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Abstract. The surface-drag and mass-transfer coefficients
are determined within a self-consistent problem of wave-
induced perturbations and mean fields of velocity and density
in the air, using a quasi-linear model based on the Reynolds
equations with down-gradient turbulence closure. Investiga-
tion of a harmonic wave propagating along the wind has dis-
closed that the surface drag is generally larger for shorter
waves. This effect is more pronounced in the unstable and
neutral stratification. The stable stratification suppresses tur-
bulence, which leads to weakening of the momentum and
mass transfer.

1 Introduction

Turbulent fluxes of momentum, sensible heat and latent heat
at the sea surface characterize the energy and momentum
transfer between the atmosphere and hydrosphere. These
fluxes play an important role in many aspects of meteorologi-
cal and oceanographic research, including climate modeling,
weather forecasting, modeling of boundary-layer processes,
etc. Turbulent exchange of energy and momentum between
the ocean surfaces and the atmosphere to a large extent con-
trols the energy and water cycle and general circulation of the
ocean and the atmosphere. At the boundary layer scale, the
fluxes in question control generation of waves and develop-
ment of the upper ocean mixed layer. In numerical weather
prediction and climate modeling, the air–sea fluxes are pa-
rameterized through mean flow meteorological parameters.

Turbulent fluxes of momentumτ = ρau
2
∗, sensible heat

H = ρaCpT∗u∗ and latent heat3= ρalq∗u∗ (whereρa is air
density,u∗ is friction velocity,Cp is air heat capacity,T∗ and
q∗ are constants respectively characterizing the fluxes of heat
and moisture in the air, andl is specific heat of evaporation)
are expressed via bulk formulas through the following mete-
orological parameters measured at a reference level (usually
h10 = 10 m above the water surface): wind speedU10, tem-
perature difference1T10 = T10− T0, and relative humidity
difference1q10 = q10− q0.

τ = ρaCDU
2
10, (1)

H = ρaCpCHU101T10,and (2)

3= ρalClU101q10. (3)

The resistance and heat/mass transfer coefficientsCD (drag
coefficient),CH (Stanton number), andCl (Dalton num-
ber) generally depend on the state of the water surface. For
stationary and homogeneous processes in the atmosphere,
these fluxes do not depend on the vertical coordinate within
the lower 10 % of the atmospheric boundary layer over wa-
ter. This few dozen meter layer is thereafter referred as
MABL (marine atmospheric boundary layer). As mentioned
by Monin and Yaglom (1992), perturbations of moisture,
usually unimportant in airflows above land, can be substan-
tial above the sea surface (see also Zilitinkevich, 1976). The
heat and moisture transfer coefficients are usually considered
equal (see, e.g., Fairall et al., 2003). This makes it possible
to describe the effects of stratification in MABL using one
equation for the air density accounting for contributions from
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both heat and moisture. Then the mass flux becomes

P = ρ∗u∗ = CρU101ρ10, (4)

whereρ∗ is the turbulent scale of density characterizing the
mass flux.

One of important but still insufficiently explored questions
is how the mass transfer coefficientCρ depends on the wind
speed. Experiments in the field (Fairall et al., 2003) and lab-
oratory (Ocampo-Torres et al., 1994) have revealed gener-
ally weaker wind speed dependence forCρ than forCD. The
COARE 3.0 algorithm (Fairall et al., 2003) states a weak in-
crease ofCρ with the wind speed. A similar result is obtained
by Brut et al. (2005). At the same time, data of Drennan et
al. (2007) show no dependence at all. Detailed analyses of
earlier investigations ofCD are given, e.g., by Smith et al.
(1996) and Weil et al. (2003).

The problem of exchange coefficients in MABL is closely
related to the influence of surface waves on the air–sea mo-
mentum and mass transfer. In the presence of surface waves,
the fluxes of momentum and mass consist of two parts: (i) the
turbulent partsρa

〈
u′w′

〉
and

〈
ρ′w′

〉
(whereρ′ is the density

fluctuation, andu′ andw′ are horizontal and vertical velocity
fluctuations, respectively), and (ii) the partsτwave andPwave
caused by the wave-induced perturbations in the air.〈
u′w′

〉
(η)+ τwave(η)= u2

∗,and (5)〈
ρ′w′

〉
(η)+Pwave(η)= ρ∗u∗ (6)

(see, e.g., Janssen (1989, 1997), Makin et al. (1995), Makin
and Mastenbroek (1996), Makin and Kudryavtsev (1999),
and references therein).

We employ the commonly used turbulent flux model,
based on the down-gradient approximation and turbulent ex-
change coefficients for momentumKm (eddy viscosity) and
massKρ (eddy conductivity):

〈
u′w′

〉
=Km

dU

dz
,
〈
ρ′w′

〉
=Kρ

dρ

dz
. (7)

The effect of wave-induced perturbations on the momentum
transfer in MABL has been investigated in numerous theo-
retical (e.g., Janssen, 1989; Makin et al., 1995; Reutov and
Troitskaya, 1996; Jenkins, 1992), numerical (e.g., Sullivan et
al., 2000, 2008; Yang and Shen, 2010; Druzhinin et al., 2012)
and experimental (e.g., Hsu et al., 1981; Hsu and Hsu, 1983;
Troitskaya et al., 2011) studies. For the wind waves, decreas-
ing turbulent flux of momentum near the water surface causes
decreasing wind speed at the reference level (the wind waves
decelerate wind due to the wind-to-wave momentum flux)
and, as follows from Eq. (1), increasing the drag coefficient.
Alternatively, field experiments show that swell can acceler-
ate airflow due to delivery of momentum from wave to wind
(see, e.g., Semedo et al. (2009) and references therein).

The wave-induced mechanism of the mass transfer is usu-
ally neglected, so that the mass flux is fully attributed to the

turbulent transfer (see, e.g., Makin and Mastenbroek, 1996;
Makin and Kudryavtsev, 1999). Janssen (1997) has analyzed
wave-induced perturbations in airflow and concluded that
their impact dramatically depends on the nature of the above
perturbations.

In this paper we report how we develop a new theoretical
model accounting for the wave-induced perturbations in air-
flow calculated within the Reynolds equations using the first
order turbulence closure. The model generalizes our prior
model (Reutov and Troitskaya, 1996; Troitskaya and Ry-
bushkina, 2008) for the non-stratified atmosphere, validated
through laboratory experiments (Troitskaya et al., 2011) and
direct numerical simulation (Druzhinin et al., 2012) to the
stratified atmosphere .

The report consists of two parts. In Part 1 (this paper),
we consider an idealized case of harmonic wave propagating
along the wind – similarly to Reutov and Troitskaya (1996)
but for the stratified airflow. We determine dimensionless pa-
rameters governing wind–wave interactions in the stratified
MABL and investigate the air–sea momentum and heat trans-
fer as dependent on these parameters. Of special interest is
the case of swell, when the MABL stratification strongly af-
fects wave-induced fluxes. In Part 2 (Troitskaya et al., 2013),
we investigate how the calculated exchange coefficients de-
pend on the wind–wave spectrum, and compare results with
data collected in the COARE 3.0 algorithm (Fairall et al.,
2003).

Part 1 is organized as follows. Basic definitions and scales
are given in Sect. 2. Derivation and preliminary analyses of
model equations are given in Sect. 3. In Sect. 4 we present
results from calculation of the effects of individual harmonic
waves on the airflow and stratification in MABL. In particu-
lar, we consider the effect of swell on the stratified MABL.
Since we employ a quasi-linear model of the wind–wave in-
teraction, the effect of total wave spectrum is represented as
a superposition of contributions from individual harmonics.
This analysis is given in Part 2.

2 Basic definitions and MABL model

In further analyses we employ the Monin–Obukhov sim-
ilarity theory (MOST). It is based on the idea that local
properties of turbulence in the atmospheric surface later are
fully characterized by the normalized vertical turbulent flux
of momentumτ/ρa [or friction velocity u∗ =

√
τ/ρa] and

the buoyancy fluxb = −
g
ρa

〈
ρ′w′

〉
determining the Obukhov

length scale:

L=
u3

∗

κ
g
ρa

〈ρ′w′〉
, (8)

where ρa is reference value of air density,L > 0 in sta-
ble stratification, andL < 0 in unstable stratification (see,
e.g., Monin and Yaglom, 1992). BesidesL, MOST employs
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turbulent velocity and density scales:

V = u∗,ρ∗ =

〈
ρ′w′

〉
u∗

. (9)

In particular, MOST states that dimensionless velocity and
density gradients in the surface layer are expressed through
universal functions of the dimensionless heightζ =

z
L

:

κz

u∗

du

dz
=8m

( z
L

)
,

1

Prt

κz

ρ∗

dρ

dz
=8ρ

( z
L

)
, (10)

whereκ is the von Kármán constant (κ ≈ 0.4),Prt =Km/Kρ
is the turbulent Prandtl number (in the surface laterPrt ≈

0.8),Km andKρ are turbulent exchange coefficients for mo-
mentum and buoyancy.

Of the various empirical approximations of the functions
8m (ζ ) and8ρ (ζ ) (e.g., Fairall et al., 2003; Liu et al., 1979;
Businger et al., 1971; Zeng et al., 1998), we select those from
Zeng et al. (1998) used in the algorithms COARE 2.5 and
COARE 3.0:

8m (ζ )=


0.7κ2/3 (−ζ )1/3 for ζ < ζm = −1.574−strong unstable stratification,
(1− 16ζ )−1/4 for ζm < ζ < 0 −unstable stratification,
1+ 5ζ for 0< ζ < 1 −stable stratification,
5+ ζ for ζ > 1 −strong stable stratification.

(11)

8ρ (ζ )=


0.9κ4/3 (−ζ )−1/3 for ζ < ζρ = −0.465−strong unstable stratification,
(1− 16ζ )−1/2 for ζρ < ζ < 0 −unstable stratification,
1+ 5ζ for 0< ζ < 1 −stable stratification,
5+ ζ for ζ > 1 −strong stable stratification.

(12)

Zeng et al. (1998) usedPrt = 1, but Eqs. (11) and (12) do not
depend on this assumption. We then combine Eq. (10) with
the familiar down-gradient transport formulation:

Km
du

dz
= u2

∗,Kρ
dρ

dz
=
〈
ρ′w′

〉
= ρ∗u∗, (13)

which yields

Km =
u∗κz

8m(z/L)
,Kρ =

1

Prt

u∗κz

8ρ(z/L)
. (14)

At z� L, Eqs. (10) and (11) yield8m (ζ )=8ρ (ζ )= 1;
Eq. (14) yields

Km (ζ )= κzu∗, Kρ (ζ )=
1

Prt
κzu∗; (15)

and Eqs. (13) and (15) yield logarithmic velocity and density
profiles:

u(z)=
u∗

κ
ln
z

z0
, (16)

ρ(z)− ρ(0)=
ρ∗

κ
Prt ln

z

z0ρ
=

〈
ρ′w′

〉
κu∗

Prt ln
z

z0ρ
, (17)

wherez0 andz0ρ are roughness parameters.

Combining Eqs. (13) and (14) and integrating overz yield
the following mean wind and density profiles in the atmo-
spheric surface layer:

u(z)=
u∗

κ

(
ln
z

z0
+9m

( z
L

))
, (18)

ρ(z)− ρ(0)=

〈
ρ′w′

〉
κu∗

Prt

(
ln

z

z0ρ
+9ρ

( z
L

))
, (19)

where the right-hand sides consist of two parts: one con-
trolled by the surface roughness length, and the another con-
trolled by the Obukhov lengthL (Fairall et al., 2003; Zeng et
al., 1998).

Taking into account Eqs. (18) and (19), the resistance and
mass transfer coefficients, Eqs. (1) and (4), become

CD10 =
u2

∗

U2
10

=
κ2(

ln h10
z0

+9m (ζ10)
)2
, (20)

Cρ10 =
ρ∗u∗

U101ρ10

=
κ2

Prt
(
ln h10

z0
+9m (ζ10)

)(
ln h10
z0ρ

+9ρ (ζ10)
) , (21)

whereh10 = 10 m is the reference level, andζ10 = h10/L.
In neutral stratification,L→ ∞ and9m, 9ρ → 0. Then

the resistance and mass transfer coefficients are fully deter-
mined by the surface roughness lengths:

CD10N =
κ2

(ln(h10/z0))
2
, (22)

Cρ10N =
κ2

Prt ln(h10/z0) ln
(
h10/z0ρ

)
=

κ
√
CD10N

Prt ln
(
h10/z0ρ

) . (23)

The momentum transfer in MABL close to the surface is de-
termined by the surface waves and viscous friction. In the
presence of waves, conservation of the momentum flux with
height yields

Kmwave
du

dz
+ τwave(z)= u2

∗. (24)

Here,τwave(z) is the flux from wind to waves decaying with
distance from the water surface, andKmwave(z) is the eddy
viscosity. In the presence of waves,Kmwave(z) may differ
from the eddy viscosity in the airflow over smooth surface.

Reutov and Troitskaya (1996) and Troitskaya et al. (2011)
have demonstrated that the water surface can be locally
treated as aerodynamically smooth, which yields the follow-
ing asymptotic solution to Eq. (24) atz� L:

u(z)=
u∗

κ
ln

z

z00
−1u, (25)
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wherez00 = 0.11νa/u∗, νa is molecular viscosity of the air,
and

1u=

∞∫
0

τwave(z)

Kmwave(z)
dz+

∞∫
0

u2
∗ (Kmwave(z)−Km (z))

Km (z)Kmwave(z)
dz, (26)

whereτwave(z) is specified by the wave spectrum.
Then the roughness parameterz0 in Eq. (22) becomes

z0 = z00exp

(
κ1u

u∗

)
, (27)

and the drag coefficient becomes

CD10N =
κ2(

ln
(
h10u∗

0.11νa

)
−
κ1u
u∗

)2
. (28)

It has been demonstrated in many experiments (see, e.g.,
Garratt, 1977, and references therein) that the drag coeffi-
cientCD10N increases with increasingu∗. As follows from
Eq. (28), this implies that roughness parameterz0 and then
1u also strongly increase with increasingu∗. This effect can
be parameterized, in particular, using Charnock’s formula for
z0, which yields

CD10N =
κ2(

ln
(
h10g/mu2

∗

))2 , (29)

wherem is the Charnock constant.
Similar analysis applied to the turbulent flux of mass

yields the expression forz0ρ similar to Eq. (27):

z0ρ = z00ρ exp

(
κ1ρ

Prtρ∗

)
, (30)

where

1ρ =

∞∫
0

τρwave(z)

Kρwave(z)
dz+

∞∫
0

ρ∗u∗

(
Kρwave(z)−Kρ (z)

)
Kρ (z)Kρwave(z)

dz; (31)

τρwave(z) is the wave mass flux andKρwave(z) is the turbu-
lent mass transfer coefficient in MABL in the presence of
waves. According to Liu et al. (1979),z00ρ = ανa/u∗; α is
the dimensionless coefficient of order unity dependent on the
type of stratification – in temperature or in humidity. Eq. (23)
then yields

Cρ10N =
κ
√
CD10N

Prt
(
ln
(
h10u∗

ανa

)
−

κ1ρ
Prtρ∗

) . (32)

Prior results (e.g., Janssen and Komen, 1985) and our esti-
mates presented in Sect. 4 show that the wave mass flux is
small. This means that1ρ can only be affected by the im-
pact of waves on the eddy conductivity. A number of the-
oretical models (see Makin and Mastenbroek, 1996) sug-
gest that surface waves decrease the eddy conductivity. If so,

Kρwave(z)−Kρ (z) < 0, and1ρ < 0 grows in absolute value
with increasing wind speed. In other models (see Reutov
and Troitskaya, 1996), eddy conductivity does not depend
on waves, meaning1ρ = 0. In both cases the denominator
in Eq. (32) is an increasing function of the wind speed. The
drag coefficientCD10N in the numerator also increases with
increasingU10. These counter-effects explain quite weak de-
pendence ofCρ10N on the wind speed. Experimental evi-
dence of such dependence is rather uncertain. Some authors
assume thatCρ10N weakly grows with increasing wind speed
(Ocampo-Torres et al., 1994; Brut et al., 2005); others do not
find any pronounced dependence (Drennan et al., 2007). In
this paper we attempt to elucidate this open question with the
aid of a quasi-linear model of air–sea interaction generalizing
our earlier model (Reutov and Troitskaya, 1996; Troitskaya
and Rybushkina, 2008).

3 Basic equations of quasi-linear model of MABL above
wavy water surface

The model is based on the Reynolds equations for stratified
fluid in Boussinesq approximation:

∂ 〈ui〉

∂t
+
〈
uj
〉 ∂ 〈ui〉

∂xj
+

1

ρa0

∂ 〈p〉

∂xj
−

〈ρ〉

ρa0
gδi3 =

∂σij

∂xj
, (33)

∂ 〈ρ〉

∂t
+
〈
uj
〉 ∂ 〈ρ〉

∂xj
=

∂
〈
u′

jρ
′

〉
∂xj

, (34)

div 〈u〉 = 0, (35)

closured using the down-gradient approximation written as

σij =Km

(
∂ 〈ui〉

∂xj
+
∂
〈
uj
〉

∂xi

)
, (36)

〈
u′

jρ
′

〉
=Kρ

∂ 〈ρ〉

∂xj
, (37)

whereρ = ρa− ρa0.
At the water surface, the velocity components satisfy the

two classical boundary conditions, i.e., kinematic boundary
condition:

∂ξ

∂t
+ 〈ui〉

∂ξ

∂xi

∣∣∣∣
z=ξ

= 〈u3〉|z=ξ , i = 1,2, (38)

and non-slipping boundary condition:

〈
ua
i

〉
+
〈
ua

3

〉 ∂ξ
∂xi

∣∣∣∣
z=ξ

=
〈
uw
i

〉
+
〈
uw

3

〉 ∂ξ
∂xi

∣∣∣∣
z=ξ

, i = 1,2, (39)

where
〈
ua
i

〉
,
〈
uw
i

〉
are Cartesian projections of the velocity in

air and water,ξ is the elevation of the water surface.
The boundary conditions for density follow from the re-

quirement of equality of the air and water temperatures. Ac-
counting for 1000 times difference between the air and water
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heat capacity, the air temperature (and density) at the surface
can be treated as constant:

〈ρ〉|z=ξ = 0. (40)

Similarly to Reutov and Troitskaya (1996), we start with con-
sidering a single harmonic surface wave with the amplitude
a and the wave numberk, assuming thatk is parallel to the
wind direction. To avoid geometric nonlinearity, we intro-
duce curvilinear reference frame following the wave:

x = ξ − ae−kη sinkξ, (41)

z= η+ ae−kη coskξ. (42)

Jacobian of this transformation is

J =
∂ (x,y)

∂ (ξ,η)
= 1− 2kae−kη coskξ + (ka)2e−2kη. (43)

Since two-dimensional flow is considered, we employ the
stream functionψ :

〈ux〉 =
∂ψ

∂z
, 〈uz〉 = −

∂ψ

∂x
. (44)

Then the system of Reynolds equations can be rewritten in
terms of the stream functionψ and vorticityχ :

∂χ

∂t
+
∂ (χ,ψ)

∂(x,z)
−

g

ρa0

∂ 〈ρ〉

∂x
=
∂2σxx

∂x∂z
+
∂2σxz

∂z2
−
∂2σzz

∂x∂z

−
∂2σxz

∂x2
, (45)

χ =
∂2ψ

∂x2
+
∂2ψ

∂z2
, (46)

∂ 〈ρ〉

∂t
+
∂ (〈ρ〉 ,ψ)

∂(x,z)
=
∂

∂x

(
Kρ

∂ 〈ρ〉

∂x

)
+
∂

∂z

(
Kρ

∂ 〈ρ〉

∂z

)
. (47)

Assuming that the turbulent exchange coefficients depend
only on the curvilinear coordinateη, the system Eqs. (45)–
(47) in curvilinear coordinates Eqs. (41)–(42) become

J 2
(
∂ (χ,ψ)

∂ (ξ,η)
−

g

ρa0

(
∂ 〈ρ〉

∂ξ

∂x

∂ξ
+
∂ 〈ρ〉

∂η

∂x

∂η

))
= J 2

(
∂2

∂ξ2
+
∂2

∂η2

)
(Kmχ)− 2JKmηηψξξ

+JηKmη
(
ψξξ −ψηη

)
−Kmηη

(
ψξJξ +ψηJη

)
+2Jξ

(
−Kmηψξη +Kmηηψξ

)
+
J 2
η

J
Kmηψη (48)

χ =
1

J

(
∂2ψ

∂ξ2
+
∂2ψ

∂η2

)
, (49)

∂ (〈ρ〉 ,ψ)

∂(ξ,η)
=
∂

∂ξ

(
Kρ

∂ 〈ρ〉

∂ξ

)
+
∂

∂η

(
Kρ

∂ 〈ρ〉

∂η

)
; (50)

and the boundary conditions Eqs. (38)–(40) become

∂ψ

∂ξ

∣∣∣∣
η=0

= 0,
∂ψ

∂η

∣∣∣∣
η=0

= −c+ 2ckaRe
(
eikξ

)
,

〈ρ〉|η=0 = 0. (51)

At η→ ∞, wave-induced perturbations decay and momen-
tum and buoyancy fluxes are conserved.

Following Jenkins (1992), we consider nonlinear
Eqs. (48)–(50) using quasi-linear model. The higher
harmonics of perturbations are neglected, and the main
harmonic is defined with the accuracy to terms of order (ka),
and average fields with accuracy to terms of order (ka)2.
In other words, considering the equation for perturbations,
we keep terms of order (ka)3 if these are due to the average
wave-induced fields, and neglect them if they are due to
nonlinear interaction between 1st and 2nd harmonics. This
approach is applicable for small Reynolds numbers (see
Batchelor, 1967). In the turbulent regime of the flow, the
Reynolds number as defined by the molecular viscosity is
huge, but the average flow dynamics described within the
Reynolds equations is determined by the effective Reynolds
number, which is defined by the eddy viscosity coefficient.
The effective Reynolds number for the wave disturbances
induced in the airflowReeff was estimated by Troitskaya et
al. (2011) as a value of order (ka). The estimation assumes
that the velocity scaleuwave is of order cka, the length
scale is the distance from the surface, and the viscosity
coefficient is νturb = κu∗z. Taking into account that the
vertical scale of the turbulent boundary layer for the wave
disturbances isδ = u∗/(ck) (see Troitskaya and Rybushkina,
2008), this yields Reeff = δkuwavez/νturb ∼ ka< 1. Now
the wave-induced disturbances can be described within the
linear approximation due to the small effective Reynolds
number.

Troitskaya et al. (2010a, b, 2011) have demonstrated ap-
plicability of the quasi-linear theory of wind–wave inter-
action through laboratory experiments with particle image
velocimetry (PIV) technique, even for quite steep waves
(ka = 0.3). Applicability was also confirmed by Druzhinin
et al. (2012) in direct numerical simulation of a turbu-
lent boundary layer above waves with the steepness up to
(ka) = 0.2.

We search for a solution to Eqs. (48)–(50) in the form

χ = χ0 (η)+ Re
(
χ1 (η)e

ikξ
)
, (52)

ψ = ψ0 (η)+ Re
(
ψ1 (η)e

ikξ
)
, (53)

〈ρ〉 = ρ0 (η)+ Re
(
ρ1 (η)e

ikξ
)
, (54)

which yields the following equations for the 1st harmonic:

ik
(
ψ0ηχ1 −ψ1χ0η

)
− ik

g

ρa0
ρ1 + ika

g

ρa0

dρ0

dη
e−kη

=
d2

dη2 (Kmχ1)− k
2Kmχ1 + 2ψ1k

2Kmηη

−2k2ae−kη
(
Kmηψ0η

)
η

(55)

ψ1ηη − k2ψ1 = χ1 − 2kae−kηχ0, (56)
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ik
(
ψ0ηρ1 −ψ1ρ0η

)
=

d

dη

(
Kρ

dρ1

dη

)
− k2Kρρ1; (57)

and for the mean flow, the equations

d

dη
(Kmχ0)= −

dT

dη
(58)

−
dT

dη
= kKmη

[
ka

d

dη
Re
(
ψ1e

−kη
)

+ 2(ka)2e−2kηψ0η

]
−

1

2
kIm

(
ψ∗

1χ1
)
+

1

2

g

ρa0
kaIm

(
ρ1e

−kη
)

(59)

d2ψ0

dη2
= χ0

(
1+ (ka)2e−2kη

)
− kae−kηReχ1, (60)

Kρ
dρ0

dη
= ρ∗u∗ −

k

2
Im
(
ρ1ψ

∗

1

)
. (61)

In Eq. (61), the vertical turbulent flux of mass tends toρ∗u∗

atη→ ∞.
As follows from conservation of the vertical turbulent flux

of momentum within MABL, the boundary condition for
Eq. (58) isKmχ0|η→∞ = u2

∗. In Eq. (58),T (η)= τwave is
the wave-induced component of the momentum flux satisfy-
ing the conditionT (η)→ 0 atη→ ∞. Integrating Eq. (58)
yields

Km (η)χ0 + T (η)= u2
∗. (62)

Similarly, it can be concluded from Eq. (61) thatk2Im
(
ρ1ψ

∗

1

)
is the wave-induced part of the turbulent mass flux.

The non-slip boundary condition for the mean velocity
reads

∂ψ

∂η

∣∣∣∣
η=0

= −c. (63)

The boundary conditions for harmonic waves follow from
Eq. (51):

ψ1|η=0 = 0,
∂ψ1

∂η

∣∣∣∣
η=0

= 2cka, ρ1|η=0 = 0. (64)

Equations (55)–(61) with boundary conditions (63) and (64)
determine velocity and density profiles in MABL above
propagating harmonic wave. For the numerical solution, it
is convenient to use the following dimensionless variables:

dimensionless vertical coordinateY =
ηu∗

ν
=

η
zν

,
dimensionless horizontal coordinateς = kξ ,
dimensionless vorticityX =

νaχ

u2
∗

,

dimensionless densityR =
ρ1
ρ∗

,

dimensionless stream function9 =
ψ
νa

, and
dimensionless turbulent exchange transfer coefficients
N0 =

Km
νa

andNR0 =
Kρ
νa

.

We search for the solution in the form
X = X0 (Y )+ Re

(
X1 (Y )e

iς
)
,

9 = 90 (Y )+ Re
(
91 (Y )e

iς
)
,

R = R0 (Y )+ Re
(
R1 (Y )e

iς
)
.

(65)

This yields the following equations for the 1st harmonics:

i

(
d90

dY
X1 −91

dX0

dY

)
− iRiR1 + iRi

ka

kzν

dR0

dY
e−kzνY

=
1

kzν

(
d2

dY 2 (N0X1) − (kzν)
2N0X1 + 291 (kzν)

2N0YY

− 2(ka)(kzν)e
−kzνY (N0Y90Y )Y

)
, (66)

91YY − (kzν)
291 =X1 − 2kae−kzνYX0, (67)

i (90YR1−91R0Y )=
1

kzν

[
d

dY

(
NR0

dR1

dY

)
−(kzν)

2NR0R1

]
; (68)

and yields the equations for the mean velocity and density

d

dY
(N0X0)= kzν

[
kaN0YRe(91Y − kzν91)e

−kzvY

+2(ka)2e−2kzvYN0Y90Y

]
−

1

2
(kzν) Im

(
9∗

1X1
)
+

Ri

2
(ka)Im

(
R1e

−kzvY
)

= −
dτwave

dY
, (69)

d290

dY 2
=X0

(
1+ (ka)2e−2kzνY

)
− kae−kzνYReX1,

(70)

NR0

dR0

dY
= 1−

kzν
2

Im
(
R19

∗

1

)
, (71)

with the boundary conditions

N0X0|Y→∞ = 1,
∂90

∂Y

∣∣∣∣
Y=0

= −
c

u∗

. (72)

91|Y=0 = 0,
∂91

∂Y

∣∣∣∣
Y=0

= 2
c

u∗

ka, R1|Y=0 = 0.

(73)

Here the following dimensionless parameters appear: wave
steepness ka, dimensionless wave number kzν , Richardson
numberRi= gρ∗νa

ρa0u
3
∗

, and wave agec/u∗. Additionally, the ex-

pression forNR0 includes the Prandtl number. Combinations
kzν =

kνa
u∗

andRi= νa
κLu∗

are of order 10−3, which make the
above scaling convenient for analyzing close vicinity of the
air–sea interface.

We consider the ratio of the Obukhov length scaleL to
the surface wave lengthk−1. It follows from the dispersion
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relation thatk = g/c2. Then Eq. (8) forL, and Eq. (9) for the
density scaleρ∗, yield

Lk =
u2

∗

c2 ρ∗

ρa

, (74)

so thatLk depends on the wave ageu∗/c (the basic air–sea
interaction parameter; see, e.g., Plant, 1982). Hence, the mo-
mentum and heat transfers between waves and mean flow ba-
sically depend onu∗/c. In the next section we consider this
dependence in case of stratified MABL interacting with har-
monic surface wave.

4 Interaction of stratified MABL with harmonic wave

To solve Eqs. (66)–(71) with boundary conditions Eqs. (72)
and (73), we employ eddy viscosityKm and eddy conductiv-
ity Kρ determined in MABL by Eqs. (11), (12), and (14).

At z� L (in the neutrally stratified MABL), these equa-
tions reduce to the set of equations in Eq. (15):Km =

PrtKρ = κzu∗. Close to the surface,Km behaves as

Km = νaf (η∗) , (75)

whereη∗ = η/zν , zν = νa/u∗. In further analysis we adopt
f (η∗) obtained by Smol’yakov (1973) for turbulent flow
over smooth plate:

f (η∗)= 1+ κη∗

(
1− exp

{
−

(
η∗

lm

)2
})

, (76)

wherelm = 22.4. Substitutingz for η, Eqs. (75) and (76) at
η∗ � lm yield the set of equations in Eq. (15).

In the stratified MABL, we determine eddy viscosity, com-
bining the asymptotes Eqs. (14) and (75):

Km (η)=
νaf (η/zν)

8m (η/L)
. (77)

In the viscous sublayer above smooth plate, experimental
data show that the velocity and temperature profiles are quite
similar (Ocampo-Torres et al., 1994), andKρ is expressed
similarly to Eq. (77):

Kρ (η)=
νafρ (η/zν)

8ρ (η/L)
. (78)

wherefρ (η∗) is expressed similarly to Eq. (76):

fρ (η∗)= νa

(
1

Pr
+
κη∗

Prt

(
1− exp

{
−

(
η∗

lρ

)2
}))

. (79)

Here, Pr = νa/νρ is the Prandtl number, i.e., the ratio of
molecular viscosity to heat conductivity (in the airPr = 0.7;
see Monin and Yaglom, 1992);Prt =Km/Kρ is the turbulent
Prandtl number for neutral and near-neutral stratification (in

the airPrt =Km/Kρ = 0.85; see Monin and Yaglom, 1992),
andlρ = 31.7 (after Liu et al., 1979 data on temperature pro-
file above heated surface). Troitskaya et al. (2013) have con-
firmed good performance of these approximations ofKm and
Kρ .

Coupled sets of equations for wave-induced disturbances,
Eqs. (66)–(68), and for mean velocity and density, Eqs. (69)–
(71), are solved numerically by grid method. The coupled
boundary-value problem is solved by an implicit method rep-
resenting modified Gauss method for band matrix (Forsythe
and Moler, 1967). Figures 1a–f, 2a–f, and 3a–f show mean
profiles of the velocity, density, vertical fluxes of momentum
and mass, and turbulent exchange coefficients in MABL over
harmonic wave, for the friction velocityu∗ = 0.10 cms−1,
wave numbersk = 0.33,0.01,0.001 cm−1, and the surface
wave steepness ka= 0.1. We have considered the cases of
stable, neutral and unstable stratification in MABL with
ρ∗/ρa == ±3× 10−4 andkL= 100,1,and0.35 in Figs. 1,
2, and 3, respectively.

It follows from Fig. 1b that the wave-induced flux of mo-
mentum is almost the same for all types of stratification. The
level of the effective wind–wave momentum transfer, where
the flux profile has a cusp, is located lower thanL, where
stratification effects are negligible. It is also concluded that
the wind-to-wave flux of momentum is positive, i.e., wind de-
livers momentum to waves, strengthening them and, in turn,
slows down. This regime is typical for waves with the phase
velocities c slower than the wind speedU (Miles, 1959).
Generally,U is taken equal to the wind speedU10 at the ref-
erence levelh10 = 10 m. In terms of the friction velocityu∗,
the conditionU

c
> 1 takes the formu∗

c
>

√
CD ≈ 0.035. Us-

ing relation Eq. (74) between the wave ageu∗

c
andkL, this

condition can be rewritten as

Lk >
CD

(ρ∗/ρa)
. (80)

In the caseskL= 1 and kL= 0.35(kL≤ 1) shown in
Figs. 2b and 3b, the cusp in the vertical profile of the wave-
induced flux of momentum is located at heights comparable
with L. This profile, as well as the mean velocity profile,
essentially depends on stratification. In strongly stable strat-
ification, the momentum transfer between wind and waves is
significantly weaker than in neutral and unstable stratifica-
tions.

If the criterion Eq. (80) does not hold, momentum can
be transferred from waves to wind. Such winds induced by
waves are often observed in the conditions of swell (see,
e.g., Semedo et al., 2009). Here, the energy is transferred
from waves to wind due to the stresses proportional to eddy
viscosityKm (Troitskaya, 1997). As seen in Fig. 3c,Km
in strongly stable stratification is significantly smaller than
in neutral stratification. This effect essentially reduces the
wave-induced momentum flux and therefore the speed of the
wave-induced wind.
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Fig. 1. Profiles of mean velocity(a) and temperature(d), normalized turbulent momentum(b) and mass(e) fluxes, normalized turbulent
momentum(c) and mass(f) transfer coefficients. Friction velocity is 10 cms−1, density scaleρ∗/ρa = ±3× 10−4, k = 0.33 cm−1, and
kL= 100.

Fig. 2.The same as in Fig. 1 forkL= 1.
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Fig. 3.The same as in Fig. 1 forkL= 0.35.

It is worth noticing the effect of decreasing the turbu-
lent mass flux close to the surface due to the wave mass
flux (see Figs. 1–3e). The point is that the resonant inter-
action of waves with stratified shear flows in the presence of
eddy viscosity and conductivity leads to irreversible reduc-
tion of the density gradient in the critical layers, i.e. regions
with closed streamlines (see, e.g., Maslowe, 1972; Haber-
man, 1973; Troitskaya, 1991), which leads to the positive
wave mass fluxPwave(η) in Eq. (6). The decrease in the mass
flux depends on the eddy conductivityKρ ; while Kρ tends
to zero, the density gradient in the critical layer also tends to
zero. This effect is the main subject of the Maslowe (1972)
theorem, which is an analog of the Batchelor (1956) theo-
rem on the constant vorticity in a region with closed stream-
lines. In its turn, reducing the mean density gradient associ-
ated with this effect leads to reducing the density difference
between the sea surface and reference level. According to
Eq. (13), this leads to a slight increase in the eddy conductiv-
ity. One could expect that this effect is most pronounced in
light winds and strong stratification in MABL.

To estimate significance of the considered effects, we cal-
culated the temperature and velocity profiles for the smooth
water surface and in the wavy surface with the same fluxes
of momentum and mass. For simplicity, we assumed that
the density stratification was due to the temperature gradi-
ent. The wave steepness was taken at ka= 0.1. Comparing
Fig. panels 4a–c with d–f one can see that the relative contri-
bution to the mean density profile due to the wave decreases
with increasing friction velocity and does not exceed relative

contribution to the mean velocity profile. These quantities are
of the same order only for very low friction velocities and
short waves. For example, foru∗ = 5 cms−1 andk = 1 cm−1,
contributions to the temperature and velocity profiles are
approximately 0.17◦C and 10 cms−1 for 1T10 = 2◦C and
U10 = 120 cms−1 (Fig. 4a and d). Foru∗ = 10 cms−1 and
k = 0.33 cm−1, relative contribution to the temperature pro-
file is an order of magnitude less than relative contribution to
the velocity profile (see Fig. 4b and e). Foru∗ = 10 cms−1

andk = 0.001 cm−1, contribution to the temperature profile
is negligibly small. Thus, the wave mass flux may often be
neglected (as it was done by Makin and Mastenbroek, 1996,
and Makin and Kudryavtsev, 1999).

As demonstrated in Sect. 2, the wind-to-wave momentum
flux gives an additive to wind speed,1u, which can be cal-
culated by Eq. (26). TakingKmwave=Km yields

1u=

∞∫
0

τwave

Km
dz. (81)

A quantity1u can be treated as an integral characteristic of
the wind–wave momentum exchange.

Examples of such dependence of1u on wave number
for the fixed wave steepness ka= 0.1 are shown in Fig. 5
for 3 friction velocitiesu∗ = 5,10,50 cms−1 and ρ∗/ρa =

±3.3× 10−4.
The wind speedU10 and temperature difference1T10 at

the reference levelh10 depend on the parameters of the wave;
their values are given in Table 1. It can be seen from Table 1
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Fig. 4. Examples of the temperature(a,b,c)and velocity(d,e,f) profiles over wavy and smooth water surface, ka = 0.1.(a,d) u∗ = 5 cms−1

andk = 1 cm−1, (b,e)u∗ = 10 cms−1 andk = 0.33 cm−1, and(c,f) u∗ = 10 cms−1 andk = 0.001 cm−1.

Fig. 5. Dependencies of the nonlinear additives to the wind velocity profiles on a wave number. Wave steepness ka = 0.1,(a) u∗ =5 cms−1,
(b) u∗ =10 cms−1, and(c) u∗ =50 cms−1.

that in neutral and unstable stratification the waves change
wind speed significantly. Figure 5 demonstrates that the long
waves give the maximum positive additive to the wind speed.
This effect of acceleration of the wind in the presence of
swell was noted by Kudryavtsev and Makin (2004), and ob-
served in the field experiments by Semedo et al. (2009).

The dependencies of dimensionless additive to wind speed
1u/u∗ on wave age are shown in Fig. 6a–c forρ∗/ρa =

−3.3× 10−4
; 0; 3.3× 10−4. The curves almost coincide in

all figures, hence1u/u∗ is a function of two parameters:

1u

u∗

= U

(
u∗

c
,
ρ∗

ρa

)
. (82)

Taking this into account, Eq. (74) yields

1u

u∗

= U1

(
Lk,

ρ∗

ρa

)
. (83)
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Fig. 6. Dependencies of the normalized nonlinear additives to the wind velocity1u/u∗ on wave age in stable(a), neutrally stable(b) and
unstable(c) stratification foru∗ = 5 cms−1 (circles),u∗ = 10 cms−1 (squares), andu∗ = 50 cms−1 (triangles).

Fig. 7.Dependencies of the normalized nonlinear additives to the density1ρ/ρ∗ on wave age in stable(a) and unstable(b) stratification.

Table 1.Range of values of the wind speed and temperature differ-
ence at the reference level due to changing wave parameters.

u∗, cms−1 5 10 50

U10, cms−1, stable 1.5/1.8 3.2/3.6

U10, cms−1, neutral 1.5/2.8 3.1/4.1

U10, cms−1, unstable 1.5/2.9 3.2/5.1 22.4/17.6

1T10, ◦C, stable 2.6/2.7 2.8

1T10, ◦C, unstable 2.6/2.7 2.8 3.1

Decrease of the turbulent mass flux close to the water sur-
face (presented in Figs. 1–3e) results in a negative additive to
the average density profile1ρ, which can be calculated from
Eq. (31).

ForKρwave(z)=Kρ(z) it reads

1ρ =

∞∫
0

τρwave(z)

Kρ(z)
dz. (84)

Dependencies of a normalized density additive1ρ/ρ∗ on
wave ageu∗

c
in stable and unstable stratification are shown

in Fig. 7a and b. There is a strong dependence of1ρ/ρ∗ on
u∗. The additive to the mean density profile from the wave-
induced mass flux, however, is small (see Fig. 4a–e) and may
be neglected.

As1u depends on the wave amplitude, the exchange co-
efficients also depend on the wave parameters. Dependen-
cies of a drag coefficient on the wave length are shown in
Fig. 8a–c. The drag coefficient increases in the presence of
the short waves and may decrease in the presence of the long
waves. This agrees with the calculated mean wind speed pro-
files shown in Figs. 1–3a and momentum flux profiles shown
in Figs. 1–3b. The short waves “extract” momentum from

www.nonlin-processes-geophys.net/20/825/2013/ Nonlin. Processes Geophys., 20, 825–839, 2013
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Fig. 8. Dependencies of the drag coefficient of the water surface on the wave length foru∗ = 5 cms−1 (a), u∗ = 10 cms−1 (b), u∗ =

50 cms−1 (c).

Fig. 9. Dependencies of the mass exchange coefficient of the water surface on the wave length foru∗ = 5 cms−1 (a), u∗ = 10 cms−1 (b),
u∗ = 50 cms−1 (c).

Fig. 10. Dependencies of the coefficients of aerodynamic resistance(a) and mass exchange(b) on the steepness of the wave foru∗ =

10 cms−1.
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the wind, increasing surface drag, while the long waves de-
liver momentum to the wind, decreasing drag. According
to Fig. 8a–c, this makes ultra-smooth flow possible. Depen-
dencies of the mass transfer coefficientCρ on wave num-
ber (Fig. 9a–c) are qualitatively analogous in agreement with
Eq. (32) for1ρ = 0.

We explored dependencies ofCD10N andCρ10N on the
wave steepness for a fixed wave length and prescribed wind
and stratification (Fig. 10). For the phenomenon of short
waves increasing surface drag, steepness growth results in
decrease ofCD10N andCρ10N.

5 Conclusions

This paper is the first part of our report on the momentum
and buoyancy transfer in MABL over wavy water surface.
Here we constructed a model based on a self-consistent prob-
lem for the wave-induced air perturbations and mean veloc-
ity and density fields. We explored the simplest case of har-
monic waves propagating along the wind. It is shown within
the model that a drag coefficient may either decrease or in-
crease, depending on the wave length. Surface drag decrease
is expected in the presence of swell, which can deliver mo-
mentum to wind. Drag decrease is more pronounced in un-
stable stratification. This is the result of exchange intensity
reduction in stably stratified flow due to suppression of the
turbulent pulsations. The case of a harmonic wave propagat-
ing along the wind considered in this paper is an idealization,
but it is essential for analysis of peculiarities of air–sea inter-
action.

Appendix A

List of symbols

τ – turbulent momentum flux
ρa – air density
ρa0 – air density on the surface
u∗ – friction velocity
H – sensible heat
Cp – air heat capacity
T∗ – constant, characterizing the flux of moisture in the air
q∗ – constant, characterizing the flux of heat in the air
l – specific heat of evaporation
h10 – a reference level where meteorological

parameters are measured
(10 m above the water surface)

U10 – wind speed at a reference levelh10
T10 – temperature at a reference levelh10
q10 – humidity at a reference levelh10
CD , CD10 – drag coefficient
CH – Stanton number
Cl – Dalton number
Cρ , Cρ10 – mass transfer coefficient
P – turbulent mass flux

ρ∗ – turbulent scale of density,
characterizing the mass flux

u′ – horizontal velocity fluctuation
w′ – vertical velocity fluctuation
ρ′ – density fluctuation
τwave – turbulent momentum flux caused by

the wave-induced perturbations in the air
Pwave – turbulent mass flux caused by the wave-induced

perturbations in the air
ξ , η – curvilinear coordinates (ξ coincides with

elevation of the water surface)
Km – turbulent exchange coefficient for momentum

(eddy viscosity)
Kρ – turbulent exchange coefficient for mass

(eddy conductivity)
U – mean wind speed
b – buoyancy flux
g – gravity acceleration
L – Obukhov length scale
κ – von Kármán constant
z – vertical coordinate
ζ =

z
L

– dimensionless height
Prt =Km/Kρ – turbulent Prandtl number
z0 – momentum roughness parameter
z0ρ – mass roughness parameter
Kmwave(z) – eddy viscosity in the presence of waves
Kρwave(z) – eddy conductivity in the presence of waves
νa – molecular viscosity of the air
CD10N – drag coefficient in neutral stratification
Cρ10N – mass transfer coefficient in neutral stratification
z00 – momentum roughness parameter over

smooth surface
z00ρ – mass roughness parameter over smooth surface
1u – difference between wind speed profiles over smooth

and wavy surfaces
m – Charnock constant
1ρ – difference between density profiles over

smooth and wavy surfaces
1T10 – the air temperature difference between the surface

and the height 10 m
1ρ10 – the air density difference between the surface

and the height 10 m
ρ = ρa−ρa0 – air density difference
a – harmonic surface wave amplitude
k – harmonic surface wave wave number
c – phase velocity of a harmonic surface wave
ψ – stream function
χ – vorticity
χ0 – mean vorticity
χ1 – amplitude of a harmonic vorticity perturbation
ψ0 – mean stream function
ψ1 – amplitude of a harmonic stream function

perturbation
ρ0 – mean density
ρ1 – amplitude of a harmonic density perturbation
T – the wave-induced component of

the momentum flux
Y =

ηu∗

ν – dimensionless vertical coordinate
ς = kξ – dimensionless horizontal coordinate
X =

νaχ

u2
∗

– dimensionless vorticity

R =
ρ1
ρ∗

– dimensionless density

9 =
ψ
νa

– dimensionless stream function

N0 =
Km
νa

– turbulent momentum exchange coefficient

NR0 =
Kρ
νa

– turbulent mass exchange coefficient
zν – viscous sublayer width
Ri – Richardson number
Pr = νa/νρ – Prandtl number
η∗ = η/zν – dimensionless vertical coordinate
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