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Abstract. Multifractional Brownian motions have become
popular as flexible models in describing real-life signals of
high-frequency features in geoscience, microeconomics, and
turbulence, to name a few. The time-changing Hurst expo-
nent, which describes regularity levels depending on time
measurements, and variance, which relates to an energy level,
are two parameters that characterize multifractional Brown-
ian motions. This research suggests a combined method of
estimating the time-changing Hurst exponent and variance
using the local variation of sampled paths of signals. The
method consists of two phases: initially estimating global
variance and then accurately estimating the time-changing
Hurst exponent. A simulation study shows its performance
in estimation of the parameters. The proposed method is ap-
plied to characterization of atmospheric stability in which
descriptive statistics from the estimated time-changing Hurst
exponent and variance classify stable atmosphere flows from
unstable ones.

1 Introduction

It has been observed that a wide range of complex signals
in nature are characterized by seemingly irregular behavior
varying in time and exhibiting different levels of magnitude.
Examples of such irregular signals in time are abundant in
medicine, economics, and geoscience, to list a few. Such sig-
nals can be effectively modeled by multifractional Brownian
motions (mBm). As a generalization of fractional Brownian
motions (fBm), multifractional Brownian motions describe
both regularity attributes varying depending on time mea-
surements and variance levels describing orders of energy
magnitude. The regularity attribute, also called the Hurst ex-
ponent, expresses the strength of statistical similarity at many

different frequencies and is extended to vary with time, to
model realistic situations occurring in various fields.

With such a perspective, a few approaches have been pro-
posed to model multifractional Brownian motions.Lévy-
Véhel and Peltier(1995) proposed a mean average approach.
Benassi et al.(1998) introduced a spectral approach. The pro-
posed models represent mBm as a Gaussian processW(t)

with a covariance function involving the Hurst exponentH

by a function of time,H(t), and variance parameterC. The
processW is well defined, or square-integrable, if function
H(t) is continuous enough in a Ḧolderian sense, and its vari-
ance at timet is given by Var[W(t)] = C2tH(t) parameter-
ized by variance levelC and the Hurst exponent (Cohen,
1999). The time-changing Hurst exponentH(t) character-
izes the path regularity of processW at timet , since sample
paths neart with smallH(t), close to 0, are space-filling and
highly irregular, while paths with largeH(t), close to 1, are
very smooth. The variance constantC determines the energy
level of the process.

Several approaches have been proposed to estimate the
time-changing Hurst exponentH(t) and varianceC from
sample paths of mBm signals.Benassi et al.(1998) exam-
ined estimation of a continuously differentiableH(t) with-
out the direct estimation ofC. Fhima et al.(2011) used the
increment ratio statistic method for estimation ofH(t) only.
For estimation ofH(t), Benassi et al.(2000) andFhima et al.
(2011) adopted the approach of relaxing the continuous con-
dition of H(t) by piecewise constants. For an overview of
estimating constantH(t), the reader is also referred toBeran
(1994), including various statistical methods, orBardet and
Bertrand(2007), emphasizing wavelet contexts. The estima-
tion of bothH(t) and variance parameterC has received lit-
tle attention from the statistics community, whileC is mostly
treated as a nuisance parameter.Coeurjolly (2005) used a
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local version of quadratic variations and proposed a class of
estimator ofH(t) andC at each local sample path. When a
signal is modeled with mBm, the estimation ofH(t) can be
improved by estimatingC accurately from covariance struc-
tures involving bothH(t) andC.

The objective of this paper is to propose a procedure for
accurately estimatingH(t) andC given a sampled path of
mBm processW . This paper uses discrete filtering tech-
niques for mBm, further calculatingk-th empirical moments
of the filtered signals related toH(t) andC. Then the follow-
ing two phases are adopted. The first phase estimatesH(t)

andC for each local sample path and leads to a global estima-
tor of C. The second phase adjusts estimatedH(t) with the
global estimator ofC from the previous phase. The adopted
two-phased approach results in an estimation ofC insensi-
tive to many sample paths, global to processW , and thus an
accurate estimation ofH(t).

The suggested approach is applied to turbulence signals
of air velocity and temperature. Turbulence stability for at-
mospheric flows is determined by Monin–Obukhov lengths
from the similarity theory and related to the convection of
the air (Monin and Obukhov, 1954; Obukhov, 1971; Stull,
1988). Recent evidence shows that atmospheric turbulence is
anisotropic and requires different scaling exponents, which
is related to the Hurst exponent, depending on directions
(Lovejoy et al., 2007, 2010), and also that multifractality and
generalized scale invariance analysis reveals rich informa-
tion on scaling exponents (Lovejoy et al., 2009; Schertzer
and Lovejoy, 2011). In this paper, turbulence signals of lon-
gitudinal, lateral, and vertical velocities and temperature are
identified with mBm by estimatingH(t) andC (Ghil, 1985;
Wanliss and Dobias, 2007). Descriptive statistics generated
from estimatedH(t) and C are used in classifying stable
flows from unstable ones.

The paper is organized as follows. Section 2 introduces
computation ofk-th empirical moments of filtered signals
and explains the proposed two-phased procedure of estimat-
ing the parameters. Section 3 discusses numerical simula-
tions and shows the benefit of the proposed approach. Sec-
tion 4 presents applications of the proposed approach to air
turbulence signals. Section 5 concludes this paper.

2 Method

Let us consider a discretized sample path from a Gaussian
processW(i/N), a mBm signal, fori = 1, . . . ,N , with Hurst
functionH(t) and variance parameterC. The spectral repre-
sentation ofW is given by

W(t) = C

√
K
(
2H(t)

)
/2
∫
R

eitλ
− 1

|λ|H(t)+1/2
dB(λ),

whereC is a constant scale (variance) parameter andB the
standard Brownian motion (Benassi et al., 1998). Similarly,

the mean average approach ofW is given by

W(t) = C

√
πK

(
2H(t)

)
0(H(t) + 1/2)∫

R

{
|t − s|H(t)−1/21]−∞,t](s) − |s|H(t)−1/21]−∞,0](s)

}
dB(s),

whereB is the standard Brownian motion (Lévy-Véhel and
Peltier, 1995). The terms “process” and “signal” will be in-
terchangeably used in referring to observed sample paths of
a random process. It is worth noting that observed variables
in the atmosphere, when collected for all time measurements,
are not normally distributed, but that the empirical evidence
shows the necessity of interactive random processes consist-
ing of a Hurst exponent (Tuck, 2010). The Hurst function
H(t) is assumed to be continuous enough in a Hölderian
sense as inCohen(1999). The covariance function ofW for
t,v ∈ [0,1] is given by

E[W(t)W(v)] =
C2

2

√
K(2H(t))K(2H(v))

K(H(t)+ H(v)){
|t |H(t)+H(v)

+ |v|
H(t)+H(v)

− |t − v|
H(t)+H(v)

}
,

whereK(x) = 0(x + 1)sin(xπ/2)/π (Ayache et al., 2000;
Coeurjolly, 2005). From the covariance function, we have
E[W(t)2

] = C2t2H(t), and consequently Var[W(1)] = C2. In
this sense,C is called the variance level of the process. It is
clear to see the processW(t) is not weakly stationary, since
the covariance function does not depend ont−v only. The es-
timation ofC is nontrivial because of the dependence struc-
ture of C andH(t) from the covariance function; that is to
say, the sample variance of a sample path does not lead to
the direct expression ofC. For example, for a given sample
path from t1 to tn, E[

∑n
k=1W(tk)

2
] = C2∑n

k=1 t2H(tk) de-
pends upon not onlyC but alsoH(tk) for all k.

In order to weaken the dependence structure inW(t), a
differencing filtera of lengthl+1 and orderp > 1 (the num-
ber of vanishing moments) is applied. Filtera is defined by
its taps,(a0, . . . ,al), such that

l∑
q=0

aqqi
= 0, i = 0, . . . ,p − 1, and

l∑
q=0

aqqi
6= 0, i = p.

For instance, possible choices for filtera are shown in Ta-
ble 1. For difference filters, the lengthl + 1 is equal to the
orderp plus one, while for Daubechies filters it is equal to
two times the orderp. Furthermore, high-pass wavelet fil-
ters with a different number of vanishing moments corre-
sponding to orthogonal wavelets such as Daubechies, Sym-
let, and Coiflet wavelets are also possible. A detailed discus-
sion of wavelet filters can be found inDaubechies(1992) and
Vidakovic (1999).

Nonlin. Processes Geophys., 20, 97–106, 2013 www.nonlin-processes-geophys.net/20/97/2013/



K. C. Lee: Characterization of turbulence stability 99

Table 1.Examples for filtera are shown.

name filtera orderp lengthl + 1

difference (d2) (1,−2, 1) 2 3
difference (d3) (1,−3, 3, 1) 3 4
Daubechies (D2) (0.48296,−0.83652, 0.22414, 0.12941) 2 4
Daubechies (D3) (0.33267,−0.80689, 0.45988, 0.13501,−0.085441,

−0.035226)
3 6

Symlet (S4) (−0.075766, 0.029636, 0.49762,−0.80374, 0.29786, 0.09922,
−0.012604,−0.032223)

4 8

Symlet (S5) (0.027333,−0.029519,−0.039134,−0.1994, 0.72341,
−0.63398, 0.016602, 0.17533,−0.021102,−0.019539)

5 10

Let us also introducea(m) based on filtera, the filter de-
fined by

a
(m)
i =

{
ai/m, i/m is an integer,
0, otherwise.

Notice thata(m), the filter a dilated m times, captures
a resolution at a low frequency, corresponding to a coarse
space, asm increases. Form = 1, it captures the finest
level of detail. For example,a(1)

= a by definition, and for
second-order difference filterd2, a = (1,−2,1), a(2) be-
comes(1,0,−2,0,1).

Let Va(m) be a process of local variation consisting ofW

filtered bya(m), that is,

Va(m)

(
j

N

)
=

ml∑
q=0

a(m)
q W

(
j − q

N

)
, for j = ml+1, . . . ,N.

For example, whena(1)
= (1,−2,1) of order 2 is applied,

Va(1) represents the second-order differences ofW . It is pos-
sible to show that the filtered signalVa(m)(t) is weakly sta-
tionary, so the filtering bya(m) breaks the dependence struc-
ture between observations. See Appendix A for proof. Addi-
tionally, Va(m)(t) converges to a locally stationary Gaussian
process with the following variance structure: forj/N in a
neighborhood oft , denoted byνt , of a sufficiently small size,

V ar

[
Va(m)

(
j

N

)]
=

C2m2H(t)

N2H(t)
πa,H(t), (1)

whereπa,h = −
1
2

∑l
q,q ′=0aqaq ′ |q − q ′

|
2h. Then thek-th ab-

solute moment ofVa(m) follows by normalizingVa(m) by the

standard deviation,σ =

√
Var[Va(m)

(
j
N

)
]:

E
[∣∣∣∣Va(m)

(
j

N

)∣∣∣∣k
]

= E


∣∣∣∣∣∣
Va(m)

(
j
N

)
σ

∣∣∣∣∣∣
k
σ k

= Ek

(
CmH(t)

NH(t)
π

1/2
a,H(t)

)k

,

where
Va(m)

(
j
N

)
σ

∼ N(0,1) andEk is thek-th absolute mo-
ment of the standard Gaussian variable given byEk =

2k/20((k + 1)/2)/
√

π for k > 0 (Papoulis, 1991). Accord-
ingly, the log of thek-th absolute moment is derived as fol-
lows:

logE
[∣∣∣∣Va(m)

(
j

N

)∣∣∣∣k
]

= logEk + k logC +
k

2
logπa,H(t) + kH(t) log

m

N
. (2)

Now, the log of thek-th empirical absolute moment
near νt , denoted bySa(m),k(t), is introduced to estimate

logE
[∣∣∣Va(m)

(
j
N

)∣∣∣k] by the moment matching approach:

Sa(m),k(t) = log

(
1

|ν(t)|

∑
j∈ν(t)

∣∣∣∣Va(m)

(
j

N

)∣∣∣∣k
)

.

Observably, the right-hand side of Eq. (2) is linear inH(t)

when logπa,H(t) is ignorable. Thus, for fixedt and k and
varying m, it is reasonable to considerM filters (1, . . . ,M
for m) and to regressLt onX, whereLt = {Sa(m),k(t)}1≤m≤M

andX is the design matrix (M ×2) defined byX = [ 1M x ]

with 1M the all-ones vector (M×1) andx = {k log m
N

}1≤m≤M .
That is to say,

Sa(m),k(t) ∼ logEk + k logC +
k

2
logπa,H(t) + kH(t) log

m

N

= [1 k log
m

N
]

[
θt

H(t)

]
, m = 1, . . . ,M, (3)

whereθt = logEk + k logC + k/2logπa,H(t), andLt is re-
gressed with the model[ 1M x ][ θt H(t) ]

> by ordinary
least squares. This procedure leads to a class of estimators
of [ θt H(t) ]

>, and the least-square estimators are given as
follows:

ĤL(t) =
A>Lt

k‖A‖2
, (4)

θ̂t =
1>

MLt

M
−

A>Lt

∑M
j=1 log j

N

M‖A‖2
,
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where the vectorA (M × 1) is defined byAm = log m
N

−

M−1∑M
j=1 log j

N
for m = 1, . . . ,M. This estimator is a lo-

cal version of the estimator for the Hurst exponent of fBm
models (Coeurjolly, 2001) and an extension of the second
moment result for mBm models to thek-th moments (Coeur-
jolly , 2005). Accordingly, the estimator ofC, denoted byĈt

depending on neighborhoodνt aroundt , is derived from the
definition of θ̂t as follows:

Ĉt = π
−

1
2

a,ĤL(t)
exp

(
k−1(θ̂t − logEk)

)
. (5)

Noticeably, the estimator̂HL(t) in Eq. (4) through regres-
sion model (3) can be enhanced by using improved estima-
tion of C. As the first phase, estimation ofC is adapted and
improved by treatinĝCt as initial estimates varying byt and
taking the average of all estimated valuesĈt :

Ĉ = 1/|�|

∑
t∈�

Ĉt , (6)

where� is the index set oft . The adapted estimator ofC is
denoted byĈ. One would choose the median ofĈt instead
of the average for robust estimation. This adaptation is sen-
sible because variance parameterC is originally unvarying
regardless of neighborhood positiont in processW . Accord-
ingly, estimators ofH(t) at the second phase follow from the
relationship betweenk-th absolute moments andH(t) that is
manifested in Eq. (2). The computation forĤ (t) is separa-
ble into eachĤ (ti) for ti ∈ �. In other words, for fixedti , a
solution ofH(ti) is given by

Ĥ (ti) = argmin
0<h<1

M∑
m=1

∣∣Sa(m),k(ti)

−(logEk + k logĈ +
k

2
logπa,h + kh log

m

N
)

∣∣∣∣ . (7)

Obviously, the estimator̂H(t) in Eq. (7) from the second
phase is distinguishable from̂HL(t) in Eq. (4), which is iden-
tical with Coeurjolly’s method fork = 2 (Coeurjolly, 2005),
in thatĤ (t) is based on globally estimated̂C. The two esti-
mators are compared in the following section. Numerical ap-
proaches such as the gradient descent method, the Newton–
Raphson method, and the bisection method can be used for
the above procedure, which is nonlinear inh. Because of dif-
ficulty in calculating derivatives of the objective function,
the bisection method was adopted. The bisection method
achieves a desired precision level,ε, for Ĥ (t) with the num-
ber of iterations greater than log2ε−1. In other words, 10 it-
erations, for example, results in precisionε < 0.001, which
provided a sufficient level of both computational time and
precision.

3 Simulation

A simulation study of the performance of the suggested ap-
proach, denoted byGC(meaning globally estimatedC), is

GC method, k was set to 2, and the neighborhood size |νt| to 50. The average mean

squared error (MSE) was used as a performance measure to capture the difference

between true H(t) and estimated Ĥ(t), and empirical confidence intervals were

obtained.
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Figure 1: Tested H(t) functions, (a) U-shape, (b) logistic, and (c) flat-line, are
shown in the upper row. The corresponding simulated mBm signals with C = 3
are shown in the lower row.

The results for the three tested H(t) are shown in Figure 2, in which the upper,

the middle, and the lower rows represent LC, GC using the average for Ĉ (GC1), and

GC using the median for Ĉ (GC2), respectively. It is clear that the results of Ĥ(t) by

GC are more accurate and also preserve sharp confidence intervals when compared

with those by LC. The method GC using the median at Ĉ tends to preserve sharper

confidence intervals than that using the average at Ĉ. About estimated C, GC also

produced high accuracy and stability. Figure 3 shows normalized histograms of

estimated C for the U-shape H(t) function and the three methods in comparison,

11

Fig. 1.TestedH(t) functions,(a) U-shape, (b) logistic, and(c) flat-
line, are shown in the upper row. The corresponding simulated mBm
signals withC = 3 are shown in the lower row.

presented. Simulation is done with the “known truth” of
Hurst functionH(t). Test functions are theU-shape, logis-
tic, andflat-line functions shown in the upper row in Fig.1;
the corresponding simulated mBm signals are shown in the
lower row. For example, the simulated signal in Fig.1d,
based on the U-shapeH(t) in Fig. 1a, exhibits high regu-
larity at the starting and high irregularity in the middle as
t increases, ending with high regularity. The flat-line func-
tion will be used as an indicator in which the method can
properly distinguish fBm models from mBm models. For the
sake of comparison, we chose the estimatorĤL(t) in Eq. (4),
the method presented inCoeurjolly(2005), which is denoted
by LC (meaning locally estimatedC). Similarly to theGC
method, theLC method estimatesH(t) andC, being based
on local variations using Hermite polynomials of degree 2.
It corresponds tok = 2 in Eq. (5) and local variance parame-
ters. Furthermore, we included one more popular method, the
wavelet-based local spectra slope, which is summarized in
Gao(2007) and denoted byWV. Estimating Hurst exponents
only, the methodWVserves as a benchmark for the compar-
ison with the other methods. For the detailed settings ofWV,
the two levels by which spectral slopes are calculated were
the coarsest level of detail plus one and the finest level of de-
tail minus one. To simulate a sample path from a mBm, the
method ofWood and Chan(1994) was used, which is exact
in theory and sufficiently fast for a reasonable sample sizeN .
One thousand series of lengthN = 2048 andC = 3 for each
of the three functions were generated. A difference filter of
order 2d2, Daubechies wavelet filter of order 2D2, and a
Symlet wavelet filter of order 4S4were used for the three
Hurst functions, respectively. For theGCmethod,k was set
to 2, and the neighborhood size|νt | to 50. The average mean
squared error (MSE) was used as a performance measure to
capture the difference between trueH(t) and estimated̂H(t),
and empirical confidence intervals were obtained.
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0 2000 4000 6000
0

0.2

0.4

0.6

0.8

1

t

e
st

im
a

te
d

 H
(t

)
(b) WV, logistic Ĥ(t)
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(c) WV, flat-line Ĥ(t)
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(d) LC, U-shape ĤL(t)
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(e) LC, logistic ĤL(t)
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(f) LC, flat-line ĤL(t)
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(g) GC1, U-shape Ĥ(t)
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(h) GC1, logistic Ĥ(t)
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(i) GC1, flat-line Ĥ(t)
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(j) GC2, U-shape Ĥ(t)
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(k) GC2, logistic Ĥ(t)
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Figure 2: Estimated H(t) (the middle line in blue) and their empirical 95% confi-
dence intervals (the upper and the lower dashed lines in red) for the three tested
H(t) functions are shown. The upper row is for the WV method, the second row
LC, the third row GC1 (the GC method using the average at Ĉ), and the fourth row
GC2 (the GC method using the median at Ĉ).

25

Fig. 2.EstimatedH(t) (the middle line in blue) and their empirical
95 % confidence intervals (the upper and the lower dashed lines in
red) for the three testedH(t) functions are shown. The upper row
is for theWVmethod, the second rowLC, the third rowGC1 (theGC
method using the average ofĈ), and the fourth rowGC2 (the GC
method using the median of̂C).

The results for the three testedH(t) are shown in Fig.2,
in which the upper, the middle, and the lower rows repre-
sentLC, GCusing the average of̂C (GC1), andGCusing the
median ofĈ (GC2), respectively. It is clear that the results
of Ĥ (t) by GCare more accurate and also preserve sharp
confidence intervals when compared with those byLC. The
methodGCusing the median of̂C tends to preserve sharper
confidence intervals than that using the average ofĈ. Re-
garding estimatedC, GCalso produced high accuracy and
stability. Figure3 shows normalized histograms of estimated
C for the U-shapeH(t) function and the three methods in
comparison, in which theGCmethods result in more accu-
rate distributions forC than theLC method. In particular, the
average of theGC2 method was very close to the true value
of C = 3, which led to an accurate and stableH(t) estima-
tion, as Fig.2g shows. The overall result is not surprising
becauseGC, adapting the estimator̂C in Eq. (6) at the first
phase, caused the estimation ofH(t) in Eq. (7) to be more
accurate and sharp than the interim estimatorĤL(t) in terms
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Figure 3: Normalized histograms of estimated C for (a) the LC method, (b) the GC1
method, and (c) the GC2 method are shown. The results are based on simulated
mBm signals from the U-shape H(t) and true C = 3. The red dot represents its
average of estimated C.
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Figure 4: MSE averages for GC1 depending on (a) different neighborhood sizes νt
and (b) filter dilation M are shown.
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Fig. 3. Normalized histograms of estimatedC for (a) the LC
method,(b) the GC1 method, and(c) the GC2 method are shown.
The results are based on simulated mBm signals from the U-shape
H(t) and trueC = 3. The red dot represents its average of estimated
C.

of the confidence bands in Fig.2. Additionally, the empiri-
cal confidence bands for the flat-line function contain the flat
line as in Fig.2i and 2l, supporting the idea that the signal
could be modeled with fBm for simplicity.

To see effects of neighborhood size|νt | and orderk in ab-
solute moments,|νt | varied from 30 to 150 and 400, andk
from 2 to 3 and 4. We notice that forLC only k = 2 was
available (Coeurjolly, 2005). The results, summarized in Ta-
ble 2, show that, for U-shape and logisticH(t) and theLC
andGC1 methods, MSE reached its minimum at|νt | = 150
and then increased ask increased, while for theGC2 method
the minimum occurred at|νt | = 30. It implies that there is
an optimal neighborhood size for the methods depending on
signal types, not too small or too large to catch local Hurst ex-
ponents out of sample paths. For the flat-line signal, MSE de-
creased as neighborhood size|νt | increased, which is reason-
able because longer sample paths of a homogeneous regular-
ity level will stabilize the estimation of the regularity level. In
most cases for the U-shape and logistic signals and the three
methods, MSE increased ask increases, which suggests the
use ofk = 2 for a practical setting. Considering a local sam-
ple path of mBm as an approximation of fBm, this empirical
observation under mBm settings coincides with the result in
Coeurjolly(2001) that theoretical variance of estimatedH(t)

under fBm settings is minimal fork = 2. It is also found that
theGCmethod consistently outperformed theLC method in
MSE.

In addition, Fig.4 shows trends of averaged MSE for the
method ofGC1 depending on neighborhood size|νt | and filter
dilation M: the average MSE decreased substantially to the
minimum near neighborhood size|νt | = 100 for the U-shape
and logisticH(t), while the average MSE decreased more
rapidly for the flat-lineH(t); averaged MSE dropped signif-
icantly near filter dilationM = 3 for all the testedH(t). For
practical purposes, a neighborhood size around|νt | = 100
and filter dilationM = 3 are suggested.
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Table 2.MSE averages for different neighborhood sizes (νt ) and the exponent in absolute moments (k) depending on the three test functions
through one thousand mBm series for each case are shown.

|νt | 30 150 400
k k k

H(t) type 2 3 4 2 3 4 2 3 4

U-shape

WV 42.5 – – 33.2 – – 38.7 – –
LC 31.6 – – 15.1 – – 13.8 – –
GC1 32.4 34.1 32.9 4.11 5.89 7.12 10.4 13.8 16.0
GC2 1.59 1.56 1.55 5.56 7.65 9.36 10.4 13.8 15.9

logistic

WV 43.8 – – 35.9 – – 41.1 – –
LC 32.6 – – 9.94 – – 44.2 – –
GC1 57.2 59.3 61.3 2.17 3.08 3.11 23.9 31.8 37.1
GC2 1.55 1.37 1.48 2.43 3.18 3.98 24.2 32.1 37.5

flat-line

WV 41.6 – – 9.31 – – 4.24 – –
LC 35.4 – – 5.67 – – 1.53 – –
GC1 11.3 10.8 12.1 1.12 1.08 1.08 0.608 0.655 0.648
GC2 1.55 1.59 1.55 1.01 0.935 1.01 0.646 0.665 0.664

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

C

R
e

la
tiv

e
 f
re

q
u

e
n

cy

(a) LC

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

C

R
e

la
tiv

e
 f
re

q
u

e
n

cy

(b) GC1

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

C

R
e

la
tiv

e
 f
re

q
u

e
n

cy

(c) GC2

Figure 3: Normalized histograms of estimated C for (a) the LC method, (b) the GC1
method, and (c) the GC2 method are shown. The results are based on simulated
mBm signals from the U-shape H(t) and true C = 3. The red dot represents its
average of estimated C.
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Figure 4: MSE averages for GC1 depending on (a) different neighborhood sizes νt
and (b) filter dilation M are shown.
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Fig. 4. MSE averages forGC1 depending on(a) different neighbor-
hood sizesνt and(b) filter dilationM are shown.

4 Application to turbulence signals

The proposed method is applied to turbulence signals of
air velocities and temperatures. The velocity in longitudi-
nal (u1), lateral (u2), and vertical (u3) directions, and air
temperature (T ) measurements by a GILL triaxial sonic
anemometer were carried out on 12–16 July and 3–6 Au-
gust 1995, at 5.2 m above the ground surface over anAlta
Fescuegrass site at the Blackwood division of the Duke
Forest in Durham, North Carolina. During the experiment,
maximum mean air temperature up to 38◦C was measured
in Durham. The site is a 480-m by 305-m grass-covered
forest clearing (36◦2′ N, 79◦8′ W, elevation= 163 m). Sonic
anemometers measure velocity by sensing the effect of wind
on transit times of sound pulses traveling in opposite di-
rections across a known instrument distance. The measure-
ments were subsequently divided into 19.5 min intervals to
produceN = 65 536 time measurements per run. Further de-
tails about the experimental setup, atmospheric conditions,
inertial subrange identification, and instrumentation details

can be found inKatul et al. (1997). This paper focuses on
103 runs collected over a wide range of atmospheric stability
conditions. Time-changing Hurst exponentsH(t) and vari-
ance parametersC were estimated to relate to atmospheric
stability conditions. Each velocity and temperature run was
mean-centered prior to the estimation ofH(t) andC.

Atmospheric stability was measured by the Obukhov
length (L), which is used as an indicator of atmospheric
mixing conditions in surface layers, following the Monin–
Obukhov similarity theory (Monin and Obukhov, 1954;
Obukhov, 1971; Stull, 1988). The Obukhov length describes
a characteristic length scale, i.e. the height of the dynamic
sub-layer at the base of the boundary layer (Obukhov, 1971;
Schertzer et al., 2011). The sign of the surface heat flux in the
Obukhov length indicates whether the boundary layer is stat-
ically stable, related to negative buoyancy terms, or statically
unstable, related to positive buoyancy terms. Atmospheric
stability measure by the Obukhov length can also be found
in a lot of recent research (Van den Berg, 2008; Wharton and
Lundquist, 2011). Based on the Obukhov length, the 103 runs
are classified into stable conditions (L > 0.05, 48 runs) and
unstable conditions (L < 0.05, 55 runs), as inKatul et al.
(2003). Figures5 and6 show runs of the two velocity (lon-
gitudinal u1 and verticalu3) and temperature signals under
stable conditions and unstable conditions in the upper rows,
respectively, with estimatedH(t) in the lower rows. Seem-
ingly, the velocity signals showed more fluctuation of regu-
larity than the temperature signals, which is consistent with
the observation that the scaling of temperature differs from
that of velocity (Lovejoy et al., 2009). The sample averages
(Avg

Ĥ,s for signals) and the sample variance of estimated

H(t) (Var
Ĥ,s for signals) and the estimatedC (Ĉs for signal

s) per run were computed. That is to say, Avg
Ĥ,u1

means the
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Figure 5: Two velocity ((a) longitudinal u1 and (b) vertical u3) and (c) tempera-
ture T signals under stable conditions from the 12th run are shown in the upper
row. The corresponding estimated H(t) are shown in the lower row.
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Figure 6: Two velocity ((a) longitudinal u1 and (b) vertical u3) and (c) tempera-
ture T signals under unstable conditions from the 7th run are shown in the upper
row. The corresponding estimated H(t) are shown in the lower row.
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Fig. 5. Two velocity (a longitudinalu1 andb vertical u3) and (c)
temperatureT signals under stable conditions from the 12th run
are shown in the upper row. The corresponding estimatedH(t) are
shown in the lower row.

average of estimatedH(t) of longitudinal signalu1 with re-
spect tot . Avg

Ĥ,s was adopted as the global Hurst exponent
of the whole set of observedH(t), while Var

Ĥ,s was chosen
to represent how much the signal differs from fBm models.
The estimatedC itself represents the energy level of the sig-
nal.

Table3 shows the averages of those descriptive statistics
for stable runs and unstable runs. For instance, the variability
of Ĥ on average foru3 from the unstable runs (0.0313) was
larger than that forT (0.0240) as is illustrated in Fig.6e and
f. In addition, the two groups of stable and unstable runs were
compared, and the significance for the group difference was
presented for each signals and descriptive statistic. Among
those significant with significance level 0.05 are Avg

Ĥ,T
,

Var
Ĥ,u2

, Var
Ĥ,u3

, and ĈT. In other words, velocity signals
exhibited separation of stable and unstable runs in fluctua-
tions of regularity, and temperature signals distinguished sta-
ble runs from unstable runs by either global regularity levels
or energy levels.

To classify atmospheric stability conditions using mBm
models, the quality of those descriptors from mBm mod-
els was measured with classification functions, linear dis-
criminant analysis (LDA), quadratic discriminant analysis
(QDA),and support vector machines (SVMs with radial ba-
sis function and width parameter 1), which separate stable
runs from unstable ones. A training set of 73 randomly cho-
sen runs (70 %) out of the total 103 runs and a testing set
of the remaining 32 runs (30 %) were generated. Then by
each of the classification methods a correct classification rate
for the testing set was computed. This procedure was iter-
ated 5000 times, producing the average of the correct clas-
sification rates for each method. In addition to the proposed
methodGCusing the mean for̂C, two other methods,WVand
LC, were also included for the sake of comparison.
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Figure 5: Two velocity ((a) longitudinal u1 and (b) vertical u3) and (c) tempera-
ture T signals under stable conditions from the 12th run are shown in the upper
row. The corresponding estimated H(t) are shown in the lower row.
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ture T signals under unstable conditions from the 7th run are shown in the upper
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Fig. 6. Two velocity (a longitudinalu1 andb verticalu3) and (c)
temperatureT signals under unstable conditions from the 7th run
are shown in the upper row. The corresponding estimatedH(t) are
shown in the lower row.

Out of all possible combinations, that is to say 212
−1 com-

binations due to 3 descriptors (Avg
Ĥ,s, Var

Ĥ,s, Ĉs) and 4 sig-
nals (s= u1,u2,u3,T ), each individual descriptor is com-
pared first. Table4 shows classification rates for each indi-
vidual descriptor, indicating Avĝ

H,T
is one single descrip-

tor for atmospheric stability conditions. As a baseline for
comparison, when signals are directly classified by them-
selves through thek -nearest-neighborhood method (k = 7)
instead of using descriptors, the classification rates were
0.506,0.494,0.496, and 0.495 for each of velocity and tem-
perature signals. Additionally, a descriptor set of Avg

Ĥ,s,

Var
Ĥ,s, andĈs for all velocity and temperature signals (s=

u1,u2,u3,T ) resulted in classification rate 0.617 for LDA;
for Avg

Ĥ,s and Ĉs, 0.613; for Var
Ĥ,s and Ĉs, 0.576; and

for Avg
Ĥ,s and Var

Ĥ,s, 0.655. It was found that descriptors
Avg

Ĥ,s and Var
Ĥ,s were important for atmospheric stability

conditions whileĈs was not. Furthermore, through search of
classification rates by each combination of descriptors, the
following three sets of descriptors were chosen as important
ones that have high classification rates: Var

Ĥ,u1
and Avg

Ĥ ,T
;

Var
Ĥ ,u2

and Avg
Ĥ ,T

; and Var
Ĥ ,u3

and Avg
Ĥ ,T

, as shown in
Table 5. Additionally, the classification rates byGCturned
out to be consistently higher than those by the other methods.
This result shows that overall regularity levels of a tempera-
ture signal and fluctuations of regularity levels of a velocity
signal are important mBm-model driven descriptors that ac-
count for atmospheric stability conditions.

5 Conclusions

For the study of atmospheric turbulence in nonlinear geo-
physics, a generalization of fractional Brownian motions,
multifractional Brownian motions (mBm) as well as mul-
tifractality and generalized scale invariance analysis are

www.nonlin-processes-geophys.net/20/97/2013/ Nonlin. Processes Geophys., 20, 97–106, 2013
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Table 3.Summary of the sample averages and variances for three velocity and temperature signals in terms of average andp value for stable
and unstable runs using two-sample t-tests is shown. The boldfaced numbers represent significance with significance level 0.05.

Avg
Ĥ,s Var

Ĥ,s Ĉs

s stable unstable p value stable unstable p value stable unstable p value

u1 0.407 0.423 0.358 0.0276 0.0294 0.074 11.1 17.3 0.103
u2 0.467 0.479 0.528 0.0274 0.0297 0.045 24.4 33.7 0.175
u3 0.608 0.610 0.918 0.0285 0.0313 0.039 85.9 99.1 0.374
T 0.375 0.268 <0.000 0.0237 0.0240 0.820 8.25 3.33 0.032

Table 4.Average correct classification rates through five thousands partitioning of the total 103 runs into training (70 %) and testing (30 %)
sets are shown for the classification methods (LDA, QDA, SVM), the estimation methods (WV, LC, GC), and each individual descriptor.

individual descriptor

u1 u2

Var
Ĥ ,u1

Avg
Ĥ ,u1

Ĉu1 Var
Ĥ ,u2

Avg
Ĥ ,u2

Ĉu2

LDA
WV 0.542 0.613 0.482 0.543 0.579 0.518
LC 0.540 0.554 0.584 0.543 0.537 0.526
GC 0.541 0.554 0.563 0.543 0.541 0.592

QDA
WV 0.550 0.617 0.536 0.558 0.588 0.508
LC 0.549 0.557 0.569 0.559 0.546 0.533
GC 0.549 0.553 0.562 0.559 0.550 0.578

SVM
WV 0.461 0.542 0.506 0.442 0.575 0.442
LC 0.464 0.496 0.555 0.444 0.471 0.488
GC 0.463 0.491 0.490 0.446 0.473 0.502

u3 T

Var
Ĥ ,u3

Avg
Ĥ ,u3

Ĉu3 Var
Ĥ ,T

Avg
Ĥ ,T

ĈT

LDA
WV 0.501 0.619 0.516 0.588 0.614 0.524
LC 0.502 0.525 0.540 0.588 0.638 0.683
GC 0.502 0.526 0.577 0.588 0.657 0.529

QDA
WV 0.533 0.632 0.551 0.561 0.639 0.551
LC 0.533 0.544 0.542 0.561 0.641 0.666
GC 0.533 0.540 0.608 0.562 0.658 0.598

SVM
WV 0.476 0.551 0.527 0.654 0.573 0.531
LC 0.474 0.572 0.460 0.654 0.647 0.657
GC 0.472 0.578 0.563 0.658 0.654 0.562

commonly used. This paper discusses the identification of the
time-changing Hurst exponentH(t) and variance levelC of a
sampled path of a process from the multifractional Brownian
model and its application to turbulence signals. It proposes a
two-phased approach to estimateH(t) andC that relates the
k-th absolute moments to thek-th empirical moments after
filtering a sampled path. It takes advantage of accurate esti-
mation ofC, which is unvarying regardless of any position in
the sampled path, in the first phase and improves estimation
of H(t) using the exact nonlinear moment relationship in the
second phase. The performance of the proposed method is

demonstrated in a simulation study in which several types
of known H(t) andC are estimated from simulated mBm
signals in comparison to a selected previous method. It pro-
duced more accurate and sharp estimation ofH(t) andC.
The method was applied to air turbulence signals to iden-
tify time-changing regularity and global variability and to
associate them with atmospheric stability. The analysis of
103 runs show that velocity signals show differences of stable
and unstable runs in fluctuations of regularity, while temper-
ature signals distinguished the two kinds by stable behavior
of regularity and energy levels. It also shows that regularity

Nonlin. Processes Geophys., 20, 97–106, 2013 www.nonlin-processes-geophys.net/20/97/2013/
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Table 5.Average correct classification rates through five thousand partitions of the total 103 runs into training (70 %) and testing (30 %) sets
are shown for the classification methods (LDA, QDA, SVM), the estimation methods (WV, LC, GC), and the chosen descriptors.

chosen descriptors

Var
Ĥ ,u1

, Avg
Ĥ ,T

Var
Ĥ ,u2

, Avg
Ĥ ,T

Var
Ĥ ,u3

, Avg
Ĥ ,T

LDA
WV 0.632 0.618 0.620
LC 0.642 0.656 0.639
GC 0.713 0.717 0.719

QDA
WV 0.644 0.633 0.642
LC 0.645 0.668 0.647
GC 0.718 0.714 0.724

SVM
WV 0.561 0.568 0.624
LC 0.603 0.599 0.625
GC 0.679 0.690 0.683

fluctuations of a velocity signal and global regularity levels
of a temperature signal are important mBm-model driven de-
scriptors that account for atmospheric stability. This study in
the context of atmospheric stability can be extended to multi-
fractal analysis capturing rich information on regularity. The
suggested method can further investigate the finite-sample
bias effect in estimatingH(t) with asymptotic results and
also can be generalized to handle unequal data points that
frequently arise due to missing observations.

Appendix A

It is enough to show the filtered signalVa(
j
N

) is weakly sta-
tionary becausea is replaceable witha(m). To makeW(t)

in the first equation of Sect. 2 well defined, let us assume
the Hurst exponentH(t) is a Hölderian of order 0< η ≤

1 on [0,1], H ∈ Cη
(
[0,1]

)
as in Cohen(1999). Let ν(t)

be an index set of a neighborhood oft , defined asν(t) =

{j ∈ Z | l < j ≤ N, |j/N − t | ≤ ε} for a parameterε > 0. We
set ε to be a function ofN in such a way thatε → 0,
εN → ∞, andεη log(N) → 0 asN → ∞. In other words,
for a sufficiently largeN , the size of a neighborhood be-
comes sufficiently small while maintaining the summation
of the sizes of all neighborhoods sufficiently large. LetG(t)

denoteC
√

K
(
2H(t)

)
/2 for simplicity.

For j1/N,j2/N ∈ ν(t), the covarianceE
[
Va(

j1
N

)Va(
j2
N

)
]

becomes, byu =
λ
N

,

∑
q1,q2

aq1aq2

(
G
(j1 − q1

N

)
G
(j2 − q2

N

)∫ exp(i j1−q1
N

λ) − 1

|λ|
H(

j1−q1
N

)+1/2

×
exp(−i j2−q2

N
λ) − 1

|λ|
H(

j2−q2
N

)+1/2
dλ

)

=

∑
q1,q2

aq1aq2

G
( j1−q1

N

)
G
( j2−q2

N

)
NH(

j1−q1
N

)+H(
j2−q2

N
)

∫
exp

(
i(j1 − q1)u

)
− 1

|u|
H(

j1−q1
N

)+1/2

×
exp

(
−i(j2 − q2)u

)
− 1

|u|
H(

j2−q2
N

)+1/2
du.

By Taylor’s expansion and a Ḧolderian orderη of H(t), we
approximate

1

NH(
j−q
N

)
=

1

NH(t)

(
1+O(εη logN)

)
,

1

|u|
H(

j−q
N

)
=

1

|u|H(t)

(
1+O(εη logu)

)
,

G
(j − q

N

)
= G(t) +O(εη).

Using alsoεη
→ 0 andεη log(N) → 0 asN goes to infin-

ity, the covariance becomes∑
q1,q2

aq1aq2

G2
(
t
)

N2H(t)

∫
exp

(
i(j1 − q1)u

)
− 1

|u|H(t)+1/2

×
exp

(
−i(j2 − q2)u

)
− 1

|u|H(t)+1/2
du.

By the vanishing-moments property ofa, the above equa-
tion is simplified:∑
q1,q2

aq1aq2

G2
(
t
)

N2H(t)

∫
cos
(
(j2 − j1 + q1 − q2)u

)
− 1

|u|2H(t)+1
du.
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SinceK(α)
∫ 1−cos(κu)

|u|α+1 du = |κ|
α, ∀κ,and 0< α < 2, the

covariance is rewritten:

E
[
Va(

j1

N
)Va(

j2

N
)
]
=

−

∑
q1,q2

aq1aq2

G2
(
t
)

N2H(t)

|j2 − j1 + q1 − q2|
2H(t)

K
(
2H(t)

)
= −

C2

N2H(t)

∑
q1,q2

aq1aq2

2
|j2 − j1 + q1 − q2|

2H(t).

Consequently, the covarianceE
[
Va(

j1
N

)Va(
j2
N

)
]

depends

on j1 − j2, which makes the filtered signalVa(
j
N

) weakly
stationary. In addition, whenj1 andj2 are identical withj ,

Var
[
Va(

j
N

)
]
=

C2

N2H(t) πa,H(t). Whena is replaced witha(m),

Var
[
Va(m)(

j
N

)
]
=

C2m2H(t)

N2H(t) πa,H(t).
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