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Abstract. We examine the dynamical behaviour of the phe-
nomenological Burridge–Knopoff-like model with one and
two blocks, where the friction term is supplemented by the
time delayτ and the variable friction strengthc. Time de-
lay is assumed to reflect the initial quiescent period of the
fault healing, considered to be a function of history of slid-
ing. Friction strength parameter is proposed to mimic the im-
pact of fault gouge thickness on the rock friction. For the
single-block model, interplay of the introduced parametersc

andτ is found to give rise to oscillation death, which cor-
responds to aseismic creeping along the fault. In the case of
two blocks, the action ofc1, c2, τ1 andτ2 may result in sev-
eral effects. If both blocks exhibit oscillatory motion with-
out the included time delay and frictional strength parame-
ter, the model undergoes transition to quasiperiodic motion
if only c1 andc2 are introduced. The same type of behaviour
is observed whenτ1 and τ2 are varied under the condition
c1 = c2. However, ifc1, andτ1 are fixed such that the given
block would lie at the equilibrium whilec2 andτ2 are var-
ied, the (c2,τ2) domains supporting quasiperiodic motion are
interspersed with multiple domains admitting the stationary
solution. On the other hand, if (c1,τ1) warrant oscillatory be-
haviour of one block, under variation ofc2 andτ2 the sys-
tem’s dynamics is predominantly quasiperiodic, with only
small pockets of (c2,τ2) parameter space admitting the peri-
odic motion or equilibrium state. For this setup, one may also
find a transient chaos-like behaviour, a point corroborated by
the positive value of the maximal Lyapunov exponent for the
corresponding time series.

1 Introduction

Earthquakes represent complex deformation feature of the
Earth’s brittle crust. Their complexity reveals itself primar-
ily in the power-law scaling describing the distribution of
magnitudes (Turcotte et al., 2000), fractal spatial distribution
of epicentres and fractal-like structure of faults (Okubo and
Aki, 1987; Marsan et al., 2000). Nonetheless, earthquakes
also involve complex patterns of temporal behaviour, which
may be manifested by the chaotic dynamics in the recorded
seismic time series (Beltrami and Mareshal, 1993). A plau-
sible explanation for this complexity lies in that it is gener-
ated by nonlinear dynamics on a smooth fault, a point first
raised by Horowitz and Ruina (1989). This line of research
was followed by Carlson and Langer (1989) in the work on
dynamics of Burridge–Knopoff arrays of spring-connected
blocks with classical velocity-weakening friction laws. Also,
Bak and Tang (1989) investigated a simple cellular-automata
model of the failure at a critical stress. However, though all
these approaches consider earthquakes from the phenomeno-
logical standpoint, there is still no general consensus on what
constitutes the right model for describing the motions of
earthquake faults. Therefore, it is useful to study a variety
of models and, in doing so, learn how their various ingredi-
ents determine the behaviour that they exhibit (Langer et al.,
1996).

Many different phenomenological models of fault dynam-
ics are currently being investigated. The most prominent
classes include the spring-block models (like the one in the
present paper) and cellular automata. While the automata
models facilitate rapid numerical computation, spring-block
models have the advantage of allowing one to establish more
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858 S. Kostíc et al.: Dynamics of simple earthquake model

Fig. 1.Burridge–Knopoff model with two blocks. Parameterm rep-
resents the mass of the block,kc andkp are the spring constants,
andV denotes the velocity of the driving plate.

direct associations between the parameters involved and the
observations of the real seismic phenomena. The first con-
tinuum model of the latter type was proposed by Burridge
and Knopoff (1967). This spring-block model, coupled with
the appropriate friction law, is capable of generating power-
law distribution of energy release, described by Gutenberg–
Richter and Omori–Utsu laws (Burridge and Knopoff, 1967).
The model consists of several blocks interconnected with
springs of some elastic constantk, having the blocks also
attached by a leaf spring to a driving plate, that causes the
whole system to move along the rough surface in a stick-slip
fashion (Fig. 1).

Apart from accounting for the statistical power-law distri-
bution of released energy (Burridge and Knopoff, 1967), this
model has been shown to exhibit rich dynamical behaviour
(Carlson and Langer, 1989; De Sousa Vieira, 1995, 1999; Er-
ickson et al., 2008). Carlson and Langer (1989) have demon-
strated that chaotic dynamics may arise as a direct conse-
quence of the friction law, which effectively causes small
irregularities in the system to be amplified during the slip-
ping motions. Their model produces three qualitatively dis-
tinct kinds of slipping events: microscopic events, large but
localised events and delocalised great events. On the other
hand, De Sousa Vieira (1999) analysed rich dynamical be-
haviour in a two block system, having identified the period-
doubling route to chaos. Erickson et al. (2008) reported that
in a spring-block model with only one block coupled with the
Dieterich–Ruina friction law chaotic behaviour also emerges
via the Feigenbaum scenario.

All the research mentioned so far relies on the notion that
the behaviour of the considered model is essentially con-
trolled by the chosen friction law. Initially, Burridge and
Knopoff (1967) in their original model used a simple fric-
tion law, where the friction force is dependent on the veloc-
ity of the block relative to the frictional surface. The main
feature of this law is that the friction has to decrease more
or less suddenly as the velocity deviates from zero, whereas
for very small velocities, friction may attain any value less
than the limiting friction. Afterwards, slip rate and state vari-
able constitutive laws for rock friction were developed and

introduced by Dieterich (1979), Ruina (1983) and Rice (Rice,
1983; Rice and Ruina, 1983). These early studies were de-
signed to study frictional instability as a possible mechanism
for the repetitive stick-slip failure and the seismic cycle. In
this paper, we assume that the friction force at the contact
of a block and a rough surface depends only on the velocity
of the block. However, recalling that many experimental ob-
servations indicate that the rock friction also depends on the
state of the contact surface (Marone, 1998), we introduce this
memory effect by including the time delay parameterτ in the
friction term. The role of this parameter is twofold. Firstly, it
replaces the state variableθ incorporated in the Dieterich–
Ruina friction law, which is usually interpreted as a function
of history of sliding (Pomeau and Le Berre, 2011). Secondly,
this time delay effect is directly observed both in laboratory
experiments and along the real fault. According to the re-
sults of laboratory tests, upon the cessation of motion, static
friction shows an initial period of retarded healing for a few
hundred days, after which an increase in healing is observed
(Marone, 1998). Moreover, it is determined that the length
of this initial period of delayed healing varies with stiffness,
which justifies our variation of the introduced time delay pa-
rameterτ . These laboratory results are further corroborated
by seismic data, which indicate that the healing rate is re-
duced during the period immediately following earthquakes
of similar size (less than 10–100 days after the last earth-
quake), with the small variations in the stress drop.

One should point out that this retarded initial period of
fault healing is reminiscent of the refractory stage of the
relaxation oscillators. Modelling the behaviour of spatially
extended media comprised of relaxation oscillators often in-
volves the delay-differential equations. Such an approach is
widely accepted, particularly in the fields of mathematical
biology (Golpasamy and Leung, 1996; Burić and Todorovíc,
2002) and life sciences (Smith, 2011).

The second analysed feature is the variation of the fric-
tion strength, which we model by introducing the param-
eter c. Under the real conditions in the Earth’s crust, this
strength variation of friction along the fault is usually in-
duced by the formation and properties of the fault gouge
material. The latter represents an unconsolidated and cohe-
sionless type of fault rock, consisting almost entirely of the
finely crushed material, originated as a final product of grind-
ing when two sides of the fault zones move along each other
(Sibson, 1977). There are some evidence that this material
has significant effect on the stability of the natural faults
(Scholz et al., 1969; Marone and Scholz, 1988) and rock
friction (Byerlee, 1967; Engelder et al., 1975; Byerlee and
Summers, 1976; Das et al., 1986), causing the change of the
frictional resistance along the fault. This is significantly in-
fluenced by the clay minerals in a saturated state (Morrow
et al., 2000; Behnsen and Faulkner, 2012), thickness of fault
gouge (Marone et al., 1990) and fault depth (Mizoguchi et al.,
2007). Having included the variability of friction strength in
our analysis, we consider, at least qualitatively, the impact of
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thickness of fault gouge on the dynamical stability of motion
along the fault. Also, by assuming different values of param-
eterc for the two blocks, the model acquires additional het-
erogeneity feature, which is certainly a common occurrence
under the real conditions along the fault.

The paper is organised as follows. The second part pro-
vides a detailed description of the original model, together
with the governing equations for the systems with one and
two blocks. In Sect. 3, we present the modified model. The
dynamical behaviour of a single-block model is examined in
Sect. 4 by considering its dependence on the variation of time
delayτ and friction strength parameterc. In Sect. 5, we anal-
yse the model with two blocks, contingent on the values of
four control parameters:c1,c2,τ1 andτ2. For each setup, the
different forms of dynamical behaviour are characterised by
calculating the maximal Lyapunov exponent and the Fourier
power spectrum. The final section contains the concluding
remarks and some suggestions for future research.

2 Background of the original model

Our numerical simulations of the spring-block model are
based on the system of equations introduced by Carlson and
Langer (1989):

mẌj = kc(Xj+1 − 2Xj + Xj−1) − kpxj − F(υ + Ẋj ), (1)

where dots indicate derivatives with respect to timet , j

stands for the block index,Xj are the displacements of
blocks of massm measured from their initial equilibrium
positions, andυ represents the velocity of the upper plate.
Parameterkc represents the strength of harmonic spring con-
necting the blocks, andkp is the strength of the leaf springs
connecting the block and the upper driving plate (Fig. 1).
Friction forceF is given in the following form:

F(Ẋj ) = F0φ(Ẋj/υc), (2)

whereφ vanishes at large values of its argument and is nor-
malised so thatφ(0) = 1, whileυc represents the speed that
characterises the velocity dependence of the friction forceF

(Carlson and Langer, 1989). For convenience, system (1) is
transformed to a non-dimensional one by defining new vari-
ables:

T ≡ ωpt, ω2
p ≡ kp/m, Uj ≡ kpXj/F0, ν ≡ υ/V0,

νc
≡ υc/V0, V0 ≡ F0/

√
kpm, k ≡ kc/kp.

(3)

The quantity 2π/ωp is the period of oscillation of a single
block attached to a pulling spring in the absence of sliding
friction (Carlson and Langer, 1989). Carrying out the non-
dimensionalisation, one arrives at the following system, sug-
gested by De Sousa Vieira (1999):

Ü1 = k1(U2− U1) − U1+ νt − φ(U̇1/ν
c
1
)

Ü2 = k2(U1− U2) − U2+ νt − φ(U̇2/ν
c
2).

(4)

Dots denote differentiation with respect toT . System (4) is
valid only when blockj is moving. Parametersk1 andk2 rep-
resent the ratio of spring strength connecting the blocks,kc,
and the spring strength connecting the blocks and the driv-
ing plate,kp, for the first and the second block, respectively.
VariableU represents block displacement,U̇ is the velocity
of the block defined in the standing reference frame,ν is the
dimensionless pulling speed, andt is the time variable. Pa-
rametersνc

1 andνc
2 stand for the dimensionless characteristic

velocities. The corresponding friction lawφ reads:

φ(U̇/νc) =
1

1+ U̇/νc
. (5)

Note that the friction force is assumed to depend only on
the velocity of the block.

3 Proposed modified model

Starting from model (4), in the case of a single block, we
introduce time delayτ and friction strength parameterc in
the following way:

Ü = −U −
c

1+
U̇ (t−τ)

νc

+ νt, (6)

where the remaining parameters are the same as in Eqs. (4)
and (5). In present analysis, in contrast to De Sousa
Vieira (1999), we do not discard backwards motion.

Time delay parametersτ1 andτ2 and the friction strength
parametersc1 andc2 are also introduced into the model with
two blocks:

Ü1 = k1(U2− U1) − U1−
c1

1+
U̇1(t−τ1)

νc
1

+ νt

Ü2 = k2(U1− U2) − U2−
c2

1+
U̇2(t−τ2)

νc
2

+ νt,
(7)

where meaning of the remaining parameters is the same as in
Eq. (4). Within this paper, we assume for simplicity thatk1 =

k2 = 1, which corresponds to homogenous elastic properties
of the medium surrounding the fault. In the analysis below,
the time delay parametersτ1 andτ2 and the friction strength
parametersc1 andc2 are varied in the range [0,10], with the
iteration step of 10−1.

The unstable equilibrium around which the orbits of block
j move in the phase space, is given in the following way:

U e
1 = −

1
3

(
2

c1ν
c
1

νc
1+ν

+
c2ν

c
2

νc
2+ν

)
+ νt

U e
2 = −

1
3

(
2

c2ν
c
2

νc
2+ν

+
c1ν

c
1

νc
1+ν

)
+ νt,

(8)

which is determined by setting̈Uj = 0 andU̇j = ν in Eq. (7).
This stationary solution, describing the uniform motion of
the blocks with constant velocityν, corresponds to aseismic
creep along the fault. The detailed derivation of Eq. (8) from
Eq. (7) is provided in the Appendix.
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Fig. 2. Parameter domains (τ,νc) admitting equilibrium state (ES)
or periodic motion (PM) are illustrated for the single-block model at
c = 3. Time series and phase portraits corresponding to points 1 and
2 are shown in Fig. 3. The initial function forU is selected such that
its values within the interval [−τ,0] are set by Eq. (6) with c = 0.

In the present paper, we investigate the behaviour of the
trajectories near the stationary solution. In order to study the
asymptotic dynamics, we have made certain that all the tran-
sients are discarded. As for the fashion in which the delay-
differential equations are numerically solved, the initial func-
tion for U is selected such that its values within the inter-
val [−τ,0] are set by Eq. (6) with c = 0 for the single-block
model or by Eq. (7) with c1 = c2 = 0 in case of the model
with two blocks.

The results are obtained by varying the control parameters
c andτ for the model with a single block and the parameter
set (c1, c2, τ1, τ2) for the setup involving two blocks. The
observed forms of behaviour are characterised by calculating
the Fourier power spectrum and the largest Lyapunov expo-
nent. The latter’s value has been obtained by the methods of
Wolf et al. (1985) and Rosenstein et al. (1993), with the use
of two distinct algorithms aimed at providing additional ver-
ification of the results.

4 Model with one block

We first consider the single-block model (6), for which we
adoptν = 0.1, consistent with (De Sousa Vieira, 1999). The
analysis shows that, without the introducedc andτ, and un-
der the different values of parameterνc, the original model
displays just oscillatory behaviour of various amplitudes. If
only the parameterc is introduced, under the variation ofνc

the behaviour of the model does not change, except for the
very low valuesνc < 10−8, when the motion of the block
settles at the stationary solution.

Fig. 3. Temporal behaviour of variablėU and corresponding phase
portraits for: (a) equilibrium state (point 1 from Fig. 2;νc

= 7,
τ = 3, c = 3) and (b) periodic behaviour (point 2 from Fig. 2;
νc

= 7, τ = 4, c = 3). The phase portrait in(b) is obtained having
eliminated the transients.

Next we consider the effects of including the time delayτ

in the friction term. If the value of the friction strength pa-
rameter is kept atc =1, there is no change in the behaviour
of the model. This is expected, since the friction remains
the same (Burridge and Knopoff, 1967; Carlson and Langer,
1989). However, if we vary the value ofc, time delay may
cause an oscillation death, the effect which has previously
been investigated in (Yamaguchi and Shimizu, 1984; Aron-
son et al., 1990; Reddy et al., 1998). In particular, asτ is
increased, the system undergoes a transition from equilib-
rium state to periodic motion and back to equilibrium state.
This feature could have significant practical implications. In
an earthquake analogy, the occurrence of oscillation death
indicates that the increase of time delay could suppress the
seismic activity, and, consequently, the onset of earthquakes.

Figure 2 is intended as an illustration of the (τ,νc) param-
eter domains admitting equilibrium or periodic motion for
the single-block model. In the particular instance, friction
strength is set toc = 3. Figure 3 shows the time series and
phase portraits corresponding to the equilibrium state (sta-
tionary solution) and oscillations, observed at the respective
points 1 and 2 from Fig. 2. Note that qualitatively similar
results are obtained if time delay is held constant, while pa-
rameterc is varied.

We have also considered the behaviour of the single-block
model under variation of bothc andτ for νc

= 1, whereby
the latter value is consistent with De Sousa Vieira (1999).
Similar to the results above, one may distinguish between
the two well defined regions of distinct dynamical behaviour,
though appearing for different parameter values, cf. Figs. 4
and 2. It turns out that the periodic motion may be observed
for the values ofc up to 10.
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Fig. 4.Parameter domains (τ,c) admitting equilibrium state (ES) or
periodic motion (PM) atνc

= 1. Diagram refers to the single-block
model, whereby the 0.1 step size is adopted for bothc andτ .

5 Model with two blocks

The analysis similar to that for the single-block model has
been carried out for the setup with two blocks represented by
the system (7). In all the examined cases, we fixk1 = k2 =

k =1 as in De Sousa Vieira (1999). Note that the original
model, with friction strength parameterc1 = c2 = 1, as in De
Sousa Vieira (1999), and without time delays, exhibits only
the periodic motion. We first consider the effects induced by
c1 andc2, without introducing the delays. The quasiperiodic
motion is obtained under the variation of bothc1 andc2 while
maintainingνc

1 = νc
2 = 1. It is found that the model exhibits

the limit cycle oscillations only forc1 = c2.
Next, if one introducesτ1 and τ2 and assumes homoge-

neous friction strengthc1 = c2, the model exhibits quasiperi-
odic motion for all the considered parameter values, except in
the caseτ1 = τ2 (when the motion is periodic). An instance
of quasiperiodic motion for the parameter setτ1 = 4, τ2 = 5,
c1 = c2 = 2, and νc

1 = νc
2 = 1 is displayed in Fig. 5. The

phase portrait is plotted in terms ofU̇1 vs.U1 − U e
1 , because

the considered system (7) is nonautonomous, and our goal
is to analyse the motion of two blocks in the vicinity of the
stationary solution, which is explicitly time-dependent. The
corresponding phase portrait in the (U̇2, U2−U e

2) plane is not
shown, since the attractors of the second block are analogous
to those of the first one, as implied in De Sousa Vieira (1999).
Two peaks in the Fourier power spectrum (Fig. 6a) and ap-
proximately zero value of the maximal Lyapunov exponent
(Fig. 6b) obtained for the time series in Fig. 5 confirm that
the given motion is indeed quasiperiodic.

Next we consider the following setup: the first block is
held at the equilibrium state (stationary solution) for the un-
coupled case,c1 = 0.1 andτ1 = 3.0 (see Fig. 2), whereasc2

Fig. 5. Temporal evolution of variablėU1 (a) and corresponding
phase portrait(b) for τ1 = 4, τ2 = 5,c1 = c2 = 2, k1 = k2 = k = 1
andνc

1 = νc
2 = 1 (quasiperiodic motion).

Fig. 6. Fourier power spectrum(a) and maximal Lyapunov expo-
nent(b) for time series in Fig. 5:(a) Two peaks in the power spec-
trum indicate the appearance of quasiperiodic motion.(b) The max-
imal Lyapunov exponent converges approximately toλ ≈ 0. Note
that in(b) time t is expressed in the units of iteration steps.

andτ2 for the second block are varied. From the results in-
dicated in Fig. 7 one reads that the model mainly exhibits
quasiperiodic motion, except for the two rather small regions
admitting the equilibrium state. The latter scenario occurs
only for the low values of the friction strength parameter
(c2 < 1). Note that the limit cycle oscillations (periodic solu-
tions) appear only as a transient feature, resembling the weak
quasiperiodic motion.

On the other hand, if (c1, τ1) are selected such that the
first block would show oscillatory behaviour in the uncou-
pled case (see Fig. 4), under the variation ofc2 andτ2 the
model primarily displays quasiperiodic motion. Periodic mo-
tion and equilibrium state occur as asymptotic solutions, but
only within the isolated parameter domains (Fig. 8). Apart
from the two latter asymptotic features, we have also cap-
tured a chaos-like behaviour, but only as a transient fea-
ture, see Fig. 9. The term “transient” refers to the fact that
the chaos-like dynamics is observed within a relatively short
time interval, cf. Fig. 9a, after which the system eventually
converges to the quasiperiodic attractor. The occurrence of
the transient chaos-like behaviour is confirmed by the con-
tinuous broadband noise in the power spectrum (Fig. 10).
Moreover, we have calculated the value of the maximal Lya-
punov exponent implementing two methods, that of Wolf et
al. (1985) and the one of Rosenstein et al. (1993) (Fig. 11).
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Fig. 7. Parameter domains (τ2,c2) admitting periodic motion (PM)
or quasiperiodic motion (QM) of the second block.c1 = 0.1 and
τ1 = 3.0 are fixed so that the first block lies in the equilibrium state.
Diagram is constructed for the 0.1 step size for bothc2 and τ2.
Other parameter values are as in Fig. 5. The initial function forU

is selected such that its values within the interval [−τ,0] are set by
Eq. (7) with c1 = c2 = 0.

In both cases, the obtained values of maximal Lyapunov
exponent are positive and of the same order of magnitude,
λmax = 0.0016 and 0.0019, respectively.

Note that the problem concerning the algorithm appropri-
ate for calculating the maximal Lyapunov exponent in case
of a transient chaos-like behaviour is still tentative and con-
sidered unresolved. In principle, the issue of qualifying cer-
tain transient motion as transient chaos should be treated by
determining the finite-time Lyapunov exponent (Stefański et
al., 2010). In the present paper, by using the methods of Wolf
et al. (1985) and Rosenstein et al. (1993) we determined the
Lyapunov exponent for the time series showing comparably
large transients, whereby the standard procedures are com-
plemented by performing additional averaging over a set of
different initial conditions (Fig. 12). One notes that the ap-
proximately stationary values of the exponents are reached
on the time scale significantly smaller than the length of the
transient and that the values obtained for different initial con-
ditions are quite similar. In particular, for all the examined
cases, maximal Lyapunov exponents converge well to posi-
tive values (Fig. 12) of the same order of magnitude (10−3).

The last stage of our analysis is focused on the issue of
how selecting different initial conditions may affect the be-
haviour of the model with two blocks. Assuming the homo-
geneous initial conditions near the stationary solution (U̇o

1 =

U̇0
2 = U̇0, U0

1 = U0
2 = U0), we recover either the equilib-

rium state or periodic motion, cf. Fig. 13. In this case,
quasiperiodic motion is not observed, since the initial con-
ditions are chosen near the stationary solution. As apparent
from Fig. 13, one is able to clearly distinguish between the

Fig. 8.Parameter domains (τ2,c2) admitting equilibrium state (grey
dots), periodic motion (black dots) and quasiperiodic motion (white
area), for the fixed parametersc1 = 0.2,τ1 = 0.5. The latter values
would warrant oscillatory motion for the first block in the uncoupled
case. The diagram is constructed for the step size 0.1 for bothc2 and
τ2. The remaining parameters are the same as in Fig. 5.

domains supporting either of the two states, which may effec-
tively provide an indication on the respective basins of attrac-
tion. This also implies that there possibly exists some distant
limit cycle attractor which could not be captured by the anal-
ysis confined to the vicinity of the unstable stationary solu-
tion. Moreover, the obtained results suggest that the system is
fairly sensitive to perturbations, meaning that even the small
stress changes could induce motion along the fault, and, con-
sequently, the onset of earthquakes. One should emphasise
that the sensitivity of the block motion on initial conditions
was already observed in the work of Szkutnik et al. (2003). In
particular, the analysis there has shown that the character of
the motion for the three-block model within a certain param-
eter range depends on the initial conditions. In other words,
changing only the initial position of one of the blocks may
induce transition from quasiperiodic and non-synchronized
motion to the periodic solution where the two lateral blocks
are synchronized.

6 Discussion and conclusion

In present paper, we have numerically investigated the dy-
namics of Burridge–Knopoff-like model with one and two
blocks, having introduced the strength parameterc and time
delayτ within the friction term. The analysis of the models’
dynamics has been carried out in the vicinity of the station-
ary solution. Without the novel introduced parameters, the
original models with one and two blocks exhibit only limit
cycle oscillations. However, the coaction ofc andτ may sig-
nificantly alter the models’ dynamics, giving rise to different
forms of complex behaviour. In case of a single block, the
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Fig. 9. Temporal evolution of variablėU1 (b) and corresponding phase portrait(c) for c1 = 0.2,τ1 = 0.5c2 = 0.2 andτ2 = 3. In the uncou-
pled case, (c1, τ1) would warrant the oscillatory motion of the first block, whereas (c2, τ2) would hold the other block at the equilibrium.
The remaining parameter values are:υc

1 = υc
2 = k1 = k2 = k = 1. The time series over a long simulation period is shown in(a), where the

chaos-like region is marked with the rectangle. It is apparent that the system eventually converges to quasiperiodic behavior.

Fig. 10. Fourier power spectrum for the time series in Fig. 9. The
continuous broadband noise indicates relatively weak chaotic be-
haviour of the system.

co-effect ofc andτ may induce the transition from periodic
motion to equilibrium state, cf. Fig. 2, which is consistent
with the delay-induced oscillation death. This phenomenon
could have significant implications for the real earthquake
dynamics, since it indicates the possibility that, under the
certain conditions in the Earth’s crust, motion along the fault
could be suppressed, or reduced to aseismic creeping. In the
model with two blocks, the coaction ofc1, c2, τ1 andτ2 may
give rise to the transition from periodic to quasiperiodic mo-
tion. From Figs. 7 and 8 one reads that such a transition

Fig. 11. Calculation of maximal Lyapunov exponent for the time
series in Fig. 9.(a) indicates the valueλmax= 0.0016, obtained by
the method of (Wolf et al., 1985). The method of of (Rosenstein et
al., 1993), illustrated in(b), impliesλmax≈ 0.0019. Note that in(a)
time t is expressed in the units of iteration steps. In(b), effective
expansion rateS(1n) represents the average of the logarithm of
Di(1n), defined as the average distance of all nearby trajectories to
the reference trajectory as a function of the relative time1n. The
slope of dashed lines indicating the predominant slope ofS(1n)

in dependence on1ndt presents a robust estimate for the maximal
Lyapunov exponent. The results are determined for 1000 reference
points and neighbouring distanceε = 0.1–0.15. The obtained values
of maximal Lyapunov exponent are of the same order of magnitude.

occurs for relatively small values of the friction parameter
c(c < 1). If we consider friction parameterc and width of
the fault zone as analogous parameters, low values of fric-
tion parameterc indicate relatively small gouge thickness.
This is quite similar to Marone et al. (1990), where it has
been shown that the friction coefficient increases with gouge
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Fig. 12. Calculation of maximal Lyapunov exponent by perform-
ing additional averaging over a set of different initial conditions,
wherebyU0

1 ,U0
2 , U̇0

1 , U̇0
2 belong to the respective rangesU0

1 ∈

[0,0.003],U0
2 ∈ [0,0.05], U̇0

1 ∈ [0,0.003],U0
2 ∈ [0,0.07]. The re-

sults have been obtained by the method of Wolf et al. (1985). Max-
imal Lyapunov exponents converge well to positive values of the
order 10−3, the same as in Fig. 11. Note that timet is expressed in
the units of iteration steps.

layer thickness, indicating the change in friction coefficient
µ for more than two times. It should also be stressed that for
the model with two blocks, transient chaos-like behaviour
is observed. It should be noted that the results of the con-
ducted research set a solid base for the further investigation
of complex dynamics of the presented models, including the
global dynamical behaviour (far from the stationary solution)
with heterogeneous initial conditions and different values of
spring constants.

Appendix A

Starting off from the system (7):

Ü1 = k1(U2− U1) − U1−
c1

1+
U̇1(t−τ1)

νc
1

+ νt

Ü2 = k2(U1− U2) − U2−
c2

1+
U̇2(t−τ2)

νc
2

+ νt, (A1)

and settingU̇1 = U̇2 = ν, Ü1 = Ü2 = 0, under the homo-
geneity assumptionk1 = k2 = k one arrives at:

0 = (U2 − U1) − U1−
c1ν

c
1

νc
1 + ν

+ νt

0 = (U1 − U2) − U2−
c2ν

c
2

νc
2 + ν

+ νt. (A2)

Fig. 13. Domains of initial conditions (̇U0
1 = U̇0

2 = U̇0, U0
1 =

U0
2 = U0) admitting equilibrium state (ES) or periodic motion

(PM). The results are obtained for the parameter setc1 = c2 = 0.1,
τ1 = τ2 = 3.0. Diagram is constructed for the step size equal of
0.1 for both U̇0 and U0. The remaining parameter values are:
νc

1 = νc
2 = 1, k1 = k2 = k = 1.

Adding the equations in system (A2) results in the expres-
sion:

−(U1 + U2) =

(
c1ν

c
1

νc
1 + ν

+
c2ν

c
2

νc
2 + ν

)
− 2νt. (A3)

On the other hand, by subtracting the second equation
from the first one in Eq. (A2), the following relation is ob-
tained:

3(U2 − U1) +

(
c2ν

c
2

νc
2 + ν

−
c1ν

c
1

νc
1 + ν

)
= 0, (A4)

from where we get:

U1 = U2 +
1

3

(
c2ν

c
2

νc
2 + ν

−
c1ν

c
1

νc
1 + ν

)
U2 = U1 +

1

3

(
c1ν

c
1

νc
1 + ν

−
c2ν

c
2

νc
2 + ν

)
. (A5)

After substituting Eq. (A5) into Eq. (A3), the equations for
the equilibrium of the system (A1) finally become

U e
1 = −

1

3

(
2

c1ν
c
1

νc
1 + ν

+
c2ν

c
2

νc
2 + ν

)
+ νt

U e
2 = −

1

3

(
2

c2ν
c
2

νc
2 + ν

+
c1ν

c
1

νc
1 + ν

)
+ νt (A6)

Equation (A6) corresponds to Eq. (8) in the main text,
which describes the unstable equilibrium around which the
orbits of blocks move in the phase space.
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