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Abstract. Multifractional Brownian motions have become different frequencies and is extended to vary with time, to
popular as flexible models in describing real-life signals of model realistic situations occurring in various fields.
high-frequency features in geoscience, microeconomics, and With such a perspective, a few approaches have been pro-
turbulence, to name a few. The time-changing Hurst expoposed to model multifractional Brownian motionsévy-
nent, which describes regularity levels depending on timeVéhel and Peltief1995 proposed a mean average approach.
measurements, and variance, which relates to an energy levaBenassi et a[1998 introduced a spectral approach. The pro-
are two parameters that characterize multifractional Brown-posed models represent mBm as a Gaussian progéss
ian motions. This research suggests a combined method ofith a covariance function involving the Hurst exponént
estimating the time-changing Hurst exponent and variancéy a function of time,H (r), and variance parametér. The
using the local variation of sampled paths of signals. TheprocessW is well defined, or square-integrable, if function
method consists of two phases: initially estimating global H(z) is continuous enough in adtlerian sense, and its vari-
variance and then accurately estimating the time-changingince at time is given by Vafw ()] = C%#® parameter-
Hurst exponent. A simulation study shows its performanceized by variance leveC and the Hurst exponenCphen
in estimation of the parameters. The proposed method is apt999. The time-changing Hurst exponeht(r) character-
plied to characterization of atmospheric stability in which izes the path regularity of proce®s at timez, since sample
descriptive statistics from the estimated time-changing Hurspaths near with small H(¢), close to 0, are space-filling and
exponent and variance classify stable atmosphere flows frorhighly irregular, while paths with larg# (¢), close to 1, are
unstable ones. very smooth. The variance const@htetermines the energy
level of the process.
Several approaches have been proposed to estimate the
time-changing Hurst exponerf{ (+) and varianceC from
1 Introduction sample paths of mBm signalBenassi et al(1998 exam-
ined estimation of a continuously differentiabt(z) with-
It has been observed that a wide range of complex signalgyt the direct estimation of. Fhima et al.(201]) used the
in nature are characterized by seemingly irregular behavio§ncrement ratio statistic method for estimationftr) only.
varying in time and exhibiting different levels of magnitude. Fqor estimation ofd (1), Benassi et al2000 andFhima et al.
Examples of such irregular signals in time are abundant i”(201]) adopted the approach of relaxing the continuous con-
medicine, economics, and geoscience, to list a few. Such sigqition of H(t) by piecewise constants. For an overview of
nals can be effectively modeled by multifractional Brownian estimating constar (1), the reader is also referred Beran
motions (MBm). As a generalization of fractional Brownian (1994, including various statistical methods, Bardet and
motions (fBm), multifractional Brownian motions describe Bertrand(2007), emphasizing wavelet contexts. The estima-
both regularity attributes varying depending on time mea-tion of both H (1) and variance parametérhas received lit-
surements and variance levels describing orders of energye attention from the statistics community, whileis mostly

ponent, expresses the strength of statistical similarity at many
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98 K. C. Lee: Characterization of turbulence stability

local version of quadratic variations and proposed a class othe mean average approachWsfis given by
estimator ofH (r) andC at each local sample path. When a

signal is modeled with mBm, the estimation Bf(r) can be nK(ZH(t))
improved by estimating” accurately from covariance struc- W) =c+——*
tures involving bothH (r) andC. C(H(t)+1/2)

The objectl\{e Of.thIS paper is tq propose a procedure for /{It C s HO=120 () — |S|H(1)—1/21]_OO,O](S)}dB(SL
accurately estimatingZ (r) and C given a sampled path of

mBm processW. This paper uses discrete filtering tech-
niques for mBm, further calculatingth empirical moments

of the filtered signals related t (r) andC. Then the follow-

ing two phases are adopted. The first phase estinfates
andC for each local sample path and leads to a global estima:
tor of C. The second phase adjusts estimated) with the
global estimator of” from the previous phase. The adopted
two-phased approach results in an estimatioi ahsensi-

whereB is the standard Brownian motioh &vy-Véhel and
Peltier 1995. The terms “process” and “signal” will be in-
terchangeably used in referring to observed sample paths of
a random process. It is worth noting that observed variables
in the atmosphere, when collected for all time measurements,
are not normally distributed, but that the empirical evidence

; shows the necessity of interactive random processes consist-
tive to many sample paths, global to procésand thus an ing of a Hurst exponentTlck, 2010. The Hurst function

accurate estimation df (1). . . . H(t) is assumed to be continuous enough in @ddrian
The suggested approach is applied to turbulence S'gnal§ense as itohen(1999. The covariance function d¥ for
of air velocity and temperature. Turbulence stability for at- t,v € [0, 1] is given by

mospheric flows is determined by Monin—Obukhov lengths

from the similarity theory and related to the convection of 2

the air Monin and Obukhoy1954 Obukhoy 1971 Stull, EIWEH)W(v)] = C—\/K(ZH(I))K(ZH(U))
1988. Recent evidence shows that atmospheric turbulence is 2 KHO+HW)

anisotropic and requires different scaling exponents, which {¢|#O+H@) 4 1 HO+H©) _ 1, _ v|”<’)+H(”)},

is related to the Hurst exponent, depending on directions

(Lovejoy et al, 2007, 2010, and also that multifractality and whereK (x) = I'(x + 1) sin(xw/2) /7 (Ayache et al.200Q
generalized scale invariance analysis reveals rich i”formaCoeuronIy, 2005. From the covariance function, we have
tion on s_caling exponent:tovejoy et al, 2009_ Schertzer E[W(1)2) = C22H®  and consequently VEW (1)] = C2. In
and Lovejoy 201]). In this paper, turbulence signals of lon- his sense is called the variance level of the process. It is
gitudinal, lateral, and vertical velocities and temperature argjear to see the proces(r) is not weakly stationary, since
identified with mBm by estimating{ (r) andC (Ghil, 1985 he covariance function does not depend em only. The es-
Wanliss and Dobigs2007). Descriptive statistics generated timation of C is nontrivial because of the dependence struc-
from estimatedH (r) and C are used in classifying stable e of c and H () from the covariance function; that is to

flows from unstable ones. say, the sample variance of a sample path does not lead to

The paper is organized as follows. Section 2 introducese direct expression af. For example, for a given sample
computation ofk-th empirical moments of filtered signals Eath fromzy to 1, 5[22_1W(tk)2] — szn 2HW) de-

and explains the proposed two-phased procedure of estimagangs upon not onlg but alsoH (¢ for all kk_:l

ing the parameters. Section 3 discusses numerical simula- |, order to weaken the dependence structurévia), a
tions and shows the benefit of the proposed approach. Sefd’lfferencing filtera of lengthl +1 and ordep > 1 (the num-

tion 4 presents applications of the proposed approach to aigey of vanishing moments) is applied. Fileis defined by
turbulence signals. Section 5 concludes this paper. its taps,(ao, .. ., a;), such that

1 l
2 Method Zaqqi:O, i=0,...,p—1, and Zaqqiyéo, i=p.
Let us consider a discretized sample path from a Gaussiaf‘]:O =0

process¥ (i/N), amBm signal, foi =1, ..., N, with Hurst
function H (¢) and variance parametér. The spectral repre-
sentation ofW is given by

For instance, possible choices for fileeare shown in Ta-
ble 1. For difference filters, the length+ 1 is equal to the
order p plus one, while for Daubechies filters it is equal to
b1 two times the ordep. Furthermore, high-pass wavelet fil-
W(t)=C /I((ZH(t))/Z/ WdB(A), ters with a different number of vanishing moments corre-
® A sponding to orthogonal wavelets such as Daubechies, Sym-
let, and Coiflet wavelets are also possible. A detailed discus-
whereC is a constant scale (variance) parameter Arttie sion of wavelet filters can be found Baubechie$1992 and
standard Brownian motiorBgnassi et al.1998. Similarly, Vidakovic (1999.
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Table 1. Examples for filtera are shown.

name filtera orderp length/+1
difference ¢2) 1,-2,1) 2 3
difference ¢3) 1,-3,3,1) 3 4
Daubechies?2) (0.48296,-0.83652, 0.22414, 0.12941) 2 4
Daubechies3) (0.33267-0.80689, 0.45988, 0.135010.085441, 3 6
—0.035226)
Symlet (§4) (—0.075766, 0.029636, 0.497620.80374, 0.29786, 0.09922, 4 8
—0.012604,-0.032223)
Symlet (S5) (0.027333,-0.029519,-0.039134,-0.1994, 0.72341, 5 10

—0.63398, 0.016602, 0.175330.021102,-0.019539)

Va(m) (%

Let us also introduca™ based on filtem, the filter de- ) ~ N(0.1) and E; is the k-th absolute mo-

. where
fined by ment of the standard Gaussian variable given By=
| aijm: i/m is an integer 2821 ((k +1)/2) / /7 for k > O (Papoulis 1991). Accord-
a4; = { 0, otherwise. ingly, the log of thek-th absolute moment is derived as fol-
lows:
Notice thata®™, the filter a dilated m times, captures ik
a resolution at a low frequency, corresponding to a coarsqogg[ Vg (L) ]
space, asn increases. Fom =1, it captures the finest N

level of detail. For exampleg® = a by definition, and for k m
second-order difference filted2, a= (1, -2, 1), a® be- =logEy + klogC + > log7a 1 () +kH(t)Iogﬁ. 2
comes(1,0,—-2,0,1).

Let V,m be a process of local variation consisting Wf
filtered bya™, that is,

Now, the log of thek-th empirical absolute moment
near v, denoted byS,m ,(t), is introduced to estimate

.\ |k
. il . IogE[ Vaom (ﬁ)‘ } by the moment matching approach:
)= mw (/—4 P
Va(m) (ﬁ) —[;)aq W<T>, f0r J —ml+1,,N l ] ‘
Sa('"),k(t) = |Og <m Z Va(m) (N)‘ )
For example, whea® = (1, —2, 1) of order 2 is applied, jev(t)

Vo represents the second-order difference®ott is pos- Observably, the right-hand side of E@) {s linear in# (¢)
sible to show that the filtered sign&l (¢) is weakly sta- o1 logra 1 is ignorable. Thus, for fixed and & and
tionary, so the filtering by breaks the dependence struc- varying m, it is reasonable to considar filters L. .M
ture between observations. See Appendix A for proof. Addi'form) and'to regresk, on X, whereL; = {S.m k(t)}1<m’<M
tionally, Ve (f) converges to a locally stationary Gaussian andX is the design matrix/ x 2) defined aﬁ:)y)’( — 1y X1

prqcess with the following variance str_ugture: fotN in_ a with 1,/ the all-ones vectom x 1) andx = {k 109 }1.<p<s.
neighborhood of, denoted by, of a sufficiently small size, 1 4tisto say

k m

j C2m2H®) Sy () ~10g Ex +klogC + = l0g7ma u () +kH (t)log —

Var | Vaw | = ) | =~z TaH®)> 1) ’ 2 N
NZ2H (1) 0

t

N m
=1 klog—][ ] m=1...,M, 3)
wherera, = —3 Zf]’q,zoaqaqdq —¢'|?". Then thek-th ab- N'|LH@)
solute moment o¥/.) follows by normalizingV,m by the  \whered, = log E; + klogC + /2 log7a, 11y, and L, is re-
gressed with the moddl1,, x 1[6, H(z)]" by ordinary
least squares. This procedure leads to a class of estimators
of [6, H(t)]T, and the least-square estimators are given as

standard deviatiory = /Var[Vm) (%)]

K
N Vaom (ﬁ) follows:
E | |Vaom (L> =&||———2 | T
L) = ——,
k KIAT
. ‘
NHO ‘M MIAIZ
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100 K. C. Lee: Characterization of turbulence stability

where the vectord (M x 1) is defined byA,, =log% — :

M—lzyzllog% for m=1,..., M. This estimator is a lo- | f
cal version of the estimator for the Hurst exponent of fBm ¢ | 5

models Coeurjolly, 2001 and an extension of the second

moment result for mBm models to tkheth moments Coeur-
jolly, 2009. Accordingly, the estimator of , denoted byC,

depending on neighborhood around, is derived from the
definition ofd; as follows: .

02| 02

500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000
t t t

(a) U-shape H(t) (b) logistic H(t) (c) flat-line H(t)

1

C, = ”;gm) exp(k*l(ét —log Ek)). (5)

2|

wi()
w(
w(

Noticeably, the estimatafl; (1) in Eq. @) through regres- )
sion model B) can be enhanced by using improved estima-
tion of C. As the first phase, estimation 6fis adapted and
improved by treating’; as initial estimates varying hyand

500 1000 1500 2000 h 500 1000 1500 2000 h 500 1000 1500 2000
t t t

(d) mBm based on (a) (e) mBm based on (b) (f) mBm based on (c)

Fig. 1. TestedH (¢) functions,(a) U-shape (b) logistic, and(c) flat-

taking the average of all estimated valugs line, are shown in the upper row. The corresponding simulated mBm
C= 1/ Zé’ (6) signals withC = 3 are shown in the lower row.
teQ

whereQ is the index set of. The adapted estimator 6f is

denoted byC. One would chqose_ the m(_edlan of m_stegd presented. Simulation is done with the “known truth” of
of the average for robust estimation. This adaptation is seng, . functionH (1). Test functions are the-shape logis-
sible glecaus}e varﬁnci padrame@rs originally unAvarylgg tic, andflat-line functions shown in the upper row in Fid;
regardiess ot neighborhoo positiom processV. Accord- corresponding simulated mBm signals are shown in the
mgly_, estimators ofH (r) at the second phase foIIowfromthe lower row. For example, the simulated signal in Figl,
relat!onshlp_betweekn-th absolute mqmentgarfd_(r) that is based on the U-shap# (¢) in Fig. 1a, exhibits high regu-
manifested in Eq.2). The computation fo# (1) is separa- larity at the starting and high irregularity in the middle as

blei ir_lto G?ChH(t{) for ebQ. In other words, for fixed;, a increases, ending with high regularity. The flat-line func-
solution ofH (1;) Is given by tion will be used as an indicator in which the method can

R X properly distinguish fBm models from mBm models. For the
H(t) = %fghminz | Sqom 1 (1) sake of comparison, we chose the estimatptr) in Eq. @),
<n< m=1

the method presented @oeurjolly (2005, which is denoted
@) by LC (meaning locally estimated). Similarly to theGC
method, thd.C method estimate&l (r) and C, being based
on local variations using Hermite polynomials of degree 2.
It corresponds t@ = 2 in Eq. 6) and local variance parame-
ters. Furthermore, we included one more popular method, the
. Ao . - _ wavelet-based local spectra slope, which is summarized in
in that H () is based on globally estimat&d The two esti- Gao(2007 and denoted bV Estimating Hurst exponents

matorﬁ are Cor'T part(:]d n thg foltl?jwmg sr;zctlotnh. l\(ljur;;\en'c\:lal atp'only, the methodVVserves as a benchmark for the compar-
proaches such as the gradient descent method, the NeWIofe, i the other methods. For the detailed settingd/yf
Raphson method, and the bisection method can be used f

S . . . e two levels by which spectral slopes are calculated were
the abqve procedyre, Wh.'Ch 1S nonlmeahuﬁeca’\use of d'.f' the coarsest Ievgl of detailpplus one zfnd the finest level of de-
flculty_ in c_alculatmg derivatives of the objeptlve_funct|0n, ail minus one. To simulate a sample path from a mBm, the
the _b|sect|on “_“eth"d was adopted. The b_lsectlon metho{iwethod ofWood and Charf1994 was used, which is exact
ach|ev§as a Qeswed precision Ievallfor H (z) with the num--— i theory and sufficiently fast for a reasonable sample Kize
ber .Of iterations greater than IQ‘I ' In. qther words, 1(.) It- One thousand series of length= 2048 andC = 3 for each
erations, for example, results in precisior: 0.001, which

ided fficient level of both tational ti d of the three functions were generated. A difference filter of
E:g\é;si%n a sufficient levet of both computational ime and , yar 242, Daubechies wavelet filter of order22, and a

Symlet wavelet filter of order £4were used for the three

Hurst functions, respectively. For t&Cmethod,k was set

3 Simulation to 2, and the neighborhood sig| to 50. The average mean
squared error (MSE) was used as a performance measure to

A simulation study of the performance of the suggested ap-capture the difference between trti&r) and estimated (1),

proach, denoted b$C(meaning globally estimated), is and empirical confidence intervals were obtained.

Ak
—(logE; +klogC + > logma s +khlog %) .
Obviously, the estimatoH (¢) in Eq. (7) from the second

phase is distinguishable frofd; (r) in Eq. @), which is iden-
tical with Coeurjolly’s method fok = 2 (Coeurjolly, 2005,
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Fig. 3. Normalized histograms of estimated for (a) the LC

gy T e, method,(b) the GG method, andc) the GG method are shown.

- The results are based on simulated mBm signals from the U-shape

T T Ay H (t) and trueC = 3. The red dot represents its average of estimated
(d) LC, U-shape Hp(t) (e) LC, logistic Hy(t) (f) LC, fat-line H(t)

of the confidence bands in Fig. Additionally, the empiri-

" cal confidence bands for the flat-line function contain the flat
S line as in Fig.2i and 2|, supporting the idea that the signal

‘ could be modeled with fBm for simplicity.

| m | ——| | To see effects of neighborhood sizg| and ordelk in ab-

' ‘ ' solute moments},y; | varied from 30 to 150 and 400, ard
from 2 to 3 and 4. We notice that farC only k =2 was
available Coeurjolly, 2005. The results, summarized in Ta-
ble 2, show that, for U-shape and logisti(¢) and theLC
S andGG methods, MSE reached its minimum|at| = 150
o) and then increased &sdncreased, while for th&G method
the minimum occurred ab,| = 30. It implies that there is
an optimal neighborhood size for the methods depending on
signal types, not too small or too large to catch local Hurst ex-
Fig. 2. EstimatedH (¢) (the middle line in blue) and their empirical ponents out of sample paths. For the flat-line signal, MSE de-
95 % confidence intervals (the upper and the lower dashed lines ikreased as neighborhood sjeg increased, which is reason-
red) for the three testeH(t) functions are shown. The upper row gble because |onger Samp]e paths of a homogeneous regu|ar-
is for theWVimethod, the second roluC, the third rowGG (theGC  jty |evel will stabilize the estimation of the regularity level. In
method using the average 6f), and the fourth rowGG (the GC 1461 cases for the U-shape and logistic signals and the three
method using the median Gf). methods, MSE increased asncreases, which suggests the

use ofk = 2 for a practical setting. Considering a local sam-
ple path of mBm as an approximation of fBm, this empirical
The results for the three testéfi(r) are shown in Fig2, observation under mBm settings coincides with the result in
in which the upper, the middle, and the lower rows repre-Coeurjolly(2007) that theoretical variance of estimatéidr)
sentLC, GCusing the average a (GG), andGCusing the ~ Under fBm settings is minimal fdr = 2. Itis also found that
median ofC (GG), respectively. It is clear that the results the GCmethod consistently outperformed th€ method in
of H(r) by GCare more accurate and also preserve shargMSE. _
confidence intervals when compared with those_By The In addition, Fig.4 shows trends of averaged MSE for the
methodGCusing the median of tends to preserve sharper Method oiGG depending on neighborhood sizg| and filter
confidence intervals than that using the averag€ oRe-  dilation M: the average MSE decreased substantially to the
garding estimated”, GCalso produced high accuracy and Minimum near neighborhood sizg | = 100 for the U-shape
stability. Figure3 shows normalized histograms of estimated and logisticH (1), while the average MSE decreased more
C for the U-shapet () function and the three methods in rapidly for the flat-linef (); averaged MSE dropped signif-
comparison, in which th&Cmethods result in more accu- |cantI.y near filter dllatlorM = 3 for all th'e testedH (7). For
rate distributions fo€ than theLC method. In particular, the ~Practical purposes, a neighborhood size aroppp= 100
average of th&6G method was very close to the true value @nd filter dilationM = 3 are suggested.
of C = 3, which led to an accurate and stalifér) estima-
tion, as Fig.2g shows. The overall result is not surprising
becauseGG adapting the estimatat in Eq. (6) at the first
phase, caused the estimationffr) in Eq. (7) to be more
accurate and sharp than the interim estimﬁg(t) in terms

(2) GCy, U-shape I:T([) (h) GCy, logistic H([) (i) GCq, flat-line I:T([)

0 2000 4000 6000 8000 0 2000 4000 6000 8000 ] 2000 4000 6000 8000
t t t

(j) GC2, U-shape H(t) (k) GCy, logistic H(t) (1) GCy, flat-line H(t)
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Table 2. MSE averages for different neighborhood sizg$ énd the exponent in absolute momerifsdepending on the three test functions
through one thousand mBm series for each case are shown.

[t | 30 150 400
k k k
H (1) type 2 3 4 2 3 4 2 3 4
WV 425 - - 33.2 - - 38.7 - -
U-shape LC 316 - - 15.1 - - 13.8 - -
P GG 324 341 329 411 589 7.12 104 13.8 16.0
GG 159 156 155 556 7.65 9.36 10.4 13.8 15.9
WV 4338 - - 35.9 - - 41.1 - -
logistic LC 326 - - 9.94 - - 44.2 - -
g GG 572 593 613 217 3.08 311 23.9 31.8 37.1
GG 155 137 148 243 3.18 3.98 24.2 321 375
WV 416 - - 9.31 - - 4.24 - -
. LC 354 5.67 - - 1.53
flat-line

GG 113 108 121 112 1.08 1.08 0.608 0.655 0.648
GG 155 159 155 1.01 0935 1.01 0.646 0.665 0.664

can be found irKatul et al.(1997. This paper focuses on
oy shard i st 103 runs collected over a wide range of atmospheric stability
- fatine : 74 faine conditions. Time-changing Hurst exponert{s:) and vari-
' ance parameter§ were estimated to relate to atmospheric
stability conditions. Each velocity and temperature run was
mean-centered prior to the estimationfdf:) andC.
Atmospheric stability was measured by the Obukhov
length ), which is used as an indicator of atmospheric
@) (b) mixing conditions in surface layers, following the Monin—
, i ) , Obukhov similarity theory Nlonin and Obukhoy 1954
Fig. 4. MSE averages fo@g d_ependlng ora) different neighbor- Obukhoy 1971 Stull, 1988. The Obukhov length describes
hood sizes; and(b) filter dilation M are shown. . . . .
a characteristic length scale, i.e. the height of the dynamic
sub-layer at the base of the boundary lay@bkhoy 1971
Schertzer et al2011). The sign of the surface heat flux in the
4 Application to turbulence signals Obukhov length indicates whether the boundary layer is stat-
ically stable, related to negative buoyancy terms, or statically
The proposed method is applied to turbulence signals otinstable, related to positive buoyancy terms. Atmospheric
air velocities and temperatures. The velocity in longitudi- stability measure by the Obukhov length can also be found
nal (u1), lateral ¢2), and vertical £3) directions, and air in alot of recent researcWgn den Berg2008 Wharton and
temperature 1) measurements by a GILL triaxial sonic Lundquist2011). Based on the Obukhov length, the 103 runs
anemometer were carried out on 12-16 July and 3—-6 Au-are classified into stable conditions ¢ 0.05, 48 runs) and
gust 1995, at 5.2m above the ground surface oveAlsm  unstable conditionsI( < 0.05, 55 runs), as irKatul et al.
Fescuegrass site at the Blackwood division of the Duke (2003. Figures5 and6 show runs of the two velocity (lon-
Forest in Durham, North Carolina. During the experiment, gitudinal u1 and verticaluz) and temperature signals under
maximum mean air temperature up to°&was measured stable conditions and unstable conditions in the upper rows,
in Durham. The site is a 480-m by 305-m grass-coveredrespectively, with estimatedl (¢) in the lower rows. Seem-
forest clearing (382 N, 798 W, elevation= 163 m). Sonic  ingly, the velocity signals showed more fluctuation of regu-
anemometers measure velocity by sensing the effect of windarity than the temperature signals, which is consistent with
on transit times of sound pulses traveling in opposite di-the observation that the scaling of temperature differs from
rections across a known instrument distance. The measurdhat of velocity Lovejoy et al, 2009. The sample averages
ments were subsequently divided into.8.anin intervals to (Avg,q’S for signals) and the sample variance of estimated

produceN = 65 536 time measurements per run. Further de-g7 (y) (Vary, . for signals) and the estimated (Cs for signal

tails about the eXperimental Setup, atmospheric ConditionSS) per run Were Computed. That is to say, @/% means the
inertial subrange identification, and instrumentation details ’

Averaged MSE
Averaged MSE

===

5 10
Filter dilation M

0 100
Neighhood size v(t)
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Fig. 5. Two velocity (@ longitudinaluq andb vertical u3) and(c)
temperaturel’ signals under stable conditions from the 12th run Fig. 6. Two velocity @ longitudinaluq andb verticalug) and (c)
are shown in the upper row. The corresponding estimat&d are temperaturel” signals under unstable conditions from the 7th run
shown in the lower row. are shown in the upper row. The corresponding estimatéd are

shown in the lower row.

average of estimateH () of longitudinal signak:1 with re-
spect tor. Avg; o was adopted as the global Hurst exponent Out of all possible combinations, that is toAsalﬁzl com-
of the whole set of observeHd (), while Var; ¢ was chosen binations due to 3 descriptors (A;gg, Vary C,) and 4 sig-
to represent how much the signal differs from fBm models.nals 6= u1,u2,u3, T), each individual descriptor is com-
The estimated” itself represents the energy level of the sig- pared first. Tablel shows classification rates for each indi-
nal. vidual descriptor, indicating Ang,T is one single descrip-
Table 3 shows the averages of those descriptive statisticdor for atmospheric stability conditions. As a baseline for
for stable runs and unstable runs. For instance, the variabilitcomparison, when signals are directly classified by them-
of H on average fors from the unstable runs (0813) was  selves through th&-nearest-neighborhood methokl=£ 7)
larger than that fof” (0.0240) as is illustrated in Figie and  instead of using descriptors, the classification rates were
f. In addition, the two groups of stable and unstable runs weré).506, 0.494, 0.496, and 0495 for each of velocity and tem-

compared, and the significance for the group difference waperature signals. Additionally, a descriptor set of Avg
presented for each signaland descriptive statistic. Among Var,, ., andCs for all velocity and temperature signals=
those significant with significance level0® are Avg; 7, ; u5 us, T) resulted in classification rate@L7 for LDA;
Vary ., Varg . and Cr. In other words, velocity signals for Avgy ¢ and Cs, 0.613; for Vary ¢ and Cs, 0576; and
exhibited separation of stable and unstable runs in fluctuafor AVg; and Var; o, 0.655. It was found that descriptors
tions of regularity, and temperature signals distinguished staAvg ; ¢ and Var; ¢ were important for atmospheric stability

ble runs from unstable runs by either global regularity levelscongitions whileCs was not. Furthermore, through search of
or energy levels. _ N N _ classification rates by each combination of descriptors, the
To classify atmospheric stability conditions using mBm fo|jowing three sets of descriptors were chosen as important

models, the quality of those descriptors from mBm mod- gnes that have high classification rates: Yar and Avgy ;;

els was measured with classification functions, linear dis-y5r .  and Ava- . and Var, . and Avgy ,, as shown in
: " ,

criminant analysis (LDA), quadratic discriminant analysis Tapjes, Additionally, the classification rates b§Cturned
(QDA),and support vector machines (SVMs with radial ba- oyt to be consistently higher than those by the other methods.
sis function and width parameter 1), which separate stablerhis result shows that overall regularity levels of a tempera-
runs from unstable ones. A training set of 73 randomly cho-yre signal and fluctuations of regularity levels of a velocity

sen runs (70 %) out of the total 103 runs and a testing sekjgnal are important mBm-model driven descriptors that ac-
of the remaining 32 runs (30 %) were generated. Then bycount for atmospheric stability conditions.

each of the classification methods a correct classification rate

for the testing set was computed. This procedure was iter-

ated 5000 times, producing the average of the correct clas5 Conclusions

sification rates for each method. In addition to the proposed

methodGCusing the mean fof, two other methodajvVand For the study of atmospheric turbulence in nonlinear geo-

LC, were also included for the sake of comparison. physics, a generalization of fractional Brownian motions,
multifractional Brownian motions (mBm) as well as mul-

tifractality and generalized scale invariance analysis are
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Table 3. Summary of the sample averages and variances for three velocity and temperature signals in terms of avenrajeafa stable
and unstable runs using two-sample t-tests is shown. The boldfaced numbers represent significance with significafée level O

Avgy; Var, o Cs
s stable unstable p value stable  unstable p value stable unstable p value
up 0.407 0.423 0.358 0.0276  0.0294 0.074 11.1 17.3 0.103
up 0.467 0.479 0.528 0.0274  0.0297 0.045 24.4 33.7 0.175
u3z 0.608 0.610 0.918 0.0285 0.0313 0.039 85.9 99.1 0.374
T 0.375 0.268 <0.000 0.0237  0.0240 0.820 8.25 3.33 0.032

Table 4. Average correct classification rates through five thousands partitioning of the total 103 runs into training (70 %) and testing (30 %)
sets are shown for the classification methods (LDA, QDA, SVM), the estimation metdgsE, GQ, and each individual descriptor.

individual descriptor

uy u
Varﬁ)ul Ang?,ul Cuy Varﬁ)u2 Avgl_}’u2 Cu,
WV 0.542 0.613 0.482 0.543 0.579 0.518
LDA LC 0.540 0.554 0.584 0.543 0.537 0.526
GC 0541 0.554 0.563 0.543 0.541 0.592
WV  0.550 0.617 0.536 0.558 0.588 0.508
QDA LC 0.549 0.557 0.569 0.559 0.546 0.533
GC 0.549 0.553 0.562 0.559 0.550 0.578
WV  0.461 0.542 0.506 0.442 0.575 0.442
SVM LC 0.464 0.496 0.555 0.444 0.471 0.488
GC 0.463 0.491 0.490 0.446 0.473 0.502
u3z T
Varﬁ’ug Avgﬁ’us Cus Varﬁ’T Avgl_»I‘T Cr
WV  0.501 0.619 0.516 0.588 0.614 0.524
LDA LC 0.502 0.525 0.540 0.588 0.638 0.683
GC 0.502 0.526 0.577 0.588 0.657 0.529
WV  0.533 0.632 0.551 0.561 0.639 0.551
QDA LC 0.533 0.544 0.542 0.561 0.641 0.666
GC 0.533 0.540 0.608 0.562 0.658 0.598
WV  0.476 0.551 0.527 0.654 0.573 0.531
SVM LC 0.474 0.572 0.460 0.654 0.647 0.657
GC 0472 0.578 0.563 0.658 0.654 0.562

commonly used. This paper discusses the identification of thelemonstrated in a simulation study in which several types
time-changing Hurst exponeht(z) and variance level of a of known H (¢) and C are estimated from simulated mBm
sampled path of a process from the multifractional Browniansignals in comparison to a selected previous method. It pro-
model and its application to turbulence signals. It proposes aluced more accurate and sharp estimatiort/of) and C.
two-phased approach to estimaf&r) andC that relates the  The method was applied to air turbulence signals to iden-
k-th absolute moments to theth empirical moments after tify time-changing regularity and global variability and to
filtering a sampled path. It takes advantage of accurate estiassociate them with atmospheric stability. The analysis of
mation ofC, which is unvarying regardless of any position in 103 runs show that velocity signals show differences of stable
the sampled path, in the first phase and improves estimatioand unstable runs in fluctuations of regularity, while temper-
of H(t) using the exact nonlinear moment relationship in the ature signals distinguished the two kinds by stable behavior
second phase. The performance of the proposed method & regularity and energy levels. It also shows that regularity
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Table 5. Average correct classification rates through five thousand partitions of the total 103 runs into training (70 %) and testing (30 %) sets
are shown for the classification methods (LDA, QDA, SVM), the estimation methfd.C, GQ, and the chosen descriptors.

chosen descriptors

Varlgl’ul, Avgﬁ’T Varlgl’uz, Avgﬁ’T Varlgl’ua, Avgﬁ’T
\WAY 0.632 0.618 0.620
LDA LC 0.642 0.656 0.639
GC 0.713 0.717 0.719
WV 0.644 0.633 0.642
QDA LC 0.645 0.668 0.647
GC 0.718 0.714 0.724
WV 0.561 0.568 0.624
SVM LC 0.603 0.599 0.625
GC 0.679 0.690 0.683

fluctuations of a velocity signal and global regularity levels
of a temperature signal are important mBm-model driven de-
scriptors that account for atmospheric stability. This study in _
the context of atmospheric stability can be extended to multi-
fractal analysis capturing rich information on regularity. The
suggested method can further investigate the finite-sample
bias effect in estimatingZ (r) with asymptotic results and

also can be generalized to handle unequal data points that

G ( j1;/41 ) G ( j2;/q2 )

NH(leq1)+H(.f2qu)/
exp(—i(j2 —g2)u) —1

y n( (Jz__qz)) i
|H(Z52)+1/2

exp(i(j1 —quu) —1
|H ) +1/2

§ : Ag,0qp

91,92 |u

|u

frequently arise due to missing observations.

Appendix A

It is enough to show the filtered signﬁ{(%) is weakly sta-
tionary because is replaceable witla™. To makeW (r)

By Taylor's expansion and adiderian ordem of H(t), we
approximate

1 1
yHGD T NHO (1+O(e"log ).
1 1

_ — 14+ O(elogu)),
WD g (1 O(elogu)

in the first equation of Sect. 2 well defined, let us assumec(j%q) =G(t)+O(e).

the Hurst exponenti () is a Holderian of order O< n <

1 on [0,1], H € C"([0,1]) as in Cohen(1999. Let v(r)

be an index set of a neighborhood fdefined asv(r) =
{jeZ|l<j<N,|j/N —t| <e¢}foraparametesr > 0. We
sete to be a function ofN in such a way that — 0,
€N — oo, ande”log(N) — 0 asN — oo. In other words,
for a sufficiently largenN, the size of a neighborhood be-
comes sufficiently small while maintaining the summation
of the sizes of all neighborhoods sufficiently large. Cat)

denoteC,/K (2H (1)) /2 for simplicity.
For j1/N, j2/N € v(1), the covariancef[Va(£)Va(i2)]
becomes, by = %,
)/

3" agag, (c( )6 (
dk)

exp(i 2522 —1
|A|H(j1;1q1)+1/2

J2—q2
N

1—q1
N

q1.92
y exp(—i&2h) -1

|k|H(.f2;]42)+1/2
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Using alsoc” — 0 ande” log(N) — 0 asN goes to infin-
ity, the covariance becomes

G?(t) / exp(i(jr—qu) — 1

D Ay, N2H(®) | HO+1/2
8 exp(—i(j2 —g2)u) — 1

q1,92
|u|H(t)+1/2

du.

By the vanishing-moments property afthe above equa-
tion is simplified:
G2(1) /

ag.a
Z 91792 Ar2H (1)
q1.92 N

coq(jo — j1+q1—g2)u) —1
|u|2H(t)+1

du.
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SinceK(a)f %d = |k|*, Vk,and O< a < 2, the Gao, J.: Multiscale analysis of complex time series: integration of
covariance is rewritten: chaos and random fractal theory, and beyond, John Wiley &
Sons, 2007.
S[V (E)V (2)] _ Ghil, M.: Turbulence and predictability in geophysical fluid dynam-
a a ics and climate dynamics, vol. 88, North Holland, 1985.
_ 2H(t) Katul, G., Hsieh, C., and Sigmon, J.: Energy-inertial scale interac-
) lj2— j1+q1—q2| , , : ;
— Z agq,dq, 2H(t) tions for velocity and temperature in the unstable atmospheric
q1.92 N (ZH(I)) surface layer, Bound.-Lay. Meteorol., 82, 49-80, 1997.

c? Katul, G., Angelini, C., De Canditiis, D., Amato, U., Vidakovic, B.,
_ g1 . . __2H@®) i i
TT0) Z |j2 —j1+q1—q2| . and Albertson, J.: Are the effects of large scale flow conditions
N 2 really lost through the turbulent cascade, Geophys. Res. Lett., 30,
' ' 1164,d0i:10.1029/2002GL015282003.
Consequently, the covarian(ﬂva(fﬁl)va(fﬁz)] depends  Lévy-Veéhel, J. and Peltier, R.: Multifractional Brownian motion:

on j1— jo, which makes the filtered sign&h(%) weakly definition and preliminary results, Rapport de recherche de

. o . . ) . I'INRIA n2645, 1995.
Statlonary In addltlon whem and jz are identical withy, Lovejoy, S., Tuck, A., Hovde, S., and Schertzer, D.: Is isotropic

Var[Va( )] szf) ma H(r)- Whenais replaced witha ™, turbulence relevant in the atmosphere?, Geophys. Res. Lett., 34,
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