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Abstract. Data assimilation, commonly used in weather
forecasting, means combining a mathematical forecast of a
target dynamical system with simultaneous measurements
from that system in an optimal fashion. We demonstrate the
benefits obtainable from data assimilation with a dam break
flume simulation in which a shallow-water equation model
is complemented with wave meter measurements. Data as-
similation is conducted with a Variational Ensemble Kalman
Filter (VEnKF) algorithm. The resulting dynamical analysis
of the flume displays turbulent behavior, features prominent
hydraulic jumps and avoids many numerical artifacts present
in a pure simulation.

1 Introduction

Hydrological flumes and other phenomena related to rivers,
estuaries, canals, and other water bodies that lend themselves
to a one- or two-dimensional description have received some-
what less attention in computational fluid dynamics (CFD)
research than flows in industrial processes, or fully three-
dimensional flows in general. However, there is one notable
exception, namely, weather forecasting.

Weather models are complex codes that have received a
lot of attention from the CFD community since the 1950s.
Many techniques employed in weather forecasting are natu-
rally amenable to other hydrostatic flows, such as river, estu-
ary, and canal flows, but have yet to be tried in these applica-
tions. One of the most prominent of such techniques is data
assimilation.

In the current paper, we introduce data assimilation of
wave meter data into a river model that was originally pre-
sented byMartin and Gorelick(2005). Data assimilation is
a process that optimally combines model forecasts with ob-
servations. In weather forecasting, data assimilation is used
to generate the initial conditions for an ensuing forecast, but

also to continuously correct a forecast towards observations,
whenever these are available in the course of the forecast.

Turbulence, which is an irregular motion found in fluids
(liquids and gases) when passing objects or streamlines of
itself passing one another (Goldstein, 1938), is the main rea-
son that makes the CFD model ambitious to assimilate, as we
hope for more information from the available measurements
to shape the behavior of the model estimates.

In the paper ofMartin and Gorelick(2005), the authors
present a shallow-water model of a dam break experiment
conducted in a laboratory. The goal of the model is to sim-
ulate the behavior of the flume in the case that a dam sud-
denly breaks. Results from numerical simulations are com-
pared with measurements by wave meters and pressure trans-
ducers that record water height during the experiment.

In the current article, we take the model and the measure-
ments into account simultaneously in a process of continuous
data assimilation. This results in a more realistic representa-
tion of the behavior of the flume during the experiment, in
the sense that the resulting flume displays turbulent behav-
ior, features prominent hydraulic jumps and avoids many nu-
merical artifacts present in a pure simulation. As our data as-
similation algorithm, we have chosen a recent version of the
Ensemble Kalman Filter, the Variational Ensemble Kalman
Filter (VEnKF) introduced bySolonen et al.(2012). Ensem-
ble Kalman filters have the distinct advantage over other data
assimilation methods that they can be implemented as “wrap-
pers” on top of existing CFD codes without necessitating
modification of the models themselves. Moreover, they con-
duct data assimilation continuously, so that their results can
be compared with direct numerical simulations.

This paper is organized as follows. In the second section
we discuss previous attempts at numerically simulating river
flow. Section three describes the MODFreeSurf2D shallow-
water code used in the data assimilation experiments intro-
duced inMartin and Gorelick(2005). Section four discusses
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data assimilation and describes how it was implemented in
the current research effort. Section five describes the dam
break experiment and the way data assimilation was mod-
ified to accommodate the model and the data in this case.
Section six describes the results of numerical tests, both with
and without data assimilation. Section seven concludes the
paper.

2 Numerical simulation of river flows

Simulation of river flows presents challenges to computa-
tional schemes due to the complex geometry and meander-
ing path of the flow. Different schemes have been suggested
and applied to try to capture as much information about the
river as possible. A two-dimensional finite-element solution
has been used to simulate an 11 km long reach of River Culm
in Devon, UK, modeled by two-dimensional depth-averaged
Reynolds equations (Bates and Anderson, 1993). The numer-
ical model simulation finds an error of±2 % in continuity,
although the mass conservation is still adequate.

The same method has been applied to flow simulations
in Aliparast (2009). The governing equations of the model
are 2-D shallow-water equations, where the stress term is ig-
nored because of the influence of bottom roughness caused
by turbulent shear stress between grids (Yoon and Kang,
2004). The numerical model has been validated by an exam-
ple of an oblique hydraulic jump for which an analytical solu-
tion is available (Aliparast, 2009). The numerical model has
been tested with a dam break case in a converging-diverging
flume (Bellos et al., 1991). The flume is 20.7 m long and
1.40 m wide, it has 5 stations used to record the water depth,
and a dam is located 8.5 m from the closed end. The results
of the dam break case simulation match well with the ex-
perimental results (Aliparast, 2009). However, in station 4,
which is 13.5 m downstream from the dam, water depth is
underestimated.

The finite volume method is a further widely-used numer-
ical scheme. It has been applied for a shallow water model in
Heniche et al.(2000), Zhang and Wu(2011) andYing et al.
(2009).

A recent application on the dam break case is presented
by Baghlani (2011), where a robust flux vector splitting
(FVS) scheme is applied. FVS has been frequently applied
in solving similar compressible flow problems (e.g. inBagh-
lani, 2011; Erpicum et al., 2010; Toro and Vazquez-Cendon,
2012). Two well-known FVS methods are that of Steger
and Warming and that of Van Leer (Drikakis and Tsan-
garis, 1993). Steger and Warming’s FVS exploits the ho-
mogeneous property of the Euler equation and splits the
fluxes into positive and negative parts with respect to the
propagation (Drikakis and Tsangaris, 1993). Van Leer’s FVS
constructs the fluxes as a function of the local Mach num-
ber (Drikakis and Tsangaris, 1993). The FSV proposed by
Baghlani(2011) decomposes the flux vector into positive and

negative components by means of Jacobian matrices of the
flux vectors and a Liou–Steffen splitting for decomposing the
pressure term. The FVS has been criticized for its expensive
computational cost, as the eigensystem of equations must be
evaluated at every time step (Baghlani, 2011).

One approach to studying flow behavior is to construct
flume properties directly from measurements by regression.
A method of surface analysis and velocity changes of this
type has been presented (Barcena et al., 2012). It uses re-
gression with respect to a collection of model scenarios to
form a continuous function of hydrodynamic responses. The
method has been successful in predicting estuarine free sur-
face and velocity with significant savings in computational
cost for a short- and medium-term simulation period. One
advantage of this method is its ability to simulate a long-term
hydrodynamic flow with a short computational time.

Pure 2-D simulations of hydrological flows suffer from
several handicaps. Because the numerical flow is two-
dimensional, it cannot capture the true three-dimensional
flow, in particular turbulence: the numerical solution remains
in perpetual hydrostatic balance. Even more importantly, the
numerical time-stepping scheme implies that a flow front in
front of a discontinuity, such as a flood wave, will only prop-
agate one grid line per time step. The speed of this shock
wave is therefore dependent on grid size and the numerical
time step, and not on the correct physical speed. Finally, there
is no way to connect the simulated flow to the true flow after
the initial condition has been fixed. With data assimilation,
we hope to address all three defects.

3 MODFreeSurf2D

MODFreeSurf2D is an open Matlab code that is designed to
solve depth-averaged shallow-water equations (Martin and
Gorelick, 2005). The code implements the semi-implicit,
semi-Lagrangian time-stepping scheme ofCasulli and Cheng
(1992) and Casulli (1999), and uses a finite volume dis-
cretization. The scheme is stable and can simulate water/land
boundaries (Martin and Gorelick, 2005; Casulli and Cheng,
1992).

3.1 Depth-Averaged Shallow-Water Equations
(DASWE)

The governing equations in MODFreeSurf2D are the depth-
averaged shallow-water equations as given inMartin and
Gorelick(2005):
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Fig. 1.ModFreeSurf2D variable definition (side view) which shows
the relationship between free surface elevationη, total water depth
H , and undisturbed water depthh (Martin and Gorelick, 2005).
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whereU is the depth-averagedx direction velocity compo-
nent,V is the depth-averagedy direction velocity compo-
nent,η is the free surface elevation,g is the gravitational
constant,t is time, ε is the horizontal eddy viscosity,f is
the Coriolis parameter,H = h + η is the total water depth,
γT is the wind stress coefficient,Cz is the Chezy coefficient,
and Ua and Va are wind velocities. In the above,h is the
undisturbed water depth. Figure1 illustrates the variable def-
initions of MODFreeSurf2D.

Top friction and bottom friction boundaries are given by
Eqs. (4) and (5), respectively.
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whereν is the kinetic viscosity coefficient, andz indicates
the vertical direction (Martin and Gorelick, 2005).

3.2 Numerical approximation

In MODFree2DSurf a combination of a semi-implicit, semi-
Lagrangian time-stepping scheme and a finite-volume dis-
cretization is employed to numerically solve the hydrological
shallow-water equations on a rectangular grid. This scheme

provides a stable solution, even for a time step larger than the
Courant–Friedrichs–Lewy (CFL) restriction defined by

CFL = w
1t

1xi

, (6)

wherew is the velocity component in thexi direction,i =

1,2, 1t is the time step size, and1xi is the cell dimension
in thexi direction of flow (Martin and Gorelick, 2005). The
CFL relates fluid velocity and time step size to computational
cell size, and requires that it should be smaller than 1 (Martin
and Gorelick, 2005).

3.2.1 Semi-implicit representation

In this representation, the free surface elevationη and the
horizontal velocity componentsU andV are the unknown
variables at timeN + 1:
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In the above equations,1x is the computational volume
length in thex direction,1y is the computational volume
length in they direction, and1t is the computational time
step (Martin and Gorelick, 2005). The parameterθ dictates
the degree of implicitness of the solution. Its value ranges be-
tween 0.5 and 1, whereθ = 0.5 means that the approximation
is centered in time andθ = 1.0 means that the approximation
is completely implicit (Casulli and Cheng, 1992).
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The operatorsFU andFV in Eqs. (8) and (9) contain the
advective, viscous, and Coriolis components of the govern-
ing equations (Martin and Gorelick, 2005).

The value of the Chezy coefficient in Eq. (10) is given
in terms of Manning’s roughness coefficientMn, which is
assumed to be dimensionless (Martin and Gorelick, 2005).
Other details of the discretization process can be found in
Martin and Gorelick(2005):

Czi+1/2,j
=

(
Hi+1/2,j

)1/6

Mni+1/2,j

. (10)

3.3 The boundary condition

The model itself identifies the location of water/land bound-
aries using the following equations (Martin and Gorelick,
2005):

HN+1
i+1/2,j = max

(
0,hi+1/2,j + ηN+1

i,j ,hi+1/2,j + ηN+1
i+1,j

)
, (11)

HN+1
i,j+1/2 = max

(
0,hi,j+1/2 + ηN+1

i,j ,hi,j+1/2 + ηN+1
i,j+1

)
. (12)

Two types of horizontal boundary conditions have been
set:
(i) The projection of the velocity normal to the domain
boundary:

∂U

∂t
+ Uupw

∂U

∂n
= 0, (13)

whereUupw is the upwinded normal direction velocity com-
ponent, andn is the direction normal to the domain boundary
(Martin and Gorelick, 2005).

(ii) To limit wave reflections at open boundaries, the fol-
lowing condition is imposed:

∂η

∂t
+ Cn

∂η

∂n
= 0, (14)

whereCn is the propagation velocity from grid points around
the boundary (Martin and Gorelick, 2005).

4 Data assimilation

4.1 Overview

Data assimilation aims to establish an optimal compromise
between the prediction of a computational model and a set
of observations. Both the model and the observations are as-
sumed to be incorrect and contain some error. Heuristically,
data assimilation takes some weighted average between these
two estimates, with weights inversely proportional to the an-
ticipated error in each (Daley, 1991).

Two forms of data assimilation have been common in
weather forecasting. In “lumped” data assimilation, the goal
is to produce a single initial state for the system to be simu-
lated, from which a subsequent forecast can be launched. In

“lumped” data assimilation it has been possible to impose the
model state equation – a set of conservation laws – exactly on
that initial state, especially when so-called variational assim-
ilation has been used (Le Dimet and Talagrand, 1986; Lewis
and Derber, 1985; Courtier and Talagrand, 1987). However,
variational data assimilation implicitly contains the same de-
fects that the model it is based on contains – for example
some model bias. Bias threatens to throw the model trajec-
tory away from the true physical flow, which is tracked by
observations even when they contain some noise.

In continuous data assimilation, on the other hand, the so-
lution of the state equation is constantly “nudged” towards
observations (Lorenc, 1986). This means that the state equa-
tion is only approximately true and that several conservation
properties may get lost, but the model trajectory is likely to
always stay close to the true observed trajectory.

The Extended Kalman Filter (EKF) (Kalman, 1960) com-
bines the best properties of both lumped and continuous
data assimilation methods. Unfortunately, the computational
complexity of the classical EKF is prohibitively high for
high-dimensional numerical models such as those appear-
ing in geophysical simulations. However, this situation has
started to change with the emergence of Ensemble Kalman
filters (EnKF), (Evensen, 1994). Ensemble Kalman filters are
stochastic approximations of the Extended Kalman Filter that
purport to preserve many of its good properties. In practice,
the degree to which this is achieved depends crucially on the
particular EnKF variant chosen.

Some variants of Ensemble Kalman filters draw their in-
spiration from the same Bayesian paradigm as the original
Kalman Filter does. A prominent example of these methods
is the maximum likelihood estimation filter (MLEF) intro-
duced inZupanski(2004). MLEF solves a Bayesian mini-
mization with an ensemble of forecasts and uses the Limited
Memory BFGS method to minimize a cost function that mea-
sures the distance of observations from the forecast. How-
ever, it generates a single ensemble of forecasts in the be-
ginning of the forecast and uses it for all the minimzations,
unlike the Variational Ensemble Kalman Filter (VEnKF) that
will be introduced below. As will become evident from the
convergence behavior of VEnKF, re-sampling the ensemble
very frequently dramatically improves the convergence of the
method and the stability of the corresponding Kalman filter.

4.2 VEnKF

The Variational Ensemble Kalman Filter (VEnKF) is a
stochastic approximation of the EKF. In this paper, we re-
strict ourselves to a brief discussion of the main ideas be-
hind the VEnKF. A more detailed discussion can be found in
Solonen et al.(2012). We begin by introducing the following
coupled system of stochastic dynamic equations:

sk+1 =Mk (sk) + εk, (15)

ok+1 =Hk+1 (sk+1) + ζk+1, (16)
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whereMk is anN -dimensional transition operator used to
forecast the model state at time instancek+1 given the model
state at time instancek;Hk+1 is an observation operator that
maps the model statesk+1 to the observationok+1; εk and
ζk+1 are zero mean random terms that define prediction and
observation error, respectively. Our task is to define an esti-
mate forsk+1 given the operatorsMk,Hk+1, the observation
ok+1, and the covariance matrices ofεk andζk+1, hereafter
defined asCεk

andCζk+1. In many cases,εk andζk+1 are also
assumed to be normally distributed, although this require-
ment can be relaxed.

The motivation behind the VEnKF is quite similar to that
of the EnKF. Foremost, we compute a sample estimate for the
prior covariance, where the samples are explicitly generated
by Eq. (15). Thereafter, instead of following the EKF formu-
las as is done in EnKF, we replace them with a MAP (max-
imum a posteriori probability) estimate problem. By taking
−log of the MAP cost function we arrive at an equivalent
minimization problem as suggested inAuvinen et al.(2009):

l(s|ok+1) =
1

2

(
s − s

p
k+1

)T [
C

p
k+1

]−1(
s − s

p
k+1

)
+ (17)

1

2
(ok+1 −Hk+1(s))

T C−1
ζk+1

(ok+1 −Hk+1(s))).

Here s
p
k+1 is the predicted model state at time instance

k + 1 andC
p
k+1 is the covariance matrix of the prediction.

When transition and observation operators are linear, it can
be proven (Simon, 2006) that a minimum variance unbi-
ased estimator forsk+1, hereafter denoted assest

k+1, minimizes
Eq. (17), whereas the covariance matrix of this estimate,
which we denote byCest

k+1, is defined by the inverse Hessian
of Eq. (17). This approach can also be expanded to non-linear
cases.

Before giving a rigorous formulation of the VEnKF al-
gorithm, we need to introduce some supporting notation.
Let

{
ek,i

}N

i=1 denote an ensemble of cardinalityN sam-
pled from the distribution ofsest

k . More precisely,∀i ek,i ∼

N (sest
k ,Cest

k ). In addition, we denote the mean of
{
ek,i

}N

i=1
by ēk and introduce anM-element vectorX

(
ek,i

)
defined as

follows:

X
(
ek,i

)
=

((
ek,1 − ēk

)
, . . . ,

(
ek,N − ēk

))
/
√

N − 1.

The VEnKF algorithm now reads as follows:

i. Compute the model prediction:s
p
k+1 =Mk(sk).

ii. Move the ensemble
{
ek,i

}N

i=1 forward using Eq. (15):

∀i ẽk+1,i =Mk

(
ek,i

)
.

iii. Define the sample estimate for the prior covariance:

C
p
k+1 = X

(
ẽk+1,i

)(
X

(
ẽk+1,i

))T
+ Cεk

.

iv. Assignsest
k+1 to the minimizer of the cost function (17)

andCest
k+1 to an approximation of the inverse Hessian

of Eq. (17).

v. Update the ensemble
{
ẽk+1,i

}N

i=1 by sampling from
N (sest

k+1,C
est
k+1).

The strength of the VEnKF is that it allows a memory-
efficient representation of the prior covarianceC

p
k+1. The lat-

ter is advantageous when the model state dimension is too big
to allow the explicit storage of the covariance matrices. How-
ever, in order to implement steps (iv) and (v) of the presented
algorithm, we need to evaluate the cost function defined by
Eq. (17) and specify a low-memory approximation for its in-
verse Hessian. The first goal is achieved by leveraging the
Sherman–Morrison–Woodbury formula to invertC

p
k+1. More

precisely:

[
C

p
k+1

]−1
=

[
Cεk

+ X
(
ẽk+1,i

)(
X

(
ẽk+1,i

))T
]−1

= C−1
εk

− C−1
εk

X
(
ẽk+1,i

)(
I +

(
X

(
ẽk+1,i

))T
C−1

εk
X

(
ẽk+1,i

))−1
×(

X
(
ẽk+1,i

))T
C−1

εk
. (18)

Formulation (18) can be directly inserted into cost func-
tion (17), so it is not necessary to store the full matrices in
order to evaluate it. Since the matrixCεk

is usually specified
by a simplified (diagonal or block-diagonal) structure, and
the ensemble size is assumed to be much smaller than the
model state dimension, the inversion operations in Eq. (18)
are feasible. Reverting back to the implementation of step (v)
of the VEnKF algorithm, we suggest approximating the in-
verse Hessian of Eq. (17) by either the full rank low-memory
representation employed by the L-BFGS unconstraint opti-
mizer (Nocedal and Wright, 1999) or the reduced rank rep-
resentation in Krylov space generated by conjugate gradient
minimization of Eq. (17) (Bardsley et al., 2013).

The computational complexity of the VEnKF algorithm
remains linear in the number of degrees of freedom of the
model despite the fact that it solves a minimization prob-
lem with observations every time step. This follows from the
fact that the minimization problem is very well-conditioned
and converges in a small number of iterations. This number
is likely to remain independent of the number of degrees of
freedom, because the minimization in VEnKF is identical to
that applied in three-dimensional variational data assimila-
tion that has been observed to have this behavior in opera-
tional weather data assimilation. This good behavior comes
from the fact that in the current application scenario the as-
similation window is just one time step long, and therefore
the Hessian matrix remains diagonally dominated and the ini-
tial guess very good, in the same manner as in the minimiza-
tion applied in implicit time-stepping schemes. The conver-
gence history of the residual of minimization indeed shows
fast linear convergence, as seen in Fig.2.
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Fig. 2.Sample residuals plotted for one time step.

5 Dam break experiments

One of the applications published inMartin and Gorelick
(2005) is a dam break experiment. The experiment consists
of a flume 21.2 m long and 1.4 m wide. The flume is closed
at one end and open at the other end. It has a curved con-
striction 5.0 m from the closed end that ends 4.7 m from the
open end. A dam is located 8.5 m from the closed end, with
an opening of width 0.6 m. The flume has a slope of 0.002
with water at a height of 0.15 m behind the dam (Martin and
Gorelick, 2005).

Wave meters and pressure transducers were located at 8
locations, as seen in Fig.3; however, the water depth mea-
surements were only given in seven locations. The recorded
water depths last for 62 s after the dam is broken. With the
dam position chosen as the origin, the wave meters are lo-
cated at placesx = −8.5, −4.5, and−0.0 m, and the pres-
sure transducers are placed atx = +0.0, +2.5, +5.0, +7.5,
and +10.0 m (Martin and Gorelick, 2005). The computational
time step used in the experiment is1t = 0.103 s and the grid
dimensions are1x = 0.05 m and1y = 0.125 m. With this
grid cell size, the geometry is sliced into 30× 171 grid cells.
Finally, simulated water heights at the seven locations were
compared with heights measured by the wave meters and
pressure transducers.

5.1 VEnKF parameters

The state vector for the assimilation is defined as the vector of
heights at the center of a grid point. The complete state vec-
tor comprises the free surface elevationη and the horizontal
velocitiesu in thex direction andv in they direction for the
entire domain, i.e.,s = [η u v]

T . The model has, therefore,
altogether 16 000 spatial degrees of freedom. With the inter-
polations described in Sect.5.3, the ensembles are sampled
in every time step of the assimilation. The observation error
and the model error covariance matrices are both assumed

Fig. 3. Plan view flume layout for the dam break experiment of
Bellos et al. (1992). Wave meter locations are displayed with circles.
Pressure transducer locations are displayed with triangles (Martin
and Gorelick, 2005).

to be diagonal. The observation operatorH in Eq. (17) is a
linear operator that maps the state vector to the observation
space corresponding to all grid points covered by the inter-
polated data, but restricted to the water height values only.

5.2 Experiment 1: VEnKF application to dam break
with synthetic data

The aim of this experiment is to examine both qualitative and
quantitative characteristics of the VEnKF method to the dam
break experiment. The data set has been generated by adding
normally distributed noise with mean 0 and a variance of 5×

10−2 from the solution of the model simulation. To make the
experiment more realistic, data has been picked in 8 positions
corresponding to wave meter locations defined inMartin and
Gorelick (2005). More precisely, the time interval between
the data in all locations was fixed, but chosen randomly for
every location. This setup emulates the fact that wave meters
do not necessarily collect information at the same time.

5.2.1 Results for experiment 1

In Figs.4 and5, the matching between the data, VEnKF es-
timates (50 ensembles) and the model simulation, here re-
ferred to as the truth, is shown for all 8 wave meter locations.
The target of the current study is not really data assimila-
tion for the purpose of a subsequent forecast with VEnKF,
as would be the case in an atmospheric dynamics context,
but instead qualitatively better hind-casting of a catastrophic
event such as a dam breaking down, with an ensemble-based
approach. In our case, the length of each forecast is therefore
just one computational time step at a time with interpolated
observations. This close match between the model and ob-
servations over one time step also results in very compact
ensemble spreads, as can be seen in Fig.6.

Figure7 shows a plot of root mean square error (RMSE)
for the entire duration of the simulation. The error first in-
creases, then decreases steadily. Such error behavior can be
explained by the fact that at the begining of the dam break, a
steady initial state quickly breaks into a turbulent flume that
then peters out to a drib as the water eventually runs out. In
the forecast skill plot shown in Fig.8, we have plotted the
forecast skill from a time about 4 s after the dam break for
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Fig. 4. Experiment 1: Comparison of VEnKF estimates, true water
depth and data of the dam break experiment for the first four sensors
at the upstream end.

a period of 10 s from the begining of the experiment, as this
period is the best one to display the error before water has
started to run out from the flume.

5.3 Experiment 2: VEnKF for dam break experiment
with real data

The published data set (seeMartin and Gorelick, 2005) of
measurements is used to assimilate water heights. The high
sparsity of the set of measurements is challenging for data
assimilation. Observations come at an average rate of 1.6
observations in one or more locations per time step and at
a maximum of 5 locations per time step. They feature only
measurements of water height. This means that the number
of observations in relation to the dimension of state space
is approximately 1/100 000, since the computational time
step is 0.1 s. For this reason, the observations are interpo-
lated in time by a spline scheme and in space by a Gaussian
mask to make them dense enough for the VEnKF assimila-
tion scheme. This means we interpolate the observations in
time and extrapolate each of them in space by a Gaussian
kernel. After this, the ratio of the number of observations to
system dimension improves to 1/50.

5.3.1 Shore boundary definition for the VEnKF

As can be seen from the MAP estimate problem (17), the
VEnKF does not account for additional prior knowledge be-
yond the observations. This means that in the case of prob-
lems on bounded domains, there is no way to include infor-
mation about the boundaries in the Kalman filter analysis.
If the prediction model automatically maintains the bound-
aries in accordance with defined constraints, one can simply
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Fig. 5. Experiment 1: Comparison of VEnKF estimates, true water
depth and data of the dam break experiment for the last four sensors.
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Fig. 6. 95 % confidence region is shown for the location of Sensor
No. 1.

reduce the data assimilation analysis to the inner part of the
model domain. However, this approach is complicated when
the boundaries change over time.

In our experiments, we use a strategy that allows us to
account more flexibly for evolving boundaries, albeit with-
out guaranteeing that the boundaries will be preserved ex-
actly as required by the model constraints. Information about
the boundaries is included in the model uncertainty descrip-
tion, i.e., in the model error covarianceCεk

(see Eq.15). This
changes the analytical representation of the boundaries to a
probabilistic description. Thus, there is no absolute certainty
about where the boundaries are located, but there is more
confidence about the evolution of boundaries than that of the
model.
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In the dam break case studied here, we have prior knowl-
edge about the shoreline and there will be no water in places
where there is a riverbank. Therefore, we define the model
covarianceCεk

such that the state elements that are confined
to the riverbank have variances much smaller than the vari-
ances assigned to the rest of the state. This strategy shifts
the responsibility of maintaining the boundaries to the data
assimilation analysis.

6 Model applications with real data

6.1 Results without data assimilation

The results of direct model simulations with MOD-
FreeSurf2D show that the simulated water depth matches
well with the measured depth only for the three measurement
locations above the dam (at the upstream end), as can be seen
in Fig. 9a–c. The results are less accurate for other locations
below the dam due to the emergence of super-critical flows in
the downstream end. The downstream end is also character-
ized by turbulent flow, and the model only tracks the height
of water, but not the turbulent fine structure of the flow. In
Fig. 9d as well as Fig.10a and b in particular, we can see the
discontinuity of the flow at the beginning of the dam opening.

6.2 Results with data assimilation

The model error and the observation error covariance matri-
ces were set toCε

p
k
= (0.0011)2I and Cζk

= (0.001)2I , re-

spectively. We use the initial estimate of the statexest
0 equals

the initial height of water and the initial covariance estimate
Cest

0 = I .
Measurements are incorporated into the model, and the as-

similation is done with an ensemble size of 75 members. The
number of LBFGS iterations and stored vectors is set to 25.
When the dam is removed, a strong flood wave is generated
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Fig. 8.The forecast skill plot for about 4 s period of forecast
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Fig. 9.Comparison of simulated water depth and measured depth of
the dam break experiment for the first four sensors at the upstream
end.

and propagated downstream from the flume. The variation of
water depth with time is compared with experimental data as
given by the seven sensors; see Figs.11and12.

From the results it can be seen that at the location imme-
diately after the dam (location 4), the original simulation did
not capture the behavior of the flow at the beginning of the
simulation. However, VEnKF is able to approximate the wa-
ter height and the structure of the flow. The same situation
was observed in locations 5, 6 and 8, where the VEnKF re-
sult captures well the most prominent features of the flow.

At all seven sensors located at the upstream and down-
stream ends with available measurements, these measure-
ments agree well with the VEnKF results. This demonstrates
the capability and accuracy of the VEnKF for predicting dam
break flows for rivers and streams.
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Fig. 10.Comparison of simulated water depth and measured depth
of the dam break experiment for the last four sensors at the down-
stream end. Sensor No. 7 did not have measurements.
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Fig. 11.Experiment 2: Comparison of VEnKF results and measured
depth of the dam break experiment for the first four sensors at the
upstream end.

It is worth pointing out the time series of water heights at
sensor 7 that did not provide any measurements because of
a sensor malfunction. If we compare the simulated curve in
Fig. 10c with direct simulation to that of Fig.12c with data
assimilation, we see that the latter contains similar fine scale
oscillations due to small waves as the sensors with observa-
tions, but that these oscillations are missing in Fig.10c.

This demonstrates that the qualitative improvements to-
wards a more realistic representation of the flume are not
restricted to sites with observations, but are indeed spread
throughout the computational domain. This can be seen in
more detail in the accompanying videos that represent the
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Fig. 12.Experiment 2: Comparison of VEnKF results and measured
depth of the dam break experiment for the last four sensors at the
downstream end. Sensor No. 7 did not have measurements.

pure simulation and the flume obtained with data assimila-
tion.

7 Discussion and conclusions

The use of data assimilation to complement forecasts made
by mathematical models with observational data is a growing
trend in scientific computing. This trend is likely to continue,
since the computer capacity accessible to researchers is in-
creasing rapidly, and many different kinds of automatic mea-
surement devices are becoming available that provide large
numbers of measurements from target systems.

In the foregoing sections, we have demonstrated some of
the benefits that data assimilation can bring to hydrological
modeling. The resulting analysis of a dam break flume be-
haves in a more realistic manner than the corresponding com-
puter simulation alone. It displays turbulent behavior such as
the real flow, features prominent hydraulic jumps, and avoids
several numerical artifacts.

Another benefit of data assimilation is a proper statisti-
cal treatment of flume simulations. Traditional mathemati-
cal models are deterministic, whereas in computer simula-
tion we can only approximate a real physical phenomenon in
a statistical sense. For this reason, the adoption of a version
of Kalman filtering, the Variational Ensemble Kalman Filter
(VEnKF), adds value to the simulation, as it automatically
incorporates information about the expected error covariance
of the analysis of the flume into the approximate error covari-
ance matrix that it computes in the course of data assimila-
tion. Continuous data assimilation therefore addresses qual-
itative defects in flow simulations and correctly interprets
simulated numerical values as samples from a distribution
of possible physical values, not as true physical values.

www.nonlin-processes-geophys.net/20/955/2013/ Nonlin. Processes Geophys., 20, 955–964, 2013



964 I. Amour et al: Using Ensemble data assimilation to forecast hydrological flumes

Acknowledgements.Thanks to Lappeenranta University of
Technology and the World Bank Project funding through the
University of Dar es salaam and Dar es salaam University College
of Education, without these funding this work would be impossible.
Our thanks also go to the anonymous reviewers for their insightful
review of our work.

Edited by: R. Buizza
Reviewed by: two anonymous referees

References

Aliparast, M.: Two-dimensional finite volume method for dam-
break flow simulation, Int. J. Sediment Res., 24, 99–107, 2009.

Auvinen, H., Bardsley, J., Haario, H., and Kauranne, T.: The vari-
ational Kalman filter and an efficient implementation using lim-
ited memory BFGS, Int. J. Numer. Meth. Fl., 64, 314–335, 2009.

Baghlani, A.: Simulation of dam-break problem by a robust flux-
vector splitting approach in Cartesian grid, Scientia Iranica, 18,
1061–1068, 2011.

Barcena, J. F., Garcia, A., Garcia, J., Alvares, C., and Revilla, J. A.:
Surface analysis of free surface and velocity to changes in river
flow and tidal amplitude on a shallow mesotidal estuary: An ap-
plication in Suances Estuary (Nothern Spain), J. Hydrol., 420–
421, 301–318, 2012.

Bardsley, J., Solonen, A., Parker, A., Haario, H., and Howard,
M.: An Ensemble Kalman Filter Using the Conjugate
Gradient Sampler, Int. J. Uncert. Quant., 3, 357–370,
doi:10.1615/Int.J.UncertaintyQuantification.2012003889, 2013.

Bates, P. and Anderson, M.: A two-dimensional finite-element
model for river flow inundation, P. Roy. Soc. Lond. A. Mat., 440,
481–491, doi:10.1098/rspa.1993.0029, 1993.

Bellos, C., Soulis, J., and Sakkas, J.: Computation of two-
dimensional dam-break induced flows, Adv. Water Resour., 14,
31–41, 1991.

Casulli, V.: A Semi-implicit finite difference method for non hydro-
static, free-surface flows, Int. J. Numer. Meth. Fl., 30, 425–440,
1999.

Casulli, V. and Cheng, R.: Semi-implicit finite difference methods
for three-dimensional shallow water flow, Int. J. Numer. Meth.
Fl., 15, 629–648, doi:10.1002/fld.1650150602, 1992.

Courtier, P. and Talagrand, O.: Variational assimilation of meteo-
rological observations with the adjoint vorticity equation, Part
2: Numerical results, Q. J. Roy. Meteor. Soc., 113, 1329–1368,
1987.

Daley, R.: Atmospheric Data Analysis, Cambridge University
Press, 1st Edn., 1991.

Drikakis, D. and Tsangaris, S.: On the solution of the compress-
ible Navier-Stokes equations using improved flux vector splitting
methods, Appl. Math. Model., 17, 282–297, 1993.

Erpicum, S., Dewals, B., Archambeau, P., and Pirotton, M.: Dam
break flow computation based on an efficient flux vector splitting,
J. Comput. Appl. Math., 234, 2143–2151, 2010.

Evensen, G.: Sequential data assimilation with a nonlinear quasi-
geostrophic model using Monte-Carlo methods to forecast error
statistics, J. Geophys. Res., 99, 10143–10162, 1994.

Goldstein, S.: Modern developments in fluid mechanics, Oxford
Univ. Press, 1938.

Heniche, M., Secretan, Y., Boudreau., P., and Leclerc, M.: Two-
dimensional finite volume model for dam-break simulation, Adv.
Water Resour., 23, 359–372, 2000.

Kalman, R.: A new approach to linear filtering and prediction prob-
lems. Transaction of the ASME, J. Basic Eng.-T. ASME, 82, 35–
45, 1960.

Le Dimet, F.-X. and Talagrand, O.: Variational algorithms for anal-
ysis and assimilation of meteorological observations: theoretical
aspects, Tellus, 38A, 97–110, 1986.

Lewis, J. M. and Derber, J. C.: The use of adjoint equations to solve
a variational adjustment problem with advective constraints, Tel-
lus, 37A, 309–322, 1985.

Lorenc, A.: Analysis methods for numerical weather prediction, Q.
J. Roy. Meteor. Soc., 112, 1177–1194, 1986.

Martin, N. and Gorelick, S. M.: MODFreeSurf2D: A MATLAB sur-
face fluid flow model for rivers and streams, Comput. Geosci.,
31, 926–946, 2005.

Nocedal, J. and Wright, S.: Numerical Optimization, chap. Limited-
Memory BFGS, Springer-Verlag, New York, 224–227, 1999.

Simon, D.: Optimal state estimation, Kalman,H∞, and nonlinear
approaches, Wiley-Interscience, Hoboken, 2006.

Solonen, A., Haario, H., Hakkarainen, J., Auvinen, H., Amour, I.,
and Kauranne, T.: Variational ensemble Kalman filtering using
limited memory BFGS, Electron T. Numer. Ana., 39, 271–285,
2012.

Toro, E. and Vazquez-Cendon, M.: Flux splitting schemes for the
Euler equations, Comput. Fluids, 70, 1–12, 2012.

Ying, X., Jorgeson, J., and Wang, S.: Modeling Dam-Break flows
using Finite Volume method on unstructured grid, Eng. Appl.
Comput. Fluid Mech., 3, 184–194, 2009.

Yoon, T. and Kang, S.: Finite volume model for two-dimensional
shallow water flows on unstructured grids, J. Hydraul. Eng.-
ASCE, 130, 678–688, 2004.

Zhang, M. and Wu, W.: A two dimensional hydrodynamic and
sediment transport model for dam break based on finite vol-
ume method with quadtree grid, Appl. Ocean Res., 33, 297–308,
2011.

Zupanski, M.: Maximum Likelihood Ensemble Filter: Theoretical
Aspects, Mon. Weather Rev., 133, 1710–1726, 2004.

Nonlin. Processes Geophys., 20, 955–964, 2013 www.nonlin-processes-geophys.net/20/955/2013/

http://dx.doi.org/10.1615/Int.J.UncertaintyQuantification.2012003889
http://dx.doi.org/10.1098/rspa.1993.0029
http://dx.doi.org/10.1002/fld.1650150602

