondGI%3 o =14 c2K2, @)
equation for technical convenience.
In terms of the baroclinic and the barotropic componentswhereo is the wave frequency arid= (k, [) is the wavevec-
(3), Eqg. @) becomes tor, and dispersionless Kelvin (K) waves propagating along
1407 T/ 1 the y axis towards lesser with the phase velocity..:
vt +2Avt + Tv'ﬁ ==2 [(7 + 1> (- Vo +v7-Vov7)
r
. o2 = 212, 9)
— _ t.Vo 40 - VoT
+(ﬁ >(v v +v Vo ):| (4)

and decaying with: ase™*/“+, respectively. We introduced
1 + 1) V- (ntot4nv7) here the dimensionless phase velocities of the baroclinic and
vr barotropic gravity waves

(1) e ot 5
(J-)¥ v ), (5)
at"_+2/\”_+1_ﬁVn‘=—5[<i—l>(v+~w++v—.vr) =7 1i—2\/; (10)

€
8177++V-v+:—2|:

2 al\r
n (i+1> (v+,w7+v<w+)]’ (6) Graphical representation of dispersion relations of the
Vr waves in the system is given in Fig.
b=+ Vv =& [(i _ )V (ot o) _The velocity and thickness fields for IG and K waves are
4\ given by:
1 +y— L=yt .
+ (ﬁ+1>v UM R )] (7) W v nE) = (UE@), VEG), N () @D ce. (1)

We will consider the systenil) in the semi-infinite plane  gpg
with an idealized straight coast. Theaxis of the coordi-
nate system will be directed along the coast, andxtlagis (i, v, nig) = (0, caKE(y 4+ cxt), —KE(y +car))e ™/, (12)
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where Kt are arbitrary functions of their argumerits de- the coast. Kelvin waves are non-propagative in.thadirec-

fined as tion perpendicular to the coast, hence the resonance condi-
tions include only thes component of the wavevector in this
£ =y+oqt. (13)  case, cfReznik and Zeitli(2009:
The boundary condition of vanishing normal velocity at /i, /i, =k, oic(k1) £oic(k2) =ok(l), (18)

the coast imposes
where, again, each wave may be either barotropic or baro-
Ut—a (e”‘" _ e‘”‘x> ’ (14 clinic. We will refer below to the upper- and lower-sign cases
in Eq. (18) as the “sum” and the “difference” resonances, re-

where A is the (complex) wave amplitude, and the eXpres_spectively. The incident and reflected IG waves in this con-
sions forV and N (polarisation relations) follow from the (€Xtmay be thought of as a mode propagating imtiatrec-

linearized Eqs.4)—(7): tion.
Suppose that a pair of IG waves, whatever their character,

ikx o—ikx is in resonancel) with either a barotropic or a baroclinic

) (15) K wave. These three waves constitute a zero-order solution
which will be considered to be slow time-dependent, with the
slow timeT = et:

+ 252
=Al+c4l +
( £ (ioi 1k —ioE +lkck

. . 0 0
Ni _ A( lk+0'j:l ikx lk—O':tl e—ikX) (16) (M(O) (O)) (u(K)’Ul(() UK))(X v, t, T)
- 2 . 2 . ’
cilk+iox cilk—ioyt + Z( l(lo(;)’ z(|?;)’nl| ))(x y,1,T), (19)
=12

where we assume that< 0.
where the appropriate components, barotropic or baro-
clinic, are understood for each wave, depending on the pre-
3 Resonant excitation of Kelvin waves in the two-layer cise nature of the resonance. For the first-order correction

system WD O D5y 1 T) we get
3.1 Wave—wave resonances uPE W 4 2,0 — (O)i +NLE =RE,
(1)i+u(1)i+cz (l)i _ (O)i—i—NLi Ri (20)

Let us recall of the principle of resonant excitation of waves
in the present context. In general, if we consider the system % 4, (W% . v(l)i = <0>i +NLE =
(4)—(7) in the linear approximation, take a solution which

consists of a superposition of waves, and try to calculate thevhere NLf,E v.n Stand for corresponding nonlinear terms in
nonlinear corrections, we generally encounter a problem ofgs. @)—(7) built from the zero-order fieldsl@). As shown
resonances. The nonlinear terms in the Ed)s<(7) are reso-  in Reznik and Zeitlin(2009, all essential information for
nant if the frequencies and wavevectors of any pair of initial Kelvin wave excitation is contained in the expressidtjs

)] ’

waves obey the relations: andR,ﬂf. Up to non-resonant terms they have the form:
kitky=k, o(ki)xo(kz)=o(k), 17 RrREf= —chKfrte”‘/"i - aiciKiKgﬂe*Z’c/Ci

IG ;
whereo (k) follows the dispersion relation for linear waves in - [NLjE s 4 c.c.] , (21)

the system and the indices2l(not to be confused with layer & ,—x/c n —2v/c
K * 4+ 2a1+c+K K Le +
numbers) enumerate the resonating waves, whatever their na '? §
ture (baroclinic or barotropic). _ [NLi'Gezls + c.c'] (22)
In the case of resonance, the forcing due to the zero-order g
fields in thg equathns for the flrst-order corrections projectsyhere we introduced a useful notation for what follows:
onto the eigensolutions of the linear system and leads to the
resonant growth of the corrections. As is well-known, this 1/ 1
o . . ) ar==-|—=1
situation is treated by introducing slow modulations of the a4\ Jr
initial wave amplitudes. In the case of resonance, the am-
plitude of the wave with the wavevectkrgrows due to the and NL,ﬂf denote bilinear combinations proportional #2
resonance of the waves with wavenumblers. In what fol-  and resultlng from inserting into the nonlinear terms the zero-
lows, we will be interested in resonant excitation of Kelvin order IG fields with polarization relation44)—(16). To ob-
waves, which are trapped near the coast by free inertiatain the evolution equation for the Kelvin wave'ke*, T),
gravity waves which come from infinity and are reflected by we follow Reznik and Zeitlin(2009 and subtract the third

(23)
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equation from the second one, multiplied@iL in Eqg. 0).
After multiplying by e=*/¢= and integrating i, we get: r

o0
Bf —ciBf = - / dre /= (RE — c'RE),
0
o0 ~
BT = /dxeﬂc/ci (czty®E — Dy, (24) —
0

As follows from Egs. 21) and @2), the r.h.s. of Eq.44)
is a function of¢* only, and to guarantee the boundedness
of BT it should be equal to zero. This is because the Il.h.s.
contains the derivative of the functia@™ (B~) with respect (L+k?2)"”
tor unigquely at fixed:+ (£7), and with the r.h.s. independent
of £~ (¢1), alinear growth ofB™ (B™) in ¢ results. Thus,

2\1/2
L +k?)

~

Fig. 3. Geometric representation of the resonance conditddh (

[e¢]
. _ Hypotenuses of the right-angle triangles (solid) represent the two
- +_ —lp+y
/dxe x/ci(Rn —c1 Ry =0, (25) entries in the I.h.s., with their minimal values also shown (dashed).
0
which leads to the evolution equation of the form: LeCunuder2013. The “difference” resonances may be anal-

ysed along the lines oReznik and Zeitlin(2009, so we
sketch below only the mechanism of the sum resonance

wheres is a forcing term produced by nonlinear interaction ©f two baroclinic IG waves generating a barotropic Kelvin
of IG waves, which is nonzero in general. AsReznik and ~ Wave. . )
Zeitlin (2009, it is proportional to the product of amplitudes ~ 1he resonance conditions in question are, cf. E):(
of the two IG waves, and is harmonic . The detailed

: . ’ l he, = Ik, k k2) = ok (). 27
expression fosS in terms of the wavenumbers of the resonat- e e, =lk.  o16(ky) +oie(ka) = ok () 27)
ing IG waves depends on the precise nature of the resonance We will omit the subscripts IG and K from now on. Equa-
and may be established, likelReznik and Zeitli(2009), af- tions 27), (8) and Q) give:
ter some algebra. The properties of the harmonically forced
Hopf equation 26) may be found in the literature (dReznik 1 +l=1=—|l|,
and Zeitlin 2009 and references therein), the most impor- 2.2 12 TN
tant being formation of the enhanced mixing zones — Kelvin \/1+ =k +ip+ \/17L = (kg +13) = clil, (28)
fronts Fedorov and Melvillg(1999*. We should emphasize \yhere, as usual, we adopt a convention of positive wave fre-
that even if the amplitude (envelope) of the Kelvin wavé K guencies, which means that the wavenunitgirthe Kelvin
is initially zero, it will grow according to Eq.26) and even-  wave is negative. The resonance condition on frequencies,

K+ aiciKiKg; =8, (26)

tually break. _ ~ after renormalizing the wavevectors, is as follows:
With respect to the one-layer case Réznik and Zeitlin o
(2009, where only the “difference” resonances were opera-(ki, ;) = c=*(ki, I;), i = 1,2, (29)

tional, the “sum” resonances between the waves of the same d . he tildes. is:
and different kinds (barotropic and baroclinic) can lead to@"d: 0mitting the tildes, Is:

the resonance excitation of the Kelvin waves in the two-layer P P cq

model. Thus, barotropic Kelvin waves can be excited by the\/1+ ki+1p+ \/1‘|‘ kptlp=——"U1+D). (30)
“difference” resonances of two barotropic IG waves, as in the

one-layer case, and by the “sum” resonances including ei- Suppose that > are both negatively 2 = —|l12|. Equa-

ther a baroclinic and a barotropic IG wave, or a pair of baro-tion (30) then takes the form:
clinic IG waves. The baroclinic Kelvin waves may only be c
excited by “difference” resonances of all kinds (baroclinic— \/1+ KZ + 112+ \/1+ kS + 1l2]2 = +—(hl+ 2. (31)
baroclinic, barotropic—baroclinic and barotropic—barotropic, B

1 _ S and admits a simple geometric interpretation presented in
Although we do not introduce explicit dissipation in our anal- ; 3

Fig. 3.
ysis, it becomes necessary for properly resolving the Kelvin-wave ?At fixed I1 » the minimum value of the I.h.s. of EBT) is
breaking events — a numerical dissipation is, normally, sufficient in 12 R

numerical simulations. equal to\/l—f- |l|§+\/1+ |l|% > |l|1+]!]2 (sum of the lengths
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or, o I I - or, | I I -

L
0 1 2 3 4 0 1 2 3 4

Fig. 4. Resonant region in thi¢|1, |/|2 plane forr = 0.5. Left: both/; > negative. Right: negativig and positivel. Resonant wavenumbers

are situated above the displayed limiting curve on the left panel, and beneath the limiting curve on the right panel. Horizontal (vertical) axis:
[11] (|I2]). With growing%_r (growingr) the non-resonant region on the left panel shrinks, keeping the same form, while on the right panel it
is the resonant region which is getting more and more narrow.

of the dashed intervals in Fi@. vs. the length of the hori- and represents an along-coast current in geostrophic equilib-
zontal interval). Thus if the ratit‘éf is insufficiently large,  rium. In terms of baroclinic and barotropic components we

[ 2t /71+|l\2 have for the mean current:

R i.e. the stratification is too strong, cf. 1+ .Jr
Eq (10) t%e resonance is not possible. Otherwise, as is easyM =0, vﬁ = Taxnﬁ (34)

to see from Fig3, one can always fingl » to satisfy the res- . L ) )
We will consider in what follows the functiong » rapidly

onance condition. Inversely, at f|xéé i.e. at a given strat- ' /
ification, the condition or » for the existence of resonance decaying out of the coast (at=0), and thus representing
coastal currents, which are ubiquitous in the ocean. In the

is
case of surface currents, probably the most relevant configu-

& (U1l > \/1+|l|%+\/1+|l|§, (32)  ration, the lower layer is motionless:

Cc_

=0,=rny, +n2y =0. (35)
Due to the,/r dependence, the resonance does not eX|st 2 M M

only for unrealistically small values of Analysis of Eq. 82) As is known in another contexReznik and Zeitlin2007),

shows that, except for the values $f very close to 1 (very free waves can resonate with mean currents and thus excite
strong stratification), the resonance is always possible fofrapped waveguide modes. A weak mean current along the
high enough!|y . Similar analysis may be carried out in the Waveguide (the coast in the present context) in such situa-

case where one of the wavenumbers, isais positive. Typ-  tion may be considered as a wave with zero frequency and
ical regions of resonarit » are presented in Figt in both ~ Zero wavenumber in the waveguide direction. For such ares-

cases. onance to exist, the wave frequency and the wavenumber in
the waveguide direction of the incoming free wave should
3.2 Wave—-meanflow resonance coincide with those of the waveguide mode. From the inter-

section of the dispersion surfaces of the baroclinic IG waves
As mentioned in the Introduction, the two-layer system ad-and the barotropic Kelvin waves in Fi, it is obvious that
mits a new type of resonance leading to the excitationthe resonance of a baroclinic IG wave, a mean current, and
of Kelvin waves: |G wave—meanflow resonance. Indeed, ag barotropic Kelvin wave and, hence, resonant excitation of

meanflow solution, which is, in fact, a solution of not only parotropic Kelvin waves via this resonance, is possible. We
the linearized, but also of the full system, should be addethys should have:

to the solutions of the linear system described in S&din B
non-dimensional terms it is given by oig- =0k+, le- =lk+ =1,
ie.

(36)
ugy, =uzy, =0,

—V1y + 0x (nlm +m2y) =0, (33) C-zi-lz =1+ Cz (kz + 12)’ (37)
—v2y + d (”llM +n2y) = 0,

www.nonlin-processes-geophys.net/20/993/2013/ Nonlin. Processes Geophys., 2099932013



998 V. Zeitlin: Resonant excitation of coastal Kelvin waves

Note the contributions from the Kelvin wave—meanflow in-
teractions containing:+K* in Eqs. @0) and @1), which
were absent in the case of wave—wave resonance inJ#ct.

As in Sect.3.1, in order to obtain the evolution equation
for the Kelvin wave K-, we construct the combination

which leads to the following expression for thkecomponent
k of the wavenumber of the incoming IG wave:

2
c 1
K==t -1]7-=.
<c3 ) 2

Therefore, for a given stratification, i.e. a given rafe}o>

(38)

R=RM" — TIRWM" = oK f e /e +8e KPR, e 2/er

+ -\ _ + - + ,—x/c WM
1, the resonance is always possible for a sufficiently large (2 (ar o Fa-v) —ex (aenfy +a-m)[Kg e F R, (44)
negativel. With respect to the wave—wave resonance, theand require that
conditions of the present one are less restrictive, as it requires
a single wave impinging on the coastal current, a ubiquitous c
situation in the ocean, and thus provides a universal mechaq gy ,—/c+R =0, (45)

nism for Kelvin wave excitation. We should stress that such

a mechanism is impossible in the barotropic model, becaus®

the dispersion surface of the Kelvin waves always lies belowcf, Eq. 25). Taking into account the relation84) between

the dispersion surface of the IG waves of the same type.  velocities and thicknesses for the mean currents, the expres-
Let us see the details of this mechanism. We represent thegjon forRWM is:

zero-order flow in the form: 1
WM —r/ _ .2 -

0 (0 R =—— (u 05, N1y + 0y V= 05 N1, )
(M(O),U(O),n(o))z( (K)7v|(() nK))( VL1, T) 4C+ IGYxx"1m YHEIGYX U dm
_’72M)]

oG e = 3 [ (1 (46)
_ 1-r _
— 3y [ vg (116 — 1126) + ngax N1y | +c.c..

+(”,|G Vg Mg) . y,1,T)

+ 0,09 1M, 1), (39)

and look for the first-order corrections — solutions of the sys-
tem @0), taking care of the resonant contributions along the
lines of Sect.3.1 Note that, according to our scaling, the
amplitude of the mean current is of the same order as that of 1—,

the impinging wave, i.e. small. We will show later how this R{ppen= e (ufgafme + ByvfGaxnlM)

For the relevant case of an upper-layer curr@f) this
expression becomes:

constraint may be relaxed.
The expressions for the resonant contribution® foand
Rj,f in the case of wave—meanflow resonance are2dj.¢nd

(22)):

RUW'V'Jr = —CiK;e_x/ch — a+c§rK+K;+e_2x/c+

- [NLWNHe”SJr + c.c.]

—cy (a+vM +a_ UM)Kg+e_x/C+, (40)
RIM™ = Kfe™ /e 2a;.ci KFKE e72/er

- [NL‘,jVWe”f* n c.c.] (41)

(@ (s — i)+ - (e — vig) Kfe ™,

with nonlinear terms NP and NLY " resulting from the
wave—meanflow interaction:

+ — — — —
NI = ay (uigdroy + vydyvig)

+a_ (”I_G vaﬁ + v,j,l' ayulg) (42)

NLYM™ = [3, (myinig) + 3y (mvis +nigvn)]  (43)
+ a 8. (nfuigma i) + 3y (Mvie + mg ) ]

Nonlin. Processes Geophys., 20, 99339 2013

_(l+r)ax (ME;nlm) (47)

_ 1-r _
- ay |:(1+r)v|Gn1|G + TanaxnlM] +C.C. .

Applying Eg. @5) we get, as in SecB.1, an evolution
equation forkK of the form:
KT + CK; +aic Kt K; =3, (48)
whereC is the non-dimensional phase velocity induced by
the mean current, and dependent on the profile of the mean
flow, see Eq.44), while S is the source term proportional to
the amplitude of the IG wave and harmonictih. Equation
(48) is of the same form as Eq26), apart from the linear
term CK;, which represents a Doppler shift in the phase
velocity of the Kelvin wave due to the presence of the mean
current. Note that by integrating by parts, the integral of
the second term in the r.h.s. of E44] may be transformed
to an integral over the mean-flow velocity minus the value of
the thickness at the coast (up to a factor). Positive coastal cur-
rents will thus have lessét, and vice-versa, as it should be,
because Kelvin waves propagate in a negative direction in
As to the efficiency of the forcing, it depends both on the
characteristics of the mean flow and on the parameters of the
impinging 1G wave. For the coastal currents of finite width

www.nonlin-processes-geophys.net/20/993/2013/
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D, the integration ovek in Eq. @5) is over the finite inter- In order to illustrate the main ideas, the new mechanisms
val [0, D]. From standard steepest descent estimated;e-g. of the resonant excitation were presented above in the sim-
doryuk (1977, applied to such integrals if which contain  plest configuration of layers of equal depth and a density ratio
eTk* "one can deduce that the forcing will be optimal for IG of order one. If the two-layer model is applied to the ocean,
waves withk D < 1, and negligible fokD > 1. The Doppler  the density ratio- should be taken to be close to unity, and
shift term in Eq. 48) may be removed by the change of the thereforec_ becomes very small. At the same time, the upper
dependent variabl& — K — C, and essentially it does not layer should be shallower than the lower one. Correspond-
change the properties of the equatid®)( as compared to ing changes may be done in the above-derived expressions,
Eq. 26). Thus the same conclusions, as to the behaviour ofyet the realistic situation of a continuously stratified ocean
its solutions, hold, cfReznik and Zeitli2009. (We should  is much more interesting for applications. As is well-known
remind the reader that a harmonically forced Hopf equation(e.g.Gill, 1982, by separation of variables in the vertical and
(26) may be fully integrated by introducing the Lagrangian horizontal directions in the continuously stratified primitive
coordinatest — 2t : 2t = (8, + K8§+) ET, which trans-  equations, one arrives at a solution of the linearized equations
forms the equation into the equation of nonlinear pendu-in the form of a series of baroclinic modes. For each baro-
lum E* = S(21)). That is, the amplitude of the barotropic clinic mode the dispersion relation is analogous to the rotat-
Kelvin wave starts growing due to the resonant forcing pro-ing shallow water one, with the phase velocity depending on
duced by the interaction of free baroclinic IG and the coastalthe vertical structure. Therefore, it is possible to satisfy the
current. The nonlinear evolution of the thus excited Kelvin resonance conditions of the above-discussed types for fre-
wave results, in general, in breaking and formation of char-quency and the horizontal wavenumber. However, compat-
acteristic mixing zones — Kelvin fronts. Yet the presence ofibility with vertical structure implies additional constraints.
the Doppler shift term may lead to some modifications, e.g.The results of the corresponding analysis will be presented
in the properties of stationary solutions which exist for cer- elsewhere.

tain initial conditions?
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