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Abstract. We show how the rotating shallow-water MHD
model, which was proposed in the solar tachocline context,
may be systematically derived by vertical averaging of the
full MHD equations for the rotating magneto fluid under the
influence of gravity. The procedure highlights the main ap-
proximations and the domain of validity of the model, and
allows for multi-layer generalizations and, hence, inclusion
of the baroclinic effects. A quasi-geostrophic version of the
model, both in barotropic and in baroclinic cases, is derived
in the limit of strong rotation. The basic properties of the
model(s) are sketched, including the stabilizing role of mag-
netic fields in the baroclinic version.

1 Introduction

The (rotating) shallow-water magnetohydrodynamics model
was introduced on heuristic grounds inGilman(2000) in the
context of the solar tachocline. (We will call it mRSW in
what follows; with respect to the originally used acronym
sMHD, this one reflects better the nature of the model; see
below.) Its applications were further discussed inDikpati
and Gilman(2001a) andDikpati and Gilman(2001b). The
spectrum of linear waves and nonlinear stationary wave so-
lutions were established inShecter et al.(2001), and Hamil-
tonian structure and hyperbolicity properties were investi-
gated inDellar (2002). The primary purpose of the present
paper is systematic derivation of the mRSW model from
the full MHD equations by vertical averaging, which will
(1) clarify the basic hypothesis underlying the model, and
(2) immediately give multi-layer generalizations. These gen-
eralizations allow for incorporation of thebaroclinic effects
in the model. Another purpose is to establish the quasi-
geostrophic (QG) approximation of the (multi-layer) mRSW,
arising in the limit of strong rotation, as is traditionally

done in geophysical applications of RSW (cf., e.g.,Pedlosky,
1982; Zeitlin, 2007). Shallow-water and QG approaches be-
ing standard working tools in the atmosphere–ocean commu-
nity, the present work might help in establishing a common
language with the astrophysical community.

2 Derivation of the mRSW equations

2.1 Vertical averaging of the MHD equations

Our starting point is the system of three-dimensional com-
pressible MHD equations on the rotating plane in the pres-
ence of gravity:

∂tv + v · ∇v − b · ∇b + gẑ+ f ẑ∧ v +
1

ρ
∇p∗

= 0, (1)

∂tb + v · ∇b − b · ∇v + b∇ · v = 0, (2)

∂tρ + ∇ · (ρv) = 0, ∇ · b = 0, (3)

wherev = (v1,v2,v3) is the fluid velocity,b = (b1,b2,b3) is
the magnetic field,g is gravity acceleration,f is the Coriolis
parameter,f = 2�, and�ẑ is the angular velocity of rota-
tion. We also introduced the magnetic pressure:

p∗
= p + ρ

b2

2
, (4)

and considered, as usual, that the centrifugal effects are hid-
den inp. If the axis of rotation is supposed to be parallel to
the gravity acceleration, thenf = f0 = const, which corre-
sponds to thef -plane approximation for the tangent plane
to the rotating planet/star for geo- and astrophysical applica-
tions. For scales of the motion sufficiently small with respect
to the radius of the planet/star, the non-verticality of the ro-
tation axis may be taken into account in theβ-plane approx-
imation:f = f0 + βy, wherey is the latitudinal coordinate.
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For what follows, it is important to note that the scaling for
the magnetic field is chosen in Eqs. (1)–(4) in such a way that
it is measured in velocity units. Effects of molecular dissipa-
tion and diffusion are neglected in Eqs. (1)–(3). If necessary,
they may be re-introduced via the standard viscosity, electro-
conductivity and diffusion terms proportional to the Lapla-
cians of velocity, magnetic field and density, respectively, in
the corresponding equations.

Equations (1)–(3) are written in the most general form. We
should emphasize that the procedure below is applicable as
well to their simplified versions, like the Boussinesq approx-
imation, where velocity is supposed to be divergenceless and
density is advected. Thermal effects may be introduced in
such models (cf.Rachid, 2008 in the solar tachocline con-
text) by relating variable parts of density to temperature. Fi-
nally, potential temperatureθ may be used as a thermody-
namical variable instead of density.

The horizontal momentum and magnetic field Eqs. (1) and
(2) may be rewritten with the help of Eq. (3) in the form of
conservation laws:

∂t (ρv) + ∇ · (ρv ⊗ v)−

∇ · (b ⊗ b) + gẑ+ f ẑ∧ (ρv) + ∇p∗
= 0, (5)

∂t (b) + ∇ · (v ⊗ b) − ∇ · (b ⊗ v) = 0. (6)

Here and below we use the shorthand notation∇ ·

(A ⊗ B) ≡ ∂i (AiBk) , i,k = 1,2,3 for a pair of vector fields
A,B.

We now proceed by vertical integration of the horizon-
tal momentum Eq. (5) between a pair ofmaterial surfaces
z1,2(x,y, t):

v3|zi
=

dzi

dt
= ∂tzi + u∂xzi + v∂yzi, i = 1,2, (7)

which we suppose to be, at the same time,magnetic surfaces:

b · ∇zi = 0. (8)

With the help of the Leibnitz formula, we get:

∂t

∫ z2
z1

dzρvh + ∇h ·
∫ z2
z1

dz(ρvh ⊗ vh) −

∇h ·
∫ z2
z1

dz(bh ⊗ bh) + f ẑ∧
∫ z2
z1

dz(ρvh)

= −∇h
∫ z2
z1

dzp∗
− ∇hz1 p∗|z1

+ ∇hz2 p∗|z2
, (9)

where the index h denotes the horizontal part. This deriva-
tion follows the standard procedure for obtaining the non-
magnetic RSW equations, cf.Zeitlin (2007, Chapter 1). Note
that additional surface terms appear if the hypothesis of mag-
netic surfaces is relaxed.

We now integrate the horizontal magnetic field equations
in the same way and get:

∂t

z2∫
z1

dzbh + ∇h ·

z2∫
z1

dz(vh ⊗ bh) − ∇h ·

z2∫
z1

dz(bh ⊗ vh) = 0. (10)

Again, the hypothesis that material surfaces are at the same
time magnetic surfaces is crucial for arriving at such simple
forms of integrated equations. It should be noted that the ver-
tical component of magnetic fieldb3 is not supposed to be
zero, but in fact decouples from the mRSW equations to be
obtained below, and may be recovered once all other fields
are determined, as is the case withv3 in the ordinary RSW
equations.

Finally, we integrate Eq. (3) and get:

∂t

z2∫
z1

dzρ + ∇h ·

z2∫
z1

dzρvh = 0, ∇h ·

z2∫
z1

dzbh = 0. (11)

2.2 Mean-field approximation and magnetohydrostatic
hypothesis

Up to now, no approximation has been made whatsoever. The
only hypothesis was the existence of a pair of material sur-
faces that are, at the same time, magnetic surfaces. Let us
introduce the vertical averages

F̄ =

∫ z2
z1

dzF

z2 − z1
, (12)

and apply themean-field approximation, i.e., replaceA · B

by Ā · B̄ for anyA andB. We thus get from Eqs. (10)–(11):

ρ̄ (z2 − z1)
(
∂t v̄h + v̄ · ∇hv̄h + f ẑ∧ v̄h

)
− ∇

[
(z2 − z1) b̄h ⊗ b̄h

]
=

− ∇h

z2∫
z1

dzp∗
− ∇hz1 p∗

∣∣
z1

+ ∇hz2 p∗
∣∣
z2

, (13)

∂t

[
(z2 − z1) b̄h

]
+ ∇h ·

[
(z2 − z1) v̄h ⊗ b̄h

]
− ∇h ·

[
(z2 − z1) b̄h ⊗ v̄h

]
= 0, (14)

∂t [ρ̄ (z2 − z1)] + ∇h · [ρ̄ (z2 − z1) v̄h] = 0,

∇h ·
[
(z2 − z1) b̄

]
= 0. (15)

Detailed discussion of the applicability of the mean-field
approximation is out of the scope of the present paper. It is
obvious, however, that it requires sufficiently slow variations
of all fields in the vertical direction. As usual, corrections to
the mean-field theory may be accounted for by parameter-
izing neglected Reynolds stresses. Thus, following the tra-
ditional line of argument, “turbulent” viscosity, diffusivity,
and conductivity may be introduced relating the neglected
stresses to the mean fields.

We will now make a crucialmagnetohydrostatics hypoth-
esisthat will allow one to get the mRSW equations from the
vertically averaged MHD in the mean-field approximation.
It consists of supposing vertical accelerations to be small, as
well as the termb·∇b3, and of replacing the vertical momen-
tum equation with the magnetohydrostatic balance relation:

ρg = −∂zp∗. (16)
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Thus

p∗
= −g

z∫
z1

dzρ + p∗
∣∣
z1

≈ −gρ̄ (z − z1) + p∗
∣∣
z1

, (17)

or

p∗
= +g

z2∫
z

dzρ + p∗
∣∣
z2

≈ gρ̄ (z2 − z) + p∗
∣∣
z2

. (18)

Traditionally, the mean densitȳρ is considered to be con-
stant in the RSW context, which will be our hypothesis
below. Yet this hypothesis may be relaxed in the case of
pure RSW, leading to the so-called Ripa’s equationsRipa
(1995), i.e., shallow-water equations with variable mean den-
sity. mRSW equations including thermal effects may be ob-
tained along the same lines – see below.1

2.3 Boundary conditions – multi-layer configurations

The final step consists of imposing boundary conditions at
z1,2. In the simplest configuration, one of the material sur-
faces is fixed to be constant and the other is free with con-
stant magnetic pressure above it, which leads to the mRSW
equations as proposed inGilman(2000):

∂tv + v · ∇v + f ẑ∧ v + g∇h =
1

h
[∇ (hb ⊗ b))] , (19)

∂th + ∇ · (vh) = 0, (20)

∇ · (hb) = 0 (21)

∂tb + v · ∇b =
1

h
[∇ (hv ⊗ b))] , (22)

whereh = z2 − z1, z1 = const, and we omit the bars and the
indexh. Note that if for some reason the fixed material sur-
face is not flat:z1 = η(x,y), “magnetic topography”η will
enter the equations with a replacementh → h − η(x,y) ev-
erywhere except for the gravity term. Note also that in the
MHD context, unlike the standard RSW equations, the fixed
surface may be the upper one as well, with corresponding
changes in the mRSW equations.

We should emphasize that the mRSW equations (19)–(22)
are obtained under the hypothesis of no dissipation and strict
mean-field approximation. If molecular viscosity and mag-
netic diffusivity are kept in the original equations (1)–(3), it
is easy to see that, through the above-described vertical av-
eraging procedure, they would result in terms proportional
to ∇

2v and ∇
2b (with two-dimensional∇) in the r.h.s. of

the Eqs. (19) and (22). As was already mentioned, the devia-
tions from the strict mean-field theory would result in similar

1The relation between mRSW and Ripa’s equations, in partic-
ular their common Hamiltonian structure, was discussed inDellar
(2003).

terms (with possibly non-constant “phenomenological” coef-
ficients) if the hypotheses of turbulent viscosity and turbulent
magnetic diffusivity are applied to parameterize the stresses.

As already mentioned, thermal effects may be introduced
in the mRSW equations, followingRipa(1995) (cf. alsoDel-
lar, 2003). If an additional equation of advection of temper-
ature (or potential temperatureθ ) is added to the original set
of 3-D equations, it will give the 2-D advection equation by
vertical averaging:

∂tθ + v · ∇θ = 0, (23)

to be added to the system (19)–(22). Variable potential tem-
perature in the buoyancy term in (1) will lead to the replace-
ment of the termg∇h by θ∇h +

1
2h∇θ after the vertical av-

eraging and proper renormalizations.
One may extend the simplest mRSW system (19)–(22) by

superimposingN layers of different mean density, still un-
der the magnetohydrostatic hypothesis, ending up (at the top
and at the bottom) either with a fixed (flat or not) or with a
free material surface. As a result, multi-layer mRSW models
arise, allowing one to include thebaroclinic phenomenain
consideration. The structure of the multi-layer mRSW equa-
tions is clear from the above construction: they will inherit
the velocity and (magnetic) pressure terms from the multi-
layer RSW equations, with the same addition of a magnetic
field in each layer as in Eq. (19). Mass is conserved layer-
wise. As to the magnetic field equations, they will be the
same as in Eqs. (21) and (22) for each layer. We give as an
example the equations of the two-layer mRSW with fixed flat
upper and lower boundaries at a distanceH = const:

∂tvi + vi · ∇vi + f ẑρ̄i +
1

ρ̄i

∇π∗

i

=
1

hi

[∇ (hi bi ⊗ bi))] , i = 1,2; (24)

∂thi + ∇ · (vihi) = 0, h1 + h2 = H , (25)

π∗

1 = (ρ̄1 − ρ̄2)gh1 + π∗

2 , (26)

∇ · (hibi) = 0 (27)

∂tbi + vi · ∇bi =
1

hi

[∇ (hi vi ⊗ bi))] , (28)

where the subscriptsi = 1,2 denote the lower and the up-
per layer, respectively, no summation over repeated indices
is supposed,π∗

i are magnetic pressures in the respective lay-
ers,hi – thicknesses of the layers, the bottom topography is
not introduced, for simplicity, and the subscripth is omitted.
The one-layer RSW model is recovered in the limitρ̄2 → 0.
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3 Properties of the barotropic mRSW system and the
QG limit

3.1 General properties

The one-layer mRSW equations (19)–(22) can be rewritten
in conservative form:

∂t (hv) + ∇

[
h (v ⊗ v − b ⊗ b) +

1

2
gh2

]
+ f h ẑ∧ v = 0, (29)

∂t (hb) + ẑ∧ ∇
(
h ẑ · (b ∧ v)

)
= 0, (30)

∂th + ∇ · (vh) = 0, (31)

∇ · (hb) = 0, (32)

useful for numerical simulations.
Magnetic potentialcan be introduced for vertically inte-

grated horizontal magnetic fields, thus resolving the con-
straint (32):

hb = ẑ∧ ∇A,⇒ ∂tA + v · ∇A = 0. (33)

The magnetic field therefore may be eliminated in favor of
A in Eqs. (19) and (29). The system thus becomes a RSW
system with additional forcing in the momentum equations,
due to the magnetic field that is determined from the pas-
sively advected magnetic potential:

∂tv + v · ∇v + f ẑ∧ v + g∇h = −
1

h
ẑ∧J

(
A,

∇A

h

)
, (34)

to be completed with Eqs. (31) and (33). Here and belowJ
denotes the Jacobian.

As was repeatedly mentioned in the literature, cf.Dellar
(2002), the main difference between the RSW and mRSW
systems is non-conservation of potential vorticity (PV) in the
latter. The only Lagrangian invariant, therefore, is the mag-
netic potentialA, cf. Eq. (33).

3.2 Quasi-geostrophic approximation

The limit of strong rotationis characterized by the small-
ness of both Rossby numberRo =

U
f0L

, and magnetic Rossby

numberRom =
B

f0L
, whereU andB are the typical averaged

velocity and magnetic field in the fluid layer, andL is a typ-
ical horizontal scale. Supposing that both Rossby numbers
are of the same order of magnitude, and applying the stan-
dard straightforward expansion

v = v(0)(x,y,T ) + Rov(1)(x,y,T ) +O(Ro2) (35)

for motions of the scaleL ∝ Rd =

√
gH
f0

depending only on
slow timeT ∝ Rot , cf. Zeitlin (2007), we get that the leading
order velocity field is, as it should be, geostrophic:

v
(0)
2 = ∂xη, v

(0)
1 = −∂yη, (36)

while the first ageostrophic correction acquires a magnetic
addition:

v
(1)
2 =

(
∂t + v(0)

· ∇

)
v

(0)
1 +J

(
A,∂yA

)
v

(1)
1 = −

(
∂t + v(0)

· ∇

)
v

(0)
2 +J (A,∂xA). (37)

HereH is the mean depth of the layer, andh = H(1+Roη).
When plugged into (31), together with (33) this gives the

quasi-geostrophicMHD equations (QG MHD):

∂t∇
2η +J (η,∇2η) −

1

R2
d

∂tη −J (A,∇2A) = 0,

∂tA +J (η,A) = 0. (38)

In the limit of infinite deformation radiusRd → ∞, the
equations in (38) become the standard 2d MHD. It is worth
noting that, in non-magnetic RSW, the corresponding clas-
sical QG equation may be derived straightforwardly from
the PV equation, and expresses the Lagrangian conserva-
tion of PV. In Eulerian terms this is translated in terms of
conservation of the Casimir functionals – any function of
quasi-geostrophic PV defined as∇2η −

1
R2

d
η, if integrated

over the domain of the flow, is conserved. Here, although
PV is not conserved, we still have QG MHD equations. In-
stead of a family of PV Casimirs, we now have two families
of Casimirs (Zeitlin, 1992): integrated functions of the mag-
netic potential, and integrated functions of magnetic potential
times quasi-geostrophic PV.

If the β effect is introduced, withβ of the order ofRo, as
usual, the system (38) becomes

∂t∇
2η +J (η,∇2η) −

1
R2

d
∂tη −J (A,∇2A) + β∂xη = 0,

∂tA +J (η,A) = 0. (39)

The system (39) with infinite deformation radius (and with
addition of turbulent viscosity and conductivity) was recently
introduced heuristically and was studied numerically inTo-
bias et al.(2007) in the context of solar tachocline. The same
system, or rather its two-layer counterpart following from the
system (24)–(28) and used below in Sect.4, were recently
derived directly from the full MHD equations byUmurhan
(2013).

3.3 Linear wave spectrum on thef - and β-planes, and
the role of external magnetic fields

The QG version of the mRSW equations was derived above
in a semi-heuristic manner, by using the slow time scale,
and thus filtering “by hand” the fast inertia–gravity waves.
A more formal justification of this limit via the separation
of fast and slow variables and systematic fast-time averaging
may be achieved, following the lines ofReznik et al.(1992)
andZeitlin et al.(1992). The situation, however, will be more
tricky in the presence of the external magnetic field. Indeed,
it it easy to see that, due to its Lagrangian conservation char-
acter, the magnetic field equation (33) is “slow” and does not
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change the linear, i.e., inertia–gravity, wave spectrum of the
RSW system in the absence of background magnetic fields.
Thus, the procedure ofReznik et al.(1992) andZeitlin et al.
(1992) should work for perturbation about the rest statewith-
out background magnetic fields. However, the Alfvén waves
that should appear if a background magnetic field is present,
do not have a spectral gap, see below, and may invalidate the
slow-fast separation in this case. This issue will be addressed
in detail elsewhere.

We recall that the linearization of Eqs. (19)–(22) about
the state of resth = H on thef -planef = const, with con-
stant magnetic fieldb = B, results in harmonic wave solu-
tions with wavefrequencyω and wavevectork satisfying the
following dispersion relation, cf.Shecter et al.(2001):

ω2
= (B · k)2

+
gHk2

+ f 2

2
±

1

2

√(
gHk2 + f 2

)2
+ 4f 2(B · k)2, (40)

which gives, in the limit of no rotation,ω2
= (B·k)2, ω2

=

(B · k)2
+ gHk2, i.e., Alfvén and mixed Alfvén–gravity

waves.
Likewise the formal linearization of the system (39) over

the rest state with constant background magnetic fieldB :

η = 0, A = B1y − B2x results in harmonic solutions with
wavefrequencyω and wavevectork = (k1,k2) with the fol-
lowing dispersion relation:

ω = −
βk1

2(k2 + R−2
d )

±

√√√√( βk1

2(k2 + R−2
d )

)2

+ (B · k)2, (41)

corresponding to mixed Alfvén–Rossby waves. Indeed, in
the limit of vanishing magnetic field (41) gives the usual
Rossby waves, and in the opposite limit of vanishingβ it
gives the Alfvén waves.

It is clear from Eq. (41) that, in the presence of the
background magnetic field, the frequency spectrum is not
bounded from above anymore, and the formal validity of the
system (39) as “slow” limiting equations of the full mRSW
equations remains to be proved.

In any case, the known effect of the “elasticity” of the mag-
netic field leading to Alfvén waves is well represented in the
barotropic mRSW and its “slow” version. We will see that
this effect will play a stabilizing role when baroclinic effects
are included.

4 Effects of baroclinicity

The multi-layer mRSW can be treated in a similar way as
the one-layer case, by introducing magnetic potentials for
each layer. The QG approximation may be as well developed,
again along the standard lines, giving the following 2-layer
QG MHD equations for (magnetic) pressures and magnetic
potentials in the layers in thef -plane approximation:

d
(0)
i

dt

[
∇

2π∗

i − (−1)iD−1
i η

]
−J (Ai,∇

2Ai) = 0,

d
(0)
i

dt
Ai = 0, i = 1,2, (42)

where

d
(0)
i

dt
(. . .) := ∂t (. . .) +J

(
π∗

i , . . .
)
, i = 1,2. (43)

HereDi are nondimensional thicknesses of the layers, and
η denotes a nondimensional interface deviation. In the stan-
dard in GFD limitρ2−ρ1 → 0 it is simply expressed in terms
of the pressure difference:η = π2 − π1. No summation over
repeated indices is understood, and stars atπi are omitted.
The details of the scaling and the procedure may be found in
Zeitlin (2007, Chapters 1 and 2). Their extension to the MHD
case is straightforward.

On the β-plane, the termsβ∂xπi should be added in
Eq. (42), and formal linearization of Eq. (42) will give baro-
clinic (and barotropic) mixed Alfvén–Rossby waves in the
presence of a background magnetic field. It is well known,
however, that in the baroclinic system Rossby waves can
also propagate due to the velocity shear between the lay-
ers even in the absence ofβ. For QG motions described by
Eq. (42), a shear corresponds to an interface inclination via
the geostrophic balance. It is also well known that on the
f -plane, any shear is unstable for sufficiently long wave per-
turbations due to thebaroclinic instability(on theβ-plane a
threshold for the instability exists), cf.Pedlosky(1982). Let
us see how incorporation of the magnetic field influences the
baroclinic instability. By linearizing about the state

π∗

i = −Uiy, Ai = Biy, (44)

with constantUi , Bi , and looking for harmonic solutions
with wavefrequencyω and wavenumberk in the strongly de-
generate, but simplest to analyze caseD1 = D2 = D, U1 =

−U2 = U , we arrive at the following dispersion relation:

ω = ±Uk1

√
(1+ B2

1 + B2
2)k2 + D−1(B2

1 + B2
2 − 2)

k2 + 2D−1
. (45)

The standard baroclinic instability resultPedlosky(1982) is
recovered in the limitB1,2 → 0.

Thus, if the magnetic field is strong enough in any layer,
the baroclinic instability disappears. Such a stabilizing effect
of the magnetic field could be anticipated due to its “elastic-
ity” mentioned above. It is characteristic, in fact, not only of
the large-scale slow-evolving geostrophic baroclinic instabil-
ity, but also of the rapid ageostrophic instabilities such as the
Kelvin–Helmholtz one, which can be easily studied in the
framework of the non-rotating 2-layer equations (24)–(28)
by linearizing about the basic state with horizontal velocity
shear between the layers. Although the magnetic field does
not cure the instability, its influence is stabilizing, adding up
with gravity (not presented).

www.nonlin-processes-geophys.net/20/893/2013/ Nonlin. Processes Geophys., 20, 893–898, 2013
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5 Concluding remarks

Thus, we have shown how the mRSW model ofGilman
(2000) arises from vertical averaging of the MHD equa-
tions for the rotating fluid in the gravity field, and applica-
tion of the mean-field and magnetohydrostatic hypotheses.
Multi-layer generalizations easily follow from this construc-
tion. Although it is important to keep in mind the limits of
applicability of the mRSW related to these hypotheses, the
example of non-magnetic RSW and its applications in geo-
physical fluid dynamics show that such models remain use-
ful far beyond their formal validity range. The added value,
with respect to the pioneering work ofGilman(2000), is that
we show that the mRSW equations arise universally from
the vertical averaging of basic MHD and independently of
the details of stratification and compressibility. The method
also gives the possibility to include thermal effects and shows
how the deviations from the strict mean-field approximation
may be accounted for with turbulent viscosity and diffusivity
hypotheses.

The “balanced” quasi-geostrophic limit of the mRSW with
filtered inertia–gravity waves was established in a semi-
heuristic manner and is closely related to 2d MHD. On the
β-plane it gives a framework for studying mixed Alfvén–
Rossby waves, although the formal validity of the QG MHD
as the slow limit of the mRSW in the presence of constant
magnetic field remains to be proved. As follows from the re-
sults of Sect.3.3, sufficient smallness of the magnetic field
may be necessary for such a proof.

The parallels between RSW and mRSW may be devel-
oped further. For instance, the existence of mixed Alfvén–
equatorial waves may be straightforwardly established for
the mRSW equations on the equatorialβ-plane wheref0 =

0. These waves may be important in astrophysical applica-
tions. Mixed Alfvén–Kelvin waves can be found propagating
along the boundary parallel to the magnetic field, a configu-
ration that may exist in the laboratory, and so on.

Let us finally mention that an important advantage of
mRSW equations is that, in their conservative form (29)–
(32) (an analogous form may be easily established for a
multi-layer mRSW with free upper boundary), they may
be efficiently treated numerically with the help of modern
finite-volume methods, cf.Bouchet(2007). This work is in
progress.

Acknowledgements.This work was supported by the French ANR
grant “SVEMO”.

Edited by: V. Shrira
Reviewed by: O. Umurhan and one anonymous referee

The publication of this article
is financed by CNRS-INSU.

References

Bouchut, F.: Ch. 4, in: Nonlinear Dynamics of Rotating Shallow
Water: Methods and Advances, edited by: Zeitlin, V., Elsevier,
NY, 2007.

Dellar, P. J.: Hamiltonian and symmetric hyperbolic structure of
shallow water magnetohydrodynamics, Phys. Plasmas, 9, 1130–
1136, 2002.

Dellar, P.: Common Hamiltonian structure of the shallow water
equations with horizontal temperature gradients and magnetic
fields, Phys. Fluids, 15, 292–297, 2003.

Dikpati, M. and Gilman, P. A.: Prolateness of the solar tachocline
inferred from latitudinal force balance in a magnetohydrody-
namic shallow water model, Astrophys. J., 552, 348–353, 2001a.

Dikpati, M. and Gilman, P. A.: Flux-transport dynamos with alpha-
effect and global instability of tachocline differential rotation: a
solution for magnetic parity selection in the sun, Astrophys. J.,
559, 428–442, 2001b.

Gilman, P. A.: Magnetohydrodynamic “shallow water” equations
for the solar tachocline, , Astrophys. J. Lett, 544, L79–L82, 2000.

Pedlosky, J.: Geophysical Fluid Dynamics, Springer, NY, 1982.
Rachid, F. Q., Jones, C. A., and Tobias, S. M.: Hydrodynamic in-

stabilities in the solar tachocline, Astronomy Astrophysics, 488,
819–827, 2008.

Reznik, G., Zeitlin, V., and BenJelloul, M.: Nonlinear theory of
geostrophic adjustment. Part 1. Rotating shallow water model,
J. Fluid Mech., 445, 93–120, 2001.

Ripa, P.: On improving a one-layer ocean model with thermody-
namics, J. Fluid Mech., 303, 169–207, 1995.

Shecter, D. A., Boyd, J. F., and Gilman, P. A.: Shallow-water mag-
netohydrodynamic waves in the solar tachocline, Astrophys. J.
Lett, 551, L185–L188, 2001.

Tobias, S. M., Diamond, P. H., and Hughes, D. W.: Beta-plane mag-
netohydrodynamic turbulence in the solar tachocline, Astrophys.
J. Lett., 667, L113–L116, 2007.

Umurhan, O. M.: The equations of magnetogeostrophy,
arXiv:1301.0285v1, 2013.

Zeitlin, V.: On the structure of phase-space, Hamiltonian vari-
ables and statistical approach to the description of 2-dimensional
hydrodynamics and magnetohydrodynamics, J. Phys A, L171–
L175, 1992.

Zeitlin, V. (Ed.): Nonlinear Dynamics of Rotating Shallow Water:
Methods and Advances, Elsevier, NY, 2007.

Zeitlin, V., Reznik, G., and BenJelloul, M.: Nonlinear theory of
geostrophic adjustment. Part 2. Two-layer and continuously strat-
ified primitive equations, J. Fluid Mech., 491, 207–228, 2003.

Nonlin. Processes Geophys., 20, 893–898, 2013 www.nonlin-processes-geophys.net/20/893/2013/


