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Abstract. We address the synthesis of distributed controlinformation about the dynamics and transport of the fluidic
policies to enable a swarm of homogeneous mobile sensorsnvironment. For two-dimensional (2-D) flows, ridges of lo-
to maintain a desired spatial distribution in a geophysicalcally maximal finite-time Lyapunov exponent (FTLEHad-
flow environment, or workspace. In this article, we assumeden et al.2005 values correspond, to a good approximation
the mobile sensors (or robots) have a “map” of the envi-(though sedlaller, 2011), to Lagrangian coherent structures.
ronment denoting the locations of the Lagrangian coherenDetails regarding the derivation of the FTLE can be found in
structures or LCS boundaries. Using this information, we de-the literature aller, 200Q 2001, 2002 Shadden et 312005

sign agent-level hybrid control policies that leverage the sur-Lekien et al, 2007 Branicki and Wiggins2010.

rounding fluid dynamics and inherent environmental noise Recent years have seen the use of autonomous underwater
to enable the team to maintain a desired distribution in theand surface vehicles (AUVs and ASVs) for persistent mon-
workspace. We discuss the stability properties of the ensemitoring of the ocean to study the dynamics of various bio-
ble dynamics of the distributed control policies. Since re-logical and physical phenomena, such as plankton assem-
alistic quasi-geostrophic ocean models predict double-gyréblages Caron et al.2008, temperature and salinity profiles
flow solutions, we use a wind-driven multi-gyre flow model (Lynch et al, 2008 Wu and Zhang2011 Sydney and Pa-

to verify the feasibility of the proposed distributed control ley, 2011), and the onset of harmful algae bloon&héng
strategy and compare the proposed control strategy with @t al, 2007 Chen et al.2008 Das et al. 2010. These stud-
baseline deterministic allocation strategy. Lastly, we validateies have mostly focused on the deployment of single, or small
the control strategy using actual flow data obtained by oumumbers of AUVs working in conjunction with a few sta-
coherent structure experimental testbed. tionary sensors and ASVs. While data collection strategies
in these studies are driven by the dynamics of the processes
they study, most existing works treat the effect of the sur-

) rounding fluid as solely external disturbanc&a¢ et al.

1 Introduction 201Q Williams and Sukhatme20132), largely because of our

. . o limited understanding of the complexities of ocean dynam-
Geophysical flows are naturally stochastic and aperiodic, yej.q Recently, LCS have been shown to coincide with op-
exhibit coherent structure. Coherent structures are of signifizj 4| trajecto’ries in the ocean which minimize the energy

cantimportance since knowledge of them enables the predic;nj the time needed to traverse from one point to another
tion and estimation of the underlying geophysical fluid dy- (Inanc et al, 2005 Senatore and Ros2008. And while re-
namics. In realistic ocean flows, these time-dependent cohelzant works have begun to consider the dynamics of the sur-
ent structures, or Lagrangian coherent structures (LCS), arg, nding fluid in the development of fuel efficient navigation
similar to separatrices that divide the flow into dynamically strategiesl(olla et al, 2012 DeVries and Paley2011), they

distinct regions, and are essentially extensions of stable an ly mostly on historical ocean flow data and do not employ
unstable manifolds to general time-dependent floaller knowledge of LCS boundaries.

and Yuan 2000. As such, they encode a great deal of global
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658 K. Mallory et al.: Allocation of swarms in gyre flows

A drawback to operating both active and passive sensorsi2z  Problem formulation
time-dependent and stochastic environments like the ocean is
that the sensors will escape from their monitoring region of Consider the deployment oV mobile sensing resources
interest with some finite probability. This is because the es{AUVS/ASVs) to monitorM regions in the ocean. The ob-
cape likelihood of any given sensor is not On|y a function jective is to synthesize agent—level control policies that will
of the unstable environmental dynamics and inherent noise€nable the team to autonomously maintain a desired distri-
but also the amount of control effort available to the sensorbution across thé/ regions in a dynamic and noisy fluidic
Since the LCS are inherently unstable and denote regiongnvironment. We assume the following kinematic model for
of the flow where escape events occur with higher proba-each AUV
bility (Forgoston et al.2011), knowledge of the LCS are of f
paramount importance in maintaining a sensor in a particulaﬂ" =uctvg, kefl....n, @)
monitoring region.

In order to maintain stable patterns in unstable flows
the objective of this work is to develop decentralized con-
trol policies for a team of autonomous underwater vehicles
(AUVs) and/or mobile sensing resources to maintain a de-
sired spatial distribution in a fluidic environment. Specifi-
cally, we devise agent-level control policies which allow in-
dividual AUVs to leverage the surrounding fluid dynamics
and inherent environmental noise to navigate from one dy-
namically distinct region to another in the workspace. While
our agent-level control policies are devised using a priori

whereq = [xt, yk, zx]7 denotes the vehicles positiony
'denotes the X 1 control input vector, and denotes the
velocity of the fluid experienced/measured bykﬂevehlcle

In this work, we limit our discussion to 2-D planar flows
and mouons and thus we assumeés constant for alk. As
such,vqk is a sample of a 2-D vector field denoted Byqg)
atq; whosez component is equal to zerice., F,(¢g) = 0, for
all ¢. Since realistic quasi-geostrophic ocean models exhibit
multi-gyre flow solutions, we assumi(q) is provided by
-the 2-D wind-driven multi-gyre flow model given by

knowledge of manifold/coherent structure locations within . f(

the region of interest, execution of these control strategies by = —7ASIN(T )COS(” %) = px ), (22)
the individual robots is achieved using only information that _ f( y df

can be obtained via local sensing and local communicatiory = 7 A COS(t )S'”( D ), (2b)
with neighboring AUVs. As such, individual robots do not . _ -0 (2c)
require information on the global dynamics of the surround- ’

ing fluid. The result is a distributed allocation strategy that f(x,#) = x +ssm(n—)sm(wt + ). (2d)

minimizes the overall control-effort employed by the team

to maintain the desired spatial formation for environmental When ¢ =0, the multi-gyre flow is time-independent,

monitoring applications. while for & £ 0, the gyres undergo a periodic expansion and

While this problem can be formulated as a multi-task contraction in ther direction. In Eq. ), A approximately

(MT), single-robot (SR), time-extended assignment (TA) determines the amplitude of the velocity vectasg2r gives

problem Gerkey and Mataric2004), existing approaches do the oscillation frequency; determines the amplitude of the

not take into account the effects of fluid dynamics coupledleft-right motion of the separatrix between the gyrésis

with the inherent environmental nois€&érkey and Mataric  the phaseu determines the dissipation,scales the dimen-

2002 Dias et al, 2006 Dahl et al, 2006 Hsieh et al. 2008 sions of the workspace, amg(t) describes a stochastic white

Berman et al.2008. The novelty of this work lies in the noise with mean zero and standard deviatioa: +/21, for

use of nonlinear dynamical-systems tools and recent resultaoise intensityl. Figure2a and b show the vector field of a

in LCS theory applied to collaborative robot trackirigsfeh ~ two-gyre model and the corresponding FTLE curves for the

et al, 2012 to synthesize distributed control policies that en- time-dependent case.

ables AUVs to maintain a desired distribution in a fluidic en-  Let VW denote an obstacle-free workspace with flow dy-

vironment. namics given by Eqg.2). We assume a tessellation &Y

The paper is structured as follows: we formulate the prob-such that the boundaries of each cell roughly corresponds

lem and outline key assumptions in S&fThe development to the stable/unstable manifolds or LCS curves quantified

of the distributed control strategy is presented in Séend by maximum FTLE ridges as shown in Fig@. In gen-

its theoretical properties are analyzed in SdctSection5 eral, it may be unreasonable to expect small resource con-

presents our simulation methodology, results, and discussiorstrained autonomous vehicles to be able to track the LCS lo-

We end with conclusions and directions for future work in cations in real time. However, LCS boundary locations can

Sect.6. be determined using historical data, ocean model data, e.g.,
data provided by the Navy Coastal Ocean Model (NCOM)
databases, and/or data obtained a priori using LCS tracking
strategies similar tbisieh et al(2012. This information can
then be used to obtain an LCS-based cell decomposition of

Nonlin. Processes Geophys., 20, 65568 2013 www.nonlin-processes-geophys.net/20/657/2013/



K. Mallory et al.: Allocation of swarms in gyre flows 659

e N

N
P
A N\
N/ RN
20( 7o
!
\
4

\

——— ///,«\\\

NNy

VNN
S50 v

FUISESENEC

Fig. 1. (a) Vector field and(b) FTLE field of the model given @
by Eq. @) for two gyres withA = 10, u = 0.005,¢ = 0.1, ¢ =0,
I =0.01, ands = 50. LCS are characterized by regions with maxi-
mum FTLE measures (denoted by red). In 2-D flows, regions withFig. 2. Two examples of LCS-based cell decomposition of the re-
maximum FTLE measures correspond to 1-D curves. gion of interest assuming a flow field given by E@).(These
cell decompositions were performed manuafB) A 4 x 4 time-
independent grid of gyres with = 0.5, © =0.005,¢ =0, v =0,
W. Figure 2 shows two manual cell decompositions of the / =35, ands = 20. The stable and unstable manifolds of each sad-
workspace where the cell boundaries roughly correspond tll€ Pointin the system is shown by the black arrofiay.An FTLE
maximum FLTE ridges. In this work, we assume the tessel—bf_’lsed cell decomposition for a time-dependent double-gyre system
lation of W is given and do not address the problem of auto-Wlth the same parameters as Fig.
matic tessellation of the workspace to achieve a decomposi-
tion where cell boundaries correspond to LCS curves.

A tessellation of the workspace along boundaries charac- We assume thqt robots are given a map of.the environ-
ment, G, and N. Since the tessellation df/ is given, the

terized by maximum FTLE ridges makes sense since the X . .
separate regions within the flow field that exhibit distinct dy—s.i‘CS locations corresponding to the boundaries of egich

namic behavior and denote regions in the flow field Where:s alfodknfsr\:\(n ,; pnon.thdltlorlﬁlly, g\{ﬁt afsume robqts tco—
more escape events may occur probabilisticailgrgoston ocated within the sam®; have the abliity to communicate

etal, 2019). In the time-independent case, these boundariedVith €ach other. This makes sense since coherent structures

correspond to stable and unstable manifolds of saddle points2" actas tran_sport barriers and prevenF underwater acoustic
P b wave propagationWang et al. 2009 Rypina et al. 2011).

in the system. The manifolds can also be characterized b¥. I individual robots h the ability to local
maximum FTLE ridges where the FTLE is computed based, inatly, we assume individual robots have the abiiity to local-

on a backward (attracting structures) or forward (repelling!ze within the workspace, i.e., determine their own positions

structures) integration in time. Since the manifolds demar-" the workspace. These assumptions are necessary to en-

cate the basin boundaries separating the distinct dynamic(';fr@}t?lt()a the ddeveloprrclj(_ar_]é of la ptr)lottltlzanon SFEeIT\e V(\;'th.m ezch
regions, they are also regions that are uncertain with respe%‘{’ ars],_e ort\han&n Vi dua"ro ?. seﬁ_(;]ape ! eft.' otc_) s gr er
to velocity vectors within a neighborhood of the manifold. 0 achieve tne desired affocation. 1he prioritization scheme

Therefore, switching between regions in neighborhoods oIWi" allow robots_ tq minimize the contr_ol-effort expenditure
the manifold is influenced both by deterministic uncertainty as they move W|th|n_the S8t We describe the methodology
as well as stochasticity due to external noise. in the following section.

Given an FTLE-based cell decomposition)df, let G =
(V,&) denote an undirected graph whose vertex )3et
{V1,..., Vi) represents the collection of FTLE-derived cells
in W. An edgee;; exists in the set if cells V; and V;
share a physical boundary or are physically adjacent. In othe
words,G serves as a roadmap fv. For the case shown in
Fig. 2a, adjacency of an interior cell is defined based on four
neighborhoods. LeN; denote the number of AUVs or mo-
bile sensing resources/robots withif. The objective is to
synthesize agent-level control policiesuq, to achieve and
maintain a desired distribution of thé agents across the
regions, denoted by = [N, ..., Ny/17, in an environment
whose dynamics are given by E®).(

3 Methodology

}Ne propose to leverage the environmental dynamics and the
inherent environmental noise to synthesize energy-efficient
control policies for a team of mobile sensing resources/robots
to maintain the desired allocation W at all times. We as-
sume each robot has a map of the environment. In our case,
this translates to providing the robots the locations of LCS
boundaries that define eath in G. Since LCS curves sep-
arate)V into regions with distinct flow dynamics, this be-
comes analogous to providing autonomous ground or aerial
vehicles a map of the environment which is often obtained
a priori. In a fluidic environment, the map consists of the
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660 K. Mallory et al.: Allocation of swarms in gyre flows

locations of the maximum FTLE ridges computed from data Q;, denoted byQ;, C Q;, are tasked to leavié. The number

and refined, potentially in real-time, using a strategy simi-of robots inV; can be established in a distributed manner in a
lar to the one found itdsieh et al(2012). Thus, we assume similar fashion. The auction can be executed periodically at
each robot has a map of the environment and has the abilitgome frequency AT, whereT, denotes the length of time be-

to determine the direction it is moving in within the global tween each auction and should be greater than the relaxation
coordinate frame, i.e., the ability to localize. time of the AUV/ASV dynamics.

3.1 Controller synthesis 3.1.2 Actuation phase

Consider a team oV robots initially distributed acrosaf For the actuation phase, individual robots execute their as-
gyres/cells. Since the objective is to achieve a desired alloSigned controllers erend|ng on whether they were tagkgd
cation of N' at all times, the proposed strategy will consist [© St&y or leave during the auction phase. As such, the indi-

of two phases: an auction phase to determine which robot¥idual robot control strategy is a hybrid control policy con-
within eachV; should be tasked to leave/stay and an actu-SiSting of three discrete statesleave state,Uy, astay

ation phase where robots execute the appropriate leave/stay2te:Us, which is further distinguished intt's, andUs.
controller. obots who are tasked teave will executeU| until they

have leftV; or until they have been once again tasked to
stay . Robots who are tasked stay will executeUs; if
d(qk,dV;) > dmin andUs, otherwise. In other words, if a

The purpose of the auction phase is to determine whethefoPot's distance to the C?” boundary is be!ow some mini-
Ni(t) > N; and to assign the appropriate actuation strateg))ﬂ“m threshold distancéyin, then the fobc_)t will actuate _and
for each robot withirV;. Let Q; denote an ordered set whose MOVe itself away fromyV;. If a robot's distance t@V; is
elements provide robot identities that are arranged from high5"‘b°\’ed”“”}”then the robot W_'IH ixecﬁte no conr:rol actions.
est escape likelihoods to lowest escape likelihoods friom ~ RoPots will executeUs, until they have reached a state
In general, to first order we assume a geometric measur¥Ne€red(@x. Vi) > dmin or until they are tasked to leave at
whereby the escape likelihood of any particle withinin- & ater assignment round. Similarly, robots will execlis,
creases as it approaches the boundary; pflenoted as V; until eitherd (qx, dV;) < dmin Or they are tasked to leave. The

(Forgoston et a).201). Given, with dynamics given by ~ nYPrid robot control policy is given by

3.1.1 Auction phase

Eq. @), consider the case when= 0 andl # 0, i.e., the case F(qy)
when the fluid dynamics is time-independent in the pres- UL(@x) = @i x ¢ IFqoll’ (3a)
ence of noise. The boundaries between eHclare given Fq)

by the stable and unstable manifolds of the saddle pointd/s,(qx) = —®; x cF—, (3b)
within WW as shown in Fig2a. While there exists a stable 1 (gl

attractor in eaclV; when! = 0, the presence of noise means Use(gx) =0. (3c)
hat r riginating irV; hav non-zero pr ili f . .
that robots originating irv; have a non-zero probability o Here, w; = [0, 0, 1]7 denotes counterclockwise rotation

landing in a neighboring gyr&/; wheree;; € £. Here, we ith respect to the centroid df;, with clockwise rotation
assume that robots experience the same escape I|keI|hoo%ls

in each gyre/cell and assume thet(—i|i), the probability eing denoted by the negative ani a constant that sets the

that a robot escapes from regipto an adjacent region, can linear speed of the robots. The hybrid control policy gener-

. ) o ates a control input perpendicular to the velocity of the fluid
be estimated based on a robot’s proximity to a cell bound as measured by rob@t and pushes the robot towarals; if

ry with som mption of the environmental noi rofil . . . .
ary with some assumption of the environmental noise pro eUL is selected, away fromV; if Us, is selected, or results in

(Forgoston et a]2011). : ) . . )
Let d(qx,dV;) denote the distance between a rolaot gosi?;:(:r;gggt;;aﬁ; :)Sri?rfrlwi(:ﬁg I':I'ige?)hybrld control policy
LoeiaQt?(j: izlwazg }tZECE (t)#e?t?(a;z gf“//’) :V;(qiefgn‘s )Te In genergl, the auction phase is gxecuted at a frequency
- Id(qu BV) The set0; pr0\1/idesl the prizc;ritizlatE)n of 1/ T, which means robots also switch between cpntroller
;s,éh_em e fclJ; talsking robots V\l/ithM- to leave ifN: () > N; states at a frequency of I. To further reduce actuation ef-
L o T forts exerted by each robot, it is possible to limit a robot’s ac-
The assumption is that robots with higher escape “ke“hOOdStuation time to a period of im&, < 7. Such a scheme may

are more likely to be “pushed” out &f; by the environment . X .
dynamics and will not have to exert as much control effort prolong the amount of time required for the team to achieve
the desired allocation, but may result in significant energy-

when moving to another cell, minimizing the overall control ~_~ ° : .
. efficiency gains. We further analyze the proposed strategy in
effort required by the team. . :
Fhe following sections.

In general, a simple auction scheme can be used to deter-
mine Q; in a distributed fashion by the robots Iy (Dias IThe inertial velocity of the fluid can be computed from the
etal, 2000. If N;(t) > N;, then the firstv; — N; elements of  robot's flow-relative velocity and position.
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Algorithm 1 Auction phase

k é Qi;__ and d(g_'kr a‘;) < dmin
1: if ElapsedTime == Tathen

2:  DetermineN;(t) and Q; Or Gk é Vi
3. VkeQ;
4: if N;(t) > N; then
5: if k € QL then
6: u, <UL
7 else
8: up < Ug
9: end if
10: else
11: up < Ug
12: endif
13: end if
4 Analysis

In this section, we discuss the theoretical feasibility of the
proposed distributed allocation strategy. Instead of the tradi-

tlo_nal agent-based anaIyS|§, we employ a macrosco_plc analfig. 3. Schematic of the single-robot hybrid robot control policy.

ysis of the proposed distributed control strategy given by

Algorithm 1 and Eg. 8). We first note that while the sin-

gle robot controller shown in Fi@ results in an agent-level  The above expression represents a stochastic transition
stochastic control policy, the ensemble dynamics of a teanyle with a;j as the per unit transition rate and (r) and

of N robots each executing the same hybrid control strat-y (1) as discrete random variables. In the robotics setting,
egy can be modeled usingmlynomial stochastic hybrid gq. @) implies that robots av; will move to V; with a rate
system(pSHS). The advantage of this approach is that it al-of ¢;; N;. We assume the ensemble dynamics is Markovian
lows the use of moment closure techniques to model the timeynd note that in genera); # a;; anda;; encodes the inverse
evolution of the distribution of the team across the variousof the average time a robot spends/in

cells. ThiS, in turn, enables the anaIySiS of the Stablllty of the Given Eq g_) and emp|oying the extended generator we

closed-loop ensemble dynamics. The technique was prevican obtain the following description of the moment dynamics
ously illustrated inMather and Hsielf2011). For complete-  of the system:

ness, we briefly summarize the approach here and refer the

interested reader telather and Hsielf2011) for further de- %E[N] = AE[N], (5)
tails.
The system state is given B(t) = [N1(t), ..., Ny ®)]". ~ where[Al;; =a;; and [Al;; = — 3 ;)cgai; (Mather and

As the team distributes across thé regions, the rate in  Hsieh 201J). It is important to note thah is a Markov pro-
which robots leave a givel; can be modeled using con- cess matrix and thus is negative semidefinite. This, coupled
stanttransition rates For every edge;; € £, we assign a  with the conservation constraidt,; N; = N leads to expo-
constanty;; > 0 such thaty;; gives the transition probability nential stability of the system given by Edb)((Klavins,

per unit time for a robot fron¥; to land inV;. Different from 2010.

Mather and Hsiel{2011), theq;;s are a function of the pa- In this work, we note that;;s can be determined experi-
rameters:, T, and T, of the individual robot control policy ~mentally after the selection of the various parameters in the
is given by Eq. 8), the dynamics of the surrounding fluid, distributed control strategy. While theg;s can be chosen to
and the inherent noise in the environment. Furthermagre, enable the team of robots to autonomously maintain the de-
is a macroscopic description of the system and thus a paransired steady-state distributiorgieh et al. 2008, extraction
eter of the ensemble dynamics rather than the agent-baseaf the control parameters from user specified transition rates
system. As such, the macroscopic analysis is a description db a direction for future work. Thus, using the technique de-
the steady-state behavior of the system and becomes exact agribed byMather and Hsieli2011), the following result can

N approaches infinity. be stated for our current distributed control strategy:
Given g and the set of;;;s, we model the ensemble dy-
namics as a set of transition rules of the form: Theorem 1 Given a team oV robots with kinematics given
o by Eq.(1) andv s given by Eq(2), the distributed allocation
N; = N; Vejek. (4) strategy given by Algorithrt and Eq.(3), at the ensemble

level is stable and achieves the desired allocation strategy.

www.nonlin-processes-geophys.net/20/657/2013/ Nonlin. Processes Geophys., 2066872013
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For the details of the model development and the proof, we

refer the interested readerather and Hsiel(2011). a2 a2 a e oo o0 oo oo
42 0 0 42 0 |125|125| O 0 | 166 | O 0
5 Simulation results 421004 0125150 0 Jrerjer) o
41 | 42 | 42 | 41 0 0 0 0 0 0 0 0

We validate the proposed control strategy described by Al-
gorithm (1) and Eq. 8) using three different flow fields:

1. the time invariant wind driven multi-gyre model given Fig. 4. Three desired distributions of the teamMf= 500 mobile
by Eq. @) with ¢ = 0; sensing resources/robo(s) A ring pattern formation(b) a block
pattern formation, an¢t) an L-shaped pattern formation. Each box
2. the time varying wind driven multi-gyre model given by represents a gyre and the number designates the desired number of
Eq (2) for a range Of,!) 7& 0 ande # O ValueS, and robots contained within each gyre.

3. an experimentally generated flow field using different
values ofT; andc in Eq. 3).

80

We refer to each of these as Cases 1, 2, and 3, respectively, «
Two metrics are used to compare the three cases. The first if«
the mean vehicle control effort to indicate the energy expen-“%
diture of each robot. The second is the population root mean ‘s
square error (RMSE) of the resulting robot population distri- 100, o 10 * Rt
bution with respect to the desired population. The RMSE is ™" Xpositon Y Poston o Xpesten
used to show effectiveness of the control policy in achieving () No Control (b) Ring
the desired distribution.

All cases assume a team@f= 500 robots. The robotsare 150
randomly distributed across the setMfgyres inWW. For the
theoretical models, the workspakg consists of a 4« 4 set
of gyres, and eacl; € V corresponds to a gyre as shown in
Fig.2a. We considered three sets sets of desired distributions ’s0 =
namely a ring formation, a block formation, and an L-shaped M0 T 10 10 * 030 o T -0
formation as shown in Figt. The experimental flow data had e Xposten e Xeson
a set of 34 regions. The inner two cells comprisid, while (¢) Block (d) L-Shape
the complemend/V¢, consisted of the remaining cells. This

designation of cells helped to isolate the system from boundi:ig. 5. Histogram of the final allocations in the time-invariant flow

.ary effepts, gnd allowed the robots to escap(? the Cen_ter 9Y'&R1d for the swarm ofa) passive robots exerting no controls and
in all directions. The desired pattern for this experimental opts exerting control forming tHe) ring pattern withTe = 0.87,
data set was for all the agents to be contained within a singleyt ; — 450, (c) block pattern with7; = 7 at r = 450, and(d) L-
cell. Each of the three cases was simulated a minimum of fivgshape pattern witli, = 0.575 ats = 450.

times and for a long enough period of time until steady-state

was reached.

@
3

Population
-
&

N
S

50
10 30

Population
Population

50
10 30

5.1 Case I: time-invariant flows and individual robots follow fixed trajectories when navigat-
ing from one gyre to another. For this baseline case, robots
For time-invariant flows, we assume=0, A=0.5, s = travel in straight lines at fixed speeds using a simple PID tra-

20, © = 0.005, andl = 35 in Eq. @). For the ring pattern, jectory follower and treat the surrounding fluid dynamics as

we consider the case when the actuation was applied foan external disturbance source. The RMSE results for all pat-

T; = f T4 amount of time wheref =0.1,0.2,...,1.0, and  terns are summarized in Tableand Fig.6. The cumulative

T, = 10. For the block and L-shape patterns, we considereatontrol effort per agent is shown in Figa. From Fig.6, we

the cases whefl; = 0.57, and T = T,. The final popula- see that our proposed control strategy performs comparable

tion distribution of the team for the case with no controls andto the baseline case especially wHgn= T, = 10 s. In fact,

the cases with controls for each of the patterns are shown ieven whenT; < T,, our proposed strategy achieves the de-

Fig. 5. sired distribution. The advantage of the proposed approach
We compared our results to a baseline deterministic allodies in the significant energy gains when compared to the

cation strategy where the desired allocation is pre-computedbaseline case, especially whEn< Ty, as seen in Figl. We
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Table 1. Summary of the RMSE for each simulation patterm &t

ey
o
T

450 with the time-invariant flow field. The RMSE for the baseline —Passive
case is 4.09. 35 —Te=2
s
Tc 2 5 8 9 10 % o5. 7Tc -9
Ring Pattern  12.99 598 345 3.49 3.66 5200 T =10
Block Pattern - 11.21 - - 1272 g Baseline
L Pattern - 30.09 - - 30.45 § e
100
57 ‘:_‘_\:—‘:=‘—\>,ﬁ,_
omit the cumulative control effort plots for the other cases 0 ‘ ‘ ‘ ‘
. .. . 0 100 200 300 400 500
since they are similar to Fig. t
In time-invariant flows, we note that for large enoui
our proposed distributed control strategy performs compara- S —Passive

ble to the baseline controller both in terms of steady-state
error and convergence time. A% decreases, less and less
control effort is exerted and thus it becomes more and more
difficult for the team to achieve the desired allocation. This
is confirmed by both the RMSE results summarized in Ta-
ble 1 and Fig.6a—c. Furthermore, while the proposed con-
trol strategy does not beat the baseline strategy as seen in
Fig. 6a, it does come extremely close to matching the base-
line strategy performance. while requiring much less control
effort as shown in Fig7 even at high duty cycles, i.e., when 20, 100 200 300 200 500
Tc/Ta> 0.5. t

More interestingly, we note that executing the proposed
control strategy at 100% duty cycle, i.e., wh&p= Ty,
in time-invariant flows did not always result in better per- 50
formance. This is true for the cases wh&n=0.5T;, =5
for the block and L-shaped patterns shown in Feg—c.
In these cases, less control effort yielded improved perfor-
mance. However, further studies are required to determine
the critical value off; when less control yields better over-
all performance. In time-invariant flows, our proposed con-
troller can more accurately match the desired pattern while 25/
using approximately 20 % less effort when compared to the 0

baseline controller. 0 100 200 . 300 400 500

Population RMSE

Population RMSE
W s
oo o

w
o

5.2 Case II: time-varying flows Fig. 6. Comparison of the population RMSE in the time-invariant

. . Lo flow for the (a) ring formation,(b) the block formation, an¢c) the
For the time-varying, periodic flow, we assurde= 0.5, L-shape formation for differeri., and for the PID control baseline
s =20, 4 =0.005,1 = 35, andy =0 in Eqg. ). Addition- controller in the ring case with time-invariant flows.
ally, we considered the performance of our control strategy

for different values oftv ande with 7, = 10 and7. = 8 for

the ring formation and;, = 5 for the L-shaped formation. In

all these simulations, we use the FTLE ridges obtained forthe population RMSE as a function of time for the ring and
the time-independent case to define the boundaries of eadh-shape patterns.

V;. The final population distribution of the team for the case In time-varying, periodic flows we note that our proposed
with no controls and the cases with controls for the ring andcontrol strategy is able to achieve the desired final allocation
L-shape patterns are shown in FR&y. The final population even at 80 % duty cycle, i.eTy = 0.87,. This is supported
RMSE for the cases with differeatande values for the ring by the results shown in Fi@. In particular, we note that the
and L-shape patterns are shown in FigThese figures show proposed control strategy performs quite well for a range of
the average of 10 runs for eaehande pair. In each of these @ ande parameters for both the ring and L-shape patterns.
runs, the swarm of mobile sensors were initially randomly While the variation in final RMSE values for the ring pattern
distributed within a 4x 4 grid cell. Finally, Fig.10 shows s significantly lower than the L-shape pattern, the variations
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Fig. 7. Comparison of the total control effort for the ring pattern for
different T with the baseline controller for time-invariant flows.
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Fig. 8. Histogram of the final allocations in periodic flows, with pa-
rameters ofv = 54—’6 ande = 5, for the swarm ofa) passive robots
exerting no controls and robots exerting control forming(theing
pattern with7c = 0.873 at r = 450, and(c) L-shape pattern with
TC == 05Ta atr = 450

in final RMSE values for the L-shape are all within 10 % of
the total swarm population.
5.3 Case lll: experimental flows

Using our 0.6 mx 0.6 mx 0.3m experimental flow tank
equipped with a grid of & 3 set of driving cylinders, we

generated a time-invariant multi-gyre flow field to use in sim-
ulation. Particle image velocimetry (PIV) was used to ex-

tract the surface flows at¥Hz resulting in a 3% 39 grid
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(a) Ring

0
pi/40
2*pil40

8
3*pi/40

4*pif40

5*pi/40

(b) L-Shape

Fig. 9. Final population RMSE for different values af ande for
(a) the ring formation andb) the L-shaped formation.

of 60s. Figurell shows the top view of our experimental
testbed and the resulting flow field obtained via PIV. Further
details regarding the experimental testbed can be found in
Michini et al. (2013. Using this data, we simulated a swarm
of 500 mobile sensors executing the control strategy given by
Eqg. 3).

To determine the appropriate tessellation of the
workspace, we used the LCS ridges obtained for the
temporal mean of the velocity field. This resulted in the
discretization of the space into a grid ofx43 cells. Each
cell corresponds to a single gyre as shown ER).The cells
of primary concern are the central pair and the remainder
boundary cells were not used to avoid boundary effects and
to allow robots to escape the center gyres in all directions.
The robots were initially uniformly distributed across the
two center cells and all 500 robots were tasked to stay within
the upper center cell. When no control effort is exerted by
the robots, the final population distribution achieved by the
team is shown in Figl3a. With controls, the final population
distribution is shown in Figl3b. The control strategy was

of velocity measurements. The data was collected for a totahpplied assumin@;/ 75 = 0.8. The final RMSE for different

Nonlin. Processes Geophys., 20, 65568 2013
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Fig. 10.Comparison of RMSE over time for selectande pairs for
the(a) ring and(b) L-shaped patterns in periodic flows. 200 o
values ofc in Eqg. @) andT; is shown in Figl4a and RMSE 100+ i
as a function of time for different values of and 7, are
shown in Fig.14b.
The results obtained using the experimental flow field % 100 200 300 400 500 600
shows that the proposed control strategy has the potential tc X
be effective in realistic flows. However, the resulting perfor- (b)

mance will require good matching between the amount of
control effort a vehicle can realistically exert, the frequency
in which the auctions occur within a cell, and the timescales
of the environmental dynamics as shown in Figa and b.
This is an area for future investigation.

Fig. 11. (a)Experimental setup of flow tank with 12 driven cylin-
ders.(b) Flow field for image(a) obtained via particle image ve-
locimetry (PIV).

6 Conclusions and future outlook

which in the fluid setting is akin to having some estimate of
In this work, we presented the development of a distributedthe global fluid dynamics. This can be achieved by know-
hybrid control strategy for a team of robots to maintain a de-ing the locations of the material lines within the flow field
sired spatial distribution in a stochastic geophysical fluid en-that separate regions with distinct dynamics. Using this
vironment. We assumed robots have a map of the workspacknowledge, we leverage the surrounding fluid dynamics and
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Fig. 14. (a) Final RMSE for different values of and T, using
the experimental flow fieldT/ Ta = 0.8 is kept constant through-
out. (b) RMSE over time for seleat and T parameters on an ex-
perimental flow field. The duty cycl&:/ Ta = 0.8 is kept constant
throughout.

Fig. 13. Population distribution for a swarm of 500 mobile sensors
over a period of 60 §a) with no controls, i.e., passive, aifiol) with
controls withT; = 0.875.

Navy Coastal Ocean Model (NCOM) database. Particularly,
inherent environmental noise to synthesize energy efficieniye are interested in extending our strategy to non-periodic,
control strategies to achieve a distributed allocation of thetjme-varying flows. In addition, we are currently developing
team to SpeCifiC regionS in the Workspace. Our initial resultSan experimenta| testbed Capab'e of generating Comp'ex 2-D
show that using such a strategy can yield similar performanceiows in a controlled laboratory setting. The objective is to
as deterministic approaCheS that do not eXplICItly account forbe able to evaluate the proposed control Strategy using ex-
the impact of the fluid dynamics while reducing the control perimentally generated flow field data whose dynamics are
effort required by the team. similar to realistic ocean flows. Finally, since our proposed

For future work we are interested in using actual oceanstrategy requires robots to have some estimate of the global
flow data to further evaluate our distributed allocation Strat'ﬂuid dynamiCS, another immediate direction for future work
egy in the presence of jets and eddi€og@erson et al. s to determine how well one can estimate the fluid dynam-

1999 Miller et al., 2002 Kuznetsov et a).2002 Mancho  jcs given knowledge of the locations of Lagrangian coherent
et al, 2008 Branicki et al, 2011 Mendoza and Mancho  structures (LCS) in the flow field.

2012. We also are interested in using more complicated
flow models including a bounded single-layer PDE ocean
model {orgoston et al.2011), a multi-layer PDE ocean
model (Vang et al. 2009 Lolla et al, 2012, and realis-
tic 2-D and 3-D unbounded flow models provided by the
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