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Abstract. This paper presents a new procedure to mapfor the work presented here. The regressiorfobn LST

time series of air temperaturdy at fine spatial resolu- was determined using concurrent observationgpét the

tion using time series analysis of satellite-derived land sur-four available weather stations in the Valle Telesina (Italy),
face temperature (LST) observations. The method assumesur study area.

that air temperature is known at a single (reference) loca- The accuracy of our estimates is consistent with literature
tion such as in gridded climate data with grid size of the and with the combined accuracy of LST afid We obtained
order of 35 kmx 35km. The LST spatial and temporal pat- comparable error statistics when applying our method to LST
tern within a grid cell has been modelled by the pixel-wise data during periods different but adjacent to the periods used
ratiosr(x, y,t) of the LST at any location to the LST at a to model ofr(x, y,t). The method has also been evaluated
reference location. A preliminary analysis of these patternsagainstT, observations for earlier periods of time (1984—
over a decade has demonstrated that their intra-annual varit988), although available data are rather sparse in space and
ability is not negligible, with significant seasonality, even if time. Slightly larger deviation were obtained. In all cases five
it is stable throughout the years. The intra-annual variabilitydays of averages from estimated and obseffyadere com-

has been modeled using Fourier series. We have evaluatguhred, giving a better accuracy.

the intra-annual variability by theoretically calculating the
yearly evolution of LST () for a range of cases as a function
of terrain, land cover and hydrological conditions. These cal-
culations are used to interpret the observed 8T, ) and 1 Introduction

r(x, y,t). The inter-annual variability has been evaluated by

modeling each year of observations using Fourier series an@if temperature 1) is an important variable in control-
evaluating the interannual variability of Fourier coefficients. ing land—atmosphere interaction and is a key input element
Because of the negligible interannual variability-¢f, y, ), ~ for hydrology and land surface models. Modelling of crop
LST (x, y,1) can be reconstructed in periods of time differ- growth and evapotranspiration requires climate data input.
ent from the ones when LST observations are available. Tim&Vhen dealing with studies of complex landscapes the know!-
series off, are generated using the ratiox, y, £) and a lin- edge of spatial fields of; is crucial. To give an example,
ear regression between LST afig Such linear regression is  differences of the order of 1 to 2K in medh may be deter-
applied in two ways: (a) to estimate LST at any time from ob- Minant for the optimal growth of a certain crop (Vogt et al.,
servations or forecasts @f at the reference location; (b) to 1997). In the case of complex terrains, local spatial variabil-
estimateT, from LST at any location. The results presented ity of climate is not negligible and depends on several fac-
in this paper are based on the analysis of daily MODIS LSTtOrs, among them topography, soil humidity and land use. As
observations over the period 2001-2010. That the refer- & consequence of spatial variability, local climatic conditions
ence location was gridded data at a node of a 35&@6km ~ May or may not be suitable for the optimal growth of a spe-

grid. Only one node was close to our study area and was use@fic crop. This leads to the need for detailed spatial patterns
of T,. Insufficient attention, however, has been paid so far to
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the characterization df} fields within complex landscapes between LST observed by satellite and minim@im;mea-
(Dobrowski et al., 2009). sured at different meteorological stations on specific winter
T, is observed at meteorological ground stations whichdays.
provide data at specific locations. The sparse distribution of Mostovoy et al. (2006) estimated daily maximum and min-
stations as well as the frequently insufficient temporal coverimum T, with linear regression on LST over the state of Mis-
age severely constrain the study of climate-related processesssippi for the period 2000—-2004. They documented that the
in complex landscapes. Sparseness of stations and the fréinear regression between LST affigresulted in very high
quent gaps in observations severely hamper the reconstrucorrelation coefficientsR. Furthermore the authors demon-
tion of T, spatial patterns by means of conventional interpo- strated thaR increases with decreasing pixel size of the LST
lation techniques, e.g. inverse distance weighting or Kriging.image data and tha& depends on the season and land cover.
In contrast, large datasets on land surface temperature It is hard to assess the scale dependence dfflvs. LST
(LST) are actually available thanks to numerous Earth obserregression, since adequate time series of LST are only avail-
vation missions, e.g. the Moderate Resolution Imaging Specable at a spatial resolution of 1 ksl km or lower (imag-
troradiometer (MODIS), the Advanced Very High Resolu- ing radiometers on-board geo-stationary satellites). At higher
tion Radiometer (AVHRR), and the Advanced Along Track spatial resolution, the temporal sampling is not sufficient to
Scanning Radiometer (AATSR). These data are available atletermine the relationship betwe&gp and LST. For larger
high temporal and spatial resolution over extended regions. areas, spatially variable regression coefficients must be used
The impact of gaps in time series of LST satellite data canas documented by the literature reviewed (e.g. Mostovoy et
be mitigated by specific algorithms which identify and re- al., 2006; Shen and Leptoukh, 2011).
move cloud-contaminated observations and fill the resulting Shen and Leptoukh (2011) found that the AME of the es-
gaps (Menenti et al., 1993; Gao et al., 2008). timated maximunty varies from 2.4C over closed scrub-
Many authors estimated’; using LST observations. lands to 3.2C over grasslands. AME of the estimated min-
In some studies the temperature-vegetation index methotmum 7, was about 3.0C. Maximum T, was estimated by
(TVX) has been used, based on the correlation between th¥ounghui and Baiping (2012) in the Tibetan Plateau using
vegetation index NDVI and LST (Prihodko and Goward, linear regression off, on LST with a standard error be-
1997; Nemani and Running, 1997; Stitsen et al., 2007; Nietadween 2.25 and 3.2%. Yan et al. (2009) performed vali-
etal., 2011; Gallo et al., 2011). The TVX method is based ondation of estimatedy with measuredl;; a using 335 syn-
the assumption that LST is equal g (with uniform atmo-  optic weather stations in China for 2006 to show that the
spheric forcing and soil moisture conditions) when NDVI is algorithm performs well with overall statistics & = 0.96
higher than 0.65 (i.e. at full vegetation cover). Prihodko et al.and RMSE=3.23°C. Xu et al. (2012) achieved an AME of
(1997) estimated daily maximuffy in Kansas with an abso- 1.98°C and ank? = 0.9215.
lute mean error (AME) of 38C. Similar results were found The studies reviewed above are relatively few and they
in Oregon by Goward et al. (1994) (root mean square er-cover only limited periods of time ranging from several days
ror RMSE=5.4°C), in Canada by Czajkowski et al. (1997) to a season. No previous work is known to the authors on the
(RMSE=4.2°C), in Oklahoma by Czajkowski et al. (2000) determination of the relationship between LST dncover
(RMSE=2.08°C) and in Mediterranean climate by Nieto et several years at daily temporal resolution, except a few cases
al. (2011) (AME of 2.8C and RMSE of 3.7C). e.g. Mostovoy et al. (2006). The review above demonstrates
The limited applicability of this method to estimate maxi- the increasing interest of the research community during the
mum T, was demonstrated by Vacutsem et al. (2010), wholast decade in the use of satellite observed LST to estimate
found a scarce correlation between (mBx— LST) and Ta.
NDVI. These authors estimated minimufy with RMSE The relation betweefi; and LST is especially strong dur-
varying between 2.86 and 3.0 and observed that tHg, ing early afternoon hours when the radiative heating of the
estimated by the TVX method could be inaccurate or biasedsurface increases sensible heat flux under limited water avail-
depending on the study area. ability (Oke, 1987). The latter led us to assume that obser-
Hengl et al. (2012) used MODIS LST images as an auxil-vations of the spatial variability of maximum LST (in our
iary predictor ofT,. Temperature was modeled as a function case at the time of the daily overpass of TERRA/MODIS)
of the MODIS LST as well as of latitude, longitude, distance could be used to characterize the spatial fields of maximum
from the sea, elevation, time and insolation. They obtainedr; over time. Increasing the temporal coverage of the ana-
an average error a£2.4°C onT,. lyzed LST images to several years could also help to identify
The strong correlation betwee, and LST has been any non-linearity in the relation between the spatial variation
demonstrated in previous works (i.e. Kawashima et al., 2000pf radiative forcing and of LST. The latter is influenced by
Jones et al., 2004; Park et al., 2005; Mostovoy et al., 2006)several land properties. Slope and elevation determine actual
These authors used a linear regression betWgemd LST  irradiance at a given location (Allen et al., 2006). In topo-
to increase spatial resolution dt, fields. Kawashima et graphically complex areas, altitude as well as the structure of
al. (2000) and Jones et al. (2004) observed a good correlatiothe boundary layer above the surface influence temperature,
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humidity and wind fields (Bertoldi et al., 2010). The parti- 2 Methods
tioning of sensible and latent heat fluxes is influenced by the
soil water content so that it has implicit control on LST (Gu 2.1 The SINTESI approach

et al., 2006; Mahmood et al., 2006). Further, vegetation in- ,
directly influences LST changes by modulating the land sur-OUr SINTESI approachis a procedure developed to faa

face response to weather and climate through turbulent trandin€ spatial resolution combining the LST observed by satel-
fer, transpiration and divergence of radiation. lite andT, data at a reference location. SINTESI is structured

The aim of this work was to develop a new procedure to!n Séveral steps including preprocessing of the LST time se-
retrieve spatial patterns @t over a certain area and period €S image data to identify missing data and outliers and to
of time, starting from a very limited areal density Bf data fill the resulting gaps. The procedure includes the following

and from LST time series observed by satellite. Specifically,StePS:
we want to estimatd; at the spatial resolution of LST im-
age data giverT, at a single reference location, e.g. at any
node where gridded climate (either past or future) data are
available (as explained in detail in Sect. 3).

To achieve this objective we need to characterize the
spatio-temporal pattern of LST and to demonstrate the inter-

— normalization of spatial variability to a reference loca-
tion, and construction of the time series of the ratio of
LST (x, y,t) to the LST at the reference location LST
(x0, yo, ), with x and y the coordinates, respectively,
along the east and north anthe time;

annual stability of such pattern. This makes it possible to re- _ modeling by Fourier series the ratio
construct the spatial patterns ©f in different climate pe- [LST(x, y,1)/LST(x0, yo,)] pixel-wise using multi-
riods, particularly when no detailed spatial information is annual observations by satellite thermal infrared
available (e.g. no satellite data available). measurements;

In synthesis we address the following questions: are spa-
tial and temporal patterns of LST stable? Can we use time — €valuating the temporal stability of the Fourier coeffi-
series of LST spatial data to capture and characterize such ~ cients;
patterns? Can we characterize the coupling of near-surface
T, with LST using a limited areal density of meteorological
stations?

The final result of this procedure should also be applica-
ble, over a certain area, in time periods different from that _ determining the relationships between near-surfice
analyzed, once the temporal stability of the LST spatial pat- and LST;
tern has been demonstrated. This is the important innovation
of our method Compared with the ones genera”y used to re- — combine the model of the time series of normalized LST
trieve T, spatial patterns. with the regressioff; vs. LST to obtairl; (x, y,t) as a

The Stable INvariant air and land surface TEmperature  function of LST (o, yo, 7).

areal patterns by Fourier analySls (SINTESI) approach will _.
be described in detail in Sect. 2. Section 3 contains a brief 19uré 1 shows the work flow of the SINTESI procedure and

description of the study area and of the data used in testth® methodologies used to implement each steps. In the fol-
ing our method. Results from the spatio-temporal analysid®Wing paragraphs, a detailed description of each step is pre-

of MODIS LST observations over the period 2001-2010 areSented.
presented in Sect. 4.1 while Sect. 4.2 describes the linear r
gression analysis performed to establish Thess. LST re-

lationship at the available ground stations. Comparison ofggyeiite time series of optical data are often affected by cloud
T, estimates with observations is discussed in Sect. 4.3. Ir?:over, haze or large viewing angles. The screening and re-
Sect. 5.1 we compare the observed spatio-temporal pattermg o 4| of the contaminated observations as well as the tempo-
of LST with a theoretical calculation, taking into account the 5| interpolation of the remaining observations to reconstruct
impact of terrain and land cover on solar irradiance and lan apless images has been performed by Harmonic ANalysis
surface energy budget. In Sect. 5.2 we evaluate our methog Time Series (HANTS) algorithm (Menenti et al., 1993:
against observations @f collected in the period of time pre-  \ornoef et al., 1996). The software was developed by The
ceding the launch of TERRA/MODIS. National Aerospace Laboratory of the Netherlands (NLR) in-
stitute and is freely available at the following internet site:
http://gdsc.nlr.nl/gdsc/en/tools/hants
Despite the fact that HANTS was designed specifically for
the processing of NDVI images, it has been applied success-
fully to the LST time series (Julien et al., 2006).

— using mean values of the Fourier coefficients to obtain
an estimated LS y, ) at a given location as a func-
tion of LST (xo, yo, 1);

.2 Preprocessing of LST time series
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Final output

Ta(x,y,t)

Amplitudes
and phases

Fig. 1. Schematization of the SINTESI procedure.

The algorithm combines harmonic analysis with curve fit- Menenti, 2000): the base period (BP), the number of fre-
ting in iterative steps. At each pixel, the signal is modelled quencies (NOF) and Hi/Lo suppression lag (SF). BP indi-

using a Fourier series: cates the number of time samples corresponding to the base
" frequency of the harmonic analysis. Also the time sampling

y(t) = ao+ |:Z“i coS2n fity) + b; sin(2nf,~ty):| (1) of each observation is specified by the user in arbitrary units
T (in an input file listing the images to process). For example,

the time unit is the hour the base period has been set to one
day, i.e. BP=24 units (hours in this example). The NOF is
the number of frequencies to be used in the curve fitting and
determines the degree of detail by which a curve/signal is
described. Setting a low NOF produces a smooth curve with

At each step the harmonic components are calculated Oflitle details. A larger NOF leads to a less smooth curve with

the datg points after Igavmg OUt. the out_hers _(!.e. CIOUd'much more detail. SF indicates the direction of outliers with
contaminated observations). Outliers are identified at each
spect to the current curve. For example, clouds as well as

) o T
step as observations deviating by more than a pre—deflnegneist or large view angle always have a negative effect (lower
threshold value (FET: the fit error tolerance) from the curve 9 g y 9

fitted at the previous step, and are weighted as zero in the su yalues) on LST so that the SF should always be set to “low".

N : : ; . - The same is for other variables, i.e. NDVI, while in other
sequent curve-fitting iteration. The iterations continue until s " .
. . . e . cases the direction could be positive due to higher values of
all the data in a time series are within the prescribed FET or . :
o . the affected variable (e.g. cloud albedo) or more in general to
when the number of data points is less than the minimum, - o used by incorrect retrieval
number of valid observations (DOD: degree of overdeter- y '
minedness). DOD and FET have to be specified by the user
every time the HANTS algorithm is used. DOD must always
be greater than or equal to the number of parameters tha.3 Modelling the spatial patterns of LST
describe the curve but the user can decide to use more data
points than the necessary minimum to improve the accuracy
of thea andb coefficients. The spatial pattern of LST is modeled by normalizing the
The curve-fitting process is controlled, in addition to DOD pixel-wise LST time series at any location to the LST mea-

and FET, by other three parameters as well (Roerink andsured at the reference locatiomg(yg). The result is the

wherens is the number of frequenciag; is the average of the
series and, the time of observation. The coefficientsand

b are the coefficients of trigonometric components functions
at the frequency.
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pixel-wise ratior:

Py = e )
(x0, yo, 1).

The choice of the reference location is arbitrary provided |
r(x,y,t) is stationary and can be modeled by maps of the Keie
Fourier coefficients. The choice of the reference location
changes the value of the ratidx, y, r) but does not change
the value of LST L, y, 7).

The temporal stability of the pixel-wise ratio is evaluated
using harmonic analysis. We used Fourier analysis to decom |vegen
pose the ratie (x, y, r) in three periodic signals with periods |&5"
respectively 365, 180 and 120 days. Théime series are | oot
processed by a Fourier analysis on a yearly basis. FOr €ac o s
frequency the amplitude and phase of the sine and cosine
functions are determined. The inter-annual stability of theFig. 2.Valle Telesina: location map showing the position of the node
spatial pattern is evaluated on the basis of the inter-annual221 and of the ground meteorological stations.

variability of the Fourier coefficients (amplitudes).

2.4 Correlation analysis ofT, and LST with A; and v; being, respectively, the amplitude and
phase of the-th harmonic component averaged over the

We have established the relationship betweenTthenea-  years, spanning the analyzed LST time series once the inter-

sured at the available stations within our study area and LSTannual stability of the ratio has been verified.

by linear regression analysis:

Ta=LST-m; +n;, 3) 3 Materials

where subscriptrefers to a ground (meteorological) station. \we jmplemented and evaluated the SINTESI algorithm on
In this study we have used a single regression equation witjata collected in the Valle Telesina area (Southern Italy) to
coefficientsm andn for the entire area, estimated by aver- gpain temporal maps of daily maximufi at 1 kmx 1 km
agingm; andn;. When aiming at the estimation @, over resolution. We used three datasets:

a period of time when no satellite observation of LST are

available, the inverse regression is required at the reference — We have constructed the model(x, y,7) using
location: TERRA/MODIS LST data, spanning the period be-

tween 1 January 2001 to 31 December 2010;

1
LST(xo, yo,t) = — - Ta(xo, yo,t) — no, 4 .
(x0, yo. 1) mo a(x0, Yo, 1) = 1o () — we used ag; at the reference location, yo) the T,

available at node 1221 of a gridded dataset available on
the entire Italian territory at 35 km 35 km resolution.
This dataset is available from 1950 onward (Esposito,

where subscrips indicates the reference location. The result
of this analysis are the parametersn, 1/mg and—ng.

2.5 T, calculation 2010). Further, scenarios on future climate have been
generated for the same grid (Tomozeiu et al., 2007), pro-
Daily maximumTj, at each pixel location is estimated by duced within the Italian project “Agroscenari” (Fig. 2);
Ta(x,y,1) = (5) — to establish the relationship betwe&h and LST we
(Ta(x0, yo. 1) - 1/mo — no) - r(x, y,0)] -m +n, have used the observationsTfat four ground stations
[(Talxo, » / >0l within the 35 kmx 35 km grid spanning the period be-
with Ty (xo, yo,7) the air temperature at the reference loca- tween 2001 and 2010 (Fig. 2).
tion.
The ratior is calculated as 31 Study area
i=3
r(x.y.t)=ao+ Y a;cos2rfity)+b;sin2rfit,).  (6)  The Valle Telesina area is a 20000 ha complex landscape
i=1 located in the west-central area of the Benevento province
where (Campania region, Southern Italy). The dominant morpho-
_ _ x A logical structure is @raben,where the Calore river flows. It
ai = Aj - COSY; - 750):bi = A; -Sln<1ﬂi : 1_80) (7)  is bounded on the north by the calcareous horst of Matese-

Monte Maggiore and on the south by the mountain group
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Table 1. Meteorological ground stations in the study area and be-Table 2. HANTS parameter settings used in this study.
longing to the Rete Agrometeorologica Regionale (Campania Re-

gion). Parameter Value

Station Latitude Longitude Altitude Vahq range (V_R ) %50_:‘7’50 K
N () E ) ©) Qutllers direction (OD) Low
Fit error tolerance (FET) 5K

Telese 41.20 14.53 66 m Degree of overdeterminedness (DOD) 50
Castelvenere 41.23 14.54 125m Number of frequencies (NOF) 3
Guardia Sanframondi 41.25 14.60 335m Base period (BP) 365
Solopaca 41.19 14.55 220m

instrument view angle might cause additional uncertainties.
of Taburno Camposauro. The latter extend from north-eastrhe | ST accuracy is better than 1K over heterogeneous sur-
(Croce, Ciesco and Montesella mountains) to north-weskaces, as demonstrated in field experiments over water, crop
(Monaco di Gioia mountain). Because of the complex mor-anq grassland. On the other hand, the uncertainty in land sur-
phological setting, the elevation over the area spans a wide,ce temperature can be very large if the measurements are
range. The leading high ground is the Camposauro mountaig ffected by clouds or heavy aerosol.
(1349ma.s.l.). The minimum altitude is found at the con- | this work we aim to determine the maximum daily value
fluence of the Calore with Volturno river (34 ma.s.l.). Mean of |and surface temperature and therefore used LST observa-
annual rainfall over the area is about 1000 mm and spatiajjgns at the daily overpass of the Terra satellite.
variability over the area is significant. About 70 % of the to-  Tjme of LST data sampling is about 11:30 Local Solar
tal precipitation is concentrated between autumn and Winterrime, which is close to the time of maximufa. Moreover,
while the summer is almost dry. Annual mean temperature isMostovoy et al. (2006) showed that the effect of the differ-
about 15.9C. ence between the satellite overpass time and the time when
maximumTj is observed at ground station does not alter the
correlation coefficients of the linear regressiorTgf/s. LST.
This result suggests that the difference in MODIS overpass
time with respect to the time of maximuffy, observations

Daily LST time series acquired between 1 January 2001does not produce significant errors in estimating maximum

and 31 December 2010 by MODIS on the Terra Sate”itealrtemperature.
(MOD11A1 product) were used in our analysis, after down-
loading from the NASA ftp serverftp://e4ft101.cr.usgs.
gov). We processed the latest product level MOD11A1-VO05,
whose accuracy and stability of data are significantly im-
proved compared to the previous versions (Wan et al., 2008).
The most important refinement with respect to the version 04
consists in keeping to a minimum any cloud-contaminated
LST observations while maintaining a good level of accu-
racy.

The V5 MOD11A1 products are projected in a Sinusoidal
grid by mapping the level-2 LST product (MOD1P) on
a 0.928 kmx 0.928 km grid. This product contains LST as  b. 7a gridded data at the reference location (Fig. 2) has
well as band 31 and 32 emissivity)( clear sky coverage, been produced within the project Agroscenari, apply-
quality control assessment, view zenith angle and time of ob-  ing kriging with an external drift method (Wackernagel,
servation. 1998; Hengl et al., 2003) to the meteorological data

The LST retrieval is based on the Sp”t-window method included in the National Agro-metereOIOQical database
(Wan and Dozier, 1996). In this approach, the surfade (Ministry of Agriculture, Food and Forestry Policies,
band 31 and 32 are supposed to be known on the basis of the ~1990). Daily meteorological data have been gridded at
land cover type (MOD12C1). The accuracy of LST retrieval 35kmx 35 km resolution for the period from 1950 on-
depends on thevalues set in the two split-window channels. wards (Esposito, 2010). This gridded dataset is the ref-
In the case of high heterogeneity over the pixel, errors might erence data on ltalian climate and climate scenarios are
occur in specifying: from land cover type, especially in arid constructed using the same grid. Our method down-

3.2 Data

3.2.1 MODIS data

3.2.2 Meteorological data
We have used two sets of meteorological data:

a. Meteorological measurements at the ground stations
(Fig. 2) have been provided by the Regional Agro-
meteorological network of the Campania region. Ta-
ble 1 lists the stations and data available in the period
2001-2010 over Valle Telesina.

and semi-arid areas, where overestimates afe often ob-
served (Wan et al., 2004). Also, the variationsofvith the

Nonlin. Processes Geophys., 20, 51827, 2013

scales these gridded data dxto a finer 1 kmx 1 km
grid.
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0.025 — ; ‘ ; : . ‘ 1.01 energy balance (see green line in Fig. 3). The lowealues
during the winter season are the combination of two effects.

The higher precipitation in winter affects soil humidity over
losg the area, thus changing the energy partitioning between latent
and heat fluxes. In addition, the seasonality of solar radiation
L I (lower values in winter) also causes LST ratios to be lower

in winter than in summer. The amount of solar radiation re-
ceived by a certain surface is in fact controlled by the relative
position of the sun as well as by the local orientation of the
land surface.

The lower radiative forcing in winter is also evident in
the smaller spatial variability of than during the summer
(Fig. 4). LST spatial variability on local scale depends on fac-
06/05/01 11/10/02 23/02/04 0707/05 19711106 02/04/08 15/08/08 2611210 tors primarily linked to local morphology like slope, aspect
_ ] ) and elevation. They have a direct influence on the amount of
F|g._3._Da|Iy tren_d of areal_ average (green line) and areal Standardradiation received by the surface. In addition, soil use and
deviation (blue line) of ratio from 2001 to 2010. soil water content also have a significant role in energy par-
titioning, and therefore on LST. The spatial patterrn-aé
related to the combination of all these factors. The matter

=
=
)

0.015

o

(=]

=
T

Areal standard deviation of ratior
Areal average of ratior

&
o
=1
5]

4 Results will be discussed more in detail in Sect. 5.1.
A first evaluation of the area-averaged ratichown in
4.1 Spatio-temporal variation of LST Fig. 3 points out that, although the intra-annual variability is

significant, it seems to be stable through the decade 2001-

LST image data were processed using the HANTS algorithm2010. The exception is the year 2003 where a sharp decrease
to remove invalid observations and to fill the resulting gaps inof mearr is observed around the end of summer. Areal stan-
the time series (Menenti et al., 1993, 2010). HANTS identi- dard deviation of the ratio shows the same trend, suggesting
fies and removes cloud-affected observations in all the pixeldhat the spatial pattern of the ratio is also quite stable in time
of all images in the time series and fills the resulting gaps(blue line in Fig. 3) with the exception of 2003. Standard de-
using Fourier series to model the time series. The applicaviation values vary between 0.005 and 0.016, depending on
tion of HANTS required a preliminary analysis of the data to the season with exception of the maximum value during the
identify the best set of input parameters. In Table 2 the inputsummer of 2003 (0.024).
parameters values that we set in our analysis are listed. Intra-annual variability cannot be neglected although its

The target error (FET) and the number of frequencies aranter-annual trend seems to be stable. The observed yearly
the main parameters playing a role in the successful applimean seasonal patterns provide further support to this state-
cation of the HANTS algorithm. We evaluated the recon- ment. Here we only show the summer and winter patterns of
struction with FET= 3, 5 and 8 K and concluded that cloud- a representative year (2007) compared with the anomalous
affected observations were assessed as valid when usingear 2003 (Fig. 4). Summer and winter spatial fields of the
FET= 3 and FET= 8. We therefore decided to use FEB. ratio r calculated over the remaining years presents similar
This FET value was also suggested by Julien et al. (2006) fopatterns.
cloud removal in the LST time series. We applied harmonic analysis to each year separately in

We evaluated different options to choose the NOF param-order to obtain a quantitative estimation of the inter-annual
eter, concluding that a more realistic reconstruction of LSTvariability of the yearly, half-yearly and seasonal periodic
time series is obtained using three frequencies. An increasingomponents of the signal. The inter-annual variability of
number of frequencies yields artefacts in the reconstructedhe pixel-wise ratio- has been evaluated by statistics of the
time series, e.g. a sharp increase or decrease of LST overearly mean valueig and of the amplituded 1, A,, Az of
a short period of time. These are especially evident whercomponents with periods of 365, 180 and 120 days obtained
gaps are present in combination with inaccurate measureby Fourier analysis (Table 3). We then evaluated the contribu-
ments (Alfieri et al., 2012). Therefore, a value of 3 was settionsér; to the total error om (x, y, t) due to assuming con-
for NOF, i.e. we used three frequencies with periods 365, 18Gstant values ofdg, A1, A2 and A3z. We tookérg = o040/ Ao
and 120 days. anddr; = 04;/(Ag+ A;)(Ag is the yearly average of and

The spatial pattern of LST on any given day was charac-A; is the amplitude of thé-th component of the Fourier se-
terized by the ratio- of the LST image to the LST at the ries withi # 0). This gives an estimation of the contribution
position of the node 1221, using reconstructed surface temto the total relative error we introduced when assuming inter-
perature values. The ratioshowed a periodical trend, re- annual stability of the ratie, i.e. assuming constant values
flecting the seasonality of the factors involved in the surfaceof Ag, A1, A2 andAs.
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Fig. 5. Estimatedrl’; on 1 January 2006 (left) and on 1 July 2006 (right).

Table 3 shows area average valuesAgf A1, A2, A3 for inter-annual variability of the annual evolution of the ratio
each year from 2001 to 2010. Anomalous behavior of 2003r. Then we can construct a yearly time series of the matio
year is also evident in the values of the amplitudes we ob-describing the spatial and intra-annual variability in any pe-
tained. The total relative error has been calculatedras  riod of time, using the mean valuessofnd of the harmonic

1= o
> ér; using the statistics over the period 2001-2010 andcomponents over the period from 2001 to 2010.
i=0

1=

then over the same period but leaving out 2003. In the for-
mer case we obtainédt = 1.1 % and in the lattetr = 0.3 %.

On the basis of these findings we considered negligible the
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Table 3. Yearly area-averaged mean ratio r and amplitudes derived by Fourier analysis (values multipliéai by 10

Period in days Period in days
Year Ap 365(41) 18042 120 (43) Year Ap 365(41) 180(42) 120 (A3)
2001 99.0 0.6 0.5 0.4 2006 99.0 0.7 0.4 0.3
2002 99.1 0.6 0.4 0.2 2007 99.1 0.6 0.4 0.2
2003 98.1 1.7 15 0.7 2008 99.0 0.6 0.5 0.3
2004 99.2 0.6 0.3 0.4 2009 99.0 0.7 0.3 0.4
2005 99.1 0.8 0.4 0.5 2010 98.9 0.4 0.3 0.3
4.2 Relationship air temperature vs. surface -

temperature I I I ‘ ‘ I _I Eslim;ted Ta
315+ Observed Tar
The relationship betweeh, data at the stations within the 207 f
Valle Telesina area (Table 1 and Fig. 2) and LST MODIS ob- 55| b _
servations has been determined by linear regression analysi ‘
Daily values of maximunfs and daytime MODIS LST were | ' A
correlated for each year from 2001 to 2010.

Linear regression coefficients (slope and offsetn) as
well as R? were calculated for each of the available stations “ !
and for each year. The same statistics were produced by de 285 [ : !
termining a single relationship for the whole area (using data 4,
from all the stations). Table 5 shows the mean and the stan
dard deviation of then, n and R? over the entire period 2 01 2002 2003 2004 2005 2006 2007 2008 2009 2010
(2001-2010). The coefficient®? are always greater than e
0.83. The corrglation coefficients d(,) not vary significantly Fig. 6. Daily values of estimated against obseredat Guardia
across the stations. The largest variation has been observegyframondi station (2001-2010).
at Guardia Sanframondi that is located at an higher altitude
than the other stations. Considering these results, as well as
the impossibility to define a detailed spatial pattern of regresthe estimated, on 1 January and on 1 July 2006: the range
sion coefficients (because of the scarce availability of grounchf variability over the area is 14 K, respectively 20 K.
stations), we decided to use a single relationship valid for the e then evaluated th&@ (x,y,r) estimates (Table 7)
whole area under study. This conclusion is based on the comgagainst available observations in the same period. We calcu-
parison of estimates df, obtained with the station-specific |ated the following statistics: RMSE, AME, mean and stan-
relationship with the estimates obtained with the relationshipgard deviation of the differences between estimated and mea-
applicable to the entire area. The difference between the tw@uyredr, (MR and STDR) andk2.

T, estimations was rather small as shown by the RMSE and RMSE values vary in a range between 2.47 K and 3.23K.
AME statistics (Table 6). The RMSE increment, using the we observed a strong correlation of our estimates with ob-
same linear regression all over the area, is between 1.24 angbrved maximum temperature®4> r0.90). MR values in-

3.92%, while the AME increment vary between 1.24 and dicate that7, estimates at Solopaca and Guardia Sanfra-

Ta (K}

295

290 1

6.45% (Table 6). _ mondi are on average close to the obserZad(Fig. 6
The inverse relationship (LST v&,) was evaluated atthe shows the temporal trend of observed against estim&sed
reference location giving the regression coefficientad = at Guardia Sanframondi station).

0.87 and—ng = 38.81.

4.3 Time series of daily air temperature maps 5 Discussion

5.1 Land surface processes determining the
The annual evolution of the ratie was modelled with a spatio-temporal variation of LST
Fourier series using amplitude and phase of the three terms in
the series averaged over the period 2001-2010. Time serieSeveral factors determine the LST variation in space and
of T, maps were calculated over Valle Telesina for the periodtime and the coupling betweef, and LST. Solar irradi-
from 2001 to 2010 using the ratigx, y, t). Figure 5 shows ance forces the surface energy balance, and the residual heat
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Table 4. Comparison of the statistics (mea#;§, standard deviations() and coefficient of variatiodr;) of the mean ratio and harmonic
amplitudes calculated over the period 2001-2010.

Statistics over 2001-2010 Statistics leaving out 2003
Period in days Period in days
Ag 365(41) 180(42) 120 (A3) Ap 365(41) 180(42) 120 (A3)
A;(x10%) 98.96 0.72 0.49 0.36 99.06 0.62 0.37 0.32
o (x10%) 0.31 0.32 0.35 0.14 0.09 0.10 0.07 0.09
3ri (%) 0.31 0.32 0.35 0.14 0.10 0.10 0.07 0.09

Table 5. Statistics over the period 2001-2010 of the linear regression parameters and correlation cogfficntilated at the available
stations in Valle Telesina.

my (meantstd) nq (meantstd) R?2 (meant std)

Solopaca 0.780.04 67.17411.64 0.84+-0.05
Castelvenere 0.820.03 53.93t8.24 0.84+0.03
Guardia Sanframondi 0.880.02 38.05+6.66 0.8740.03
Telese 0.79-0.04 62.83:11.37 0.84+-0.05
All stations 0.814:0.01 59.41-4.02 0.83:£0.00

forces the soil heat balance and surface temperature, which in Net radiation (W nt2) can be calculated in a simplified
turn forces air temperature. Solar irradiance on a tilted surway by neglecting the longwave net radiation

face depends on date and latitude as well as slope and ex-

posure angles. Then, over complex landscapes, morpholog§s = (1 — @) - Rglob - CO(i) . (11)
is crucial in determining the LST pattern. Other factors act . ) . .

to reduce surface temperature by decreasing the residual sdfiglob IS the mean daily solar irradiance over the dayhe
heat flux at given irradiance. Land cover and soil water con-2/0€do and the incidence angle of the sum). The latter is

tent play such a role in determining soil heat flux and surface__ .. . . B
temperature. COg(i) = COSps - COSPa + SiNgs - Sin - COps — Py ,)  (12)

To illustrate the combined effect of such factors on LST whereg, is the slope angleps the solar azimuth angle and
and to evaluate whether ourtx, y,r) can be explained by én the slope aspect angle.
these processes, we constructed a number of synthetic time Replacing Egs. (9) and (10) into Eq. (8) we obtain the am-

series of LST for arange of terrain and land cover conditions pjityde of LST (K) over the period (day). Daily maximum
The daily amplitude of a periodic oscillation of LST can | gTis given by

be described by its explicit relationship with heat flux into
the soilG (Wm~2) and thermal admittancé (Wm~—2K~1) | ST(s) = LST,,(t) + A(LST,) (13)
(Menenti, 1984):

where LST,(¢) is the daily mean LST which we took equal

A(LST) = A(G)/Y, (8) for all cases. We calculated 24 sets of the annual evolution
where of daily LST over the year 2006 (as an example) combining
the parameters values in Table 8 with actual measurements of
Y=y2:7w-h-p-c/P 9) Rglob- The lowest values of LST are given by the combina-

tion of parameters corresponding to a forested area, wet saill,
with 4 being the thermal conductivity (WK™, p northern exposure and 0.35 rad slope angle (case B in Fig. 7).
the soil density (kg cm"), c the specific heat (JkgK) and  |nstead the highest values correspond to a dry area, bare soil,
P is the period (s). southern exposure and 0.35 rad slope (case A in Fig. 7).
The ratio of soil heat flux to net radiatia®/ R, (W m~2) We can now use the theoretical calculation described

is approximately related to land cover type (Kustas et al.,zpgve to interpret the observedx, y, ) patterns derived
1993), so that(G) can be easily estimated from the daily from the analysis of MODIS LST time series.

amplitude of net radiatior (R,,): Let's now take as reference the case with the highest daily
LST in summer (case A in Fig. 7). Then let us take the case
A(G) = (G/Ry) - A(Ry). (10) with the lowest daily LST in summer (case B in Fig. 7) and a
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Table 6. RMSE and AME errors and their relative incrementfgfestimation (2001-2010) using station-specific linear regressions respec-
tively a single linear regression.

Station specific All station Increment of error %

RMSE AME RMSE AME RMSE AME
Solopaca 3.37 2.64 3.51 2.78 3.92 5.40
Castelvenere 3.45 2.71 3.63 2.85 5.28 5.24
Guardia Sanframondi 3.38 2.63 3.59 2.80 6.43 6.45
Telese 3.28 2.58 3.32 2.61 1.24 1.24

Table 7. Error statistics off3 estimates against observations at the

available stations.

Validation 2001-2010

RMSE AME MR STDR R?
Castelvenere 3.23 2.70 2.21 2.37 0.95 L 12
Telese 2.47 1.91 0.99 2.26 0.95 2
Guardia Sanframondi 3.12 2.58-0.15 3.12 0.92 = m
Solopaca 2.63 1.99 -0.26 2.62 0.94

1.6
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T T
—&— case cold
—&— case warm

08 I
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Fig. 8. Black circles: ratiog- of LST case C to LST case A. Black

triangles: ratiog of LST case C to LST case B. LST for cases A, B

and C shown in Fig. 6.

—&— B)e_=0.35 ¢ =0 Y=192
—6—A) ¢,=0.35 ¢ =180 Y=3.74
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as reference case B and calculate the ratio of cases C to case
B we obtain the (r) “case cold” in Fig. 8. We can now es-
timate the LSTA) of case C using either case A as reference
and ther (1) “case warm” or case B as reference anditfre
“case cold”, obtaining in both cases exactly the same EST(
of case C. As an example let us take DoY 200 when LST
Fig. 7.Maximum (black diamonds; case A), minimum (black trian- is 43.64°C for case A and 26.90C for case B. The cor-
gles; case B) and an arbitrary case (black circles; case C) selectagsponding values of are 0.8891 with A as reference and
out of the 24 yearly time series of LST estimated by Egs. (8)~(13)1,4424 with B as reference. The estimated value of LST for
applying the parameters in Table 8. case C is 38.80C in both cases. This shows that the choice
of the reference case is arbitrary and different choices lead
to different values of-(¢), but all choices lead to the same
third arbitrary case (case C in Fig. 7). Case C applies to dnLST(r).
bare soil facing south with a 0.35 rad slope angle. Radiative Such relation between the shaper@f) and known prop-
forcing (Rn) is smallest for case B because it is north-facingerties can be used for the interpretation of the obseryed
and the combination of albedo and the rafig Rn. More-  obtained from the analysis of the MODIS LST time series,
over, the thermal admittanc&)is very large because of the as shown below using the entire set of the 24 case.
wet soil. The combination of low Rn and lardge gives a We calculated first the ratio (Fig. 8) by choosing as ref-
small daily amplitude of LST. Conversely, radiative forcing erence the warmest one of our 24 cases, since our reference
is largest for the south facing case B with smalbecause of  location (see Fig. 2) had higher LST in the study area. When
the dry soil. This gives a large daily amplitude of LST. using all combinations of the parameters values in Table 8
If we now calculate the ratio(r) of case C to case A we (Fig. 9: all cases) the estimated range of variability for all
obtain ther(¢) “case warm” in Fig. 8. Conversely, if we take 24 cases is much larger than the observed variability of
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Table 8. Values of the parameters applied to construct a syntheticTable 9. Statistics of the test 1 (values in K). Error statisticsTgf
sample of LST time series by using Egs. (8)—(13). estimates over 2007 to 2009 using the mean of the Fourier coeffi-
cients from 2000 to 2006 againk observations.

Variable Values Unit

ba 0.09; 0.35 rad TEST1

o 0; 7 rad 2

o forest=0.15; pasture= 0.25; bare so#=0.35 Dimensionless RMSE  AME MR STDR R

G/Rn forest=0.1; pasture=0.2; bare soi=0.3 Dimensionless Castelvenere 3.33 281 2.25 245 0.94

A dry sand=0.2; wet sand= 1.7 Wikt Telese 241 188 080 227 095

p-C dry sand=0.96x 10°6; wet sand=3x 10°7  JK~tm~3 Guardia Sanframondi ~ 3.30  2.78-0.25  3.29 0.90
Solopaca 1.98 1.55 -0.20 1.97 0.95

osf . In each test we compared estimated maximum dagilwith

the one measured at the available ground stations.

04 4 Table 9 shows the statistics of the test 1. RMSE values
Wi 4 4 range between 1.98 and 3.33 K. Higher values were found for
‘ - il the Castelvenere and Guardia Sanframondi stations, although

the mean deviation for Guardia is rather small, +6.25 K.

The RMSE values for all the stations are consistent with the
literature reviewed in the Introduction (e.g. Yan et al., 2009;

Shen and Leptoukh, 2011). The results of Test 2 (Table 10)
are less clear-cut: overall we have overestimatggbarticu-

o d ot S L0 larly during the winter, but the available observations span a
— = very short period of time. For all stations shown in Table 10

observations are available for just about one year, even in
different years. Larger errors were observed for stations lo-

. . . cated at higher altitude, i.e. 523 m at Piedimonte Matese and
cases (open triangles) calculated using equation 8 and the paramet;

F L :
values in Table 8, respectively, leaving out the 12 cases calculate§65 m at Piedimonte Matese Muto (see Fig. 2). '_I'he RM_SE
with the dry soil thermal admittance (open circles). values found when using the same linear regression relation-

ship for the entire area were slightly larger than when us-
(Fig. 4) both in summer and winter. Conversely when leav-ing station specific relationships (Table 6). We have observed
ing out all cases for the perfectly dry soil (Fig. 9: no dry soil), that both slope and intercept depend on elevation but it was
the observed and estimated variability (over the remainingnot possible to parameterize such dependence on elevation
12 cases) are comparable. This suggests that no location iwith sufficient accuracy given the limited number of stations
the study area corresponds with the “perfectly dry soil” case at higher elevation and the short record of observations. To
some extent the difference between estimated and observed
5.2 Accuracy of estimated air temperature daily 7z is due to the quality of observations. We have evalu-
) ] ] ] ated the data records for all available stations and noted in
To determine the accuracy and, possibly, to identify thegeyergl cases that the observations are affected by signifi-
weaknesses of our method we proceeded in two differentan; noise, i.e. large and sudden deviations from the trend
ways. over a short period of time. To assess this effect we have
Test 1: We used the ratie(x, y, r) calculated from the ~@pplied a five-day moving average filter to observgand
mean values of Fourier coefficients from 2000 to 2006 evgluated the standard dgwa’non over the flve-day.wmdoyv
to calculate the air temperature in the successive year§19- 10). We also noted in some cases large and inconsis-
(2007-2009), whef, data at the four stations (Telese, _tent (_jlff_erence_s between stat|0ns_ (not _shown here), suggest-
Solopaca, Castelvenere and Guardia Sanframondi) wer#d Significantimpact of changes in the instruments used. We
available. conclude that the RMSE values we obtained for our daily
T, estimates is due to a significant extent to noisy daily sta-
Test 2: We used a set of data collected during the pretion data and we have, therefore, evaluated five-day averages
MODIS period of time at ground stations within the of our estimates against five-day averagegafbservations
MODIS image frame. Some of these stations are locatedTable 11). The accuracy of our estimates is significantly bet-
outside the Valle Telesina area, although in the sameer, while a systematic assessment of obsefyauill require
physiographic region. These data were rather sparse separate study.
both in time and in space because of the irregular op-
eration of the stations.

Range of variability
-]
w

| (|

@
)

01

Fig. 9. Daily values of the range of variability of the raticfor all
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Table 10.Statistics of the Test 2 (values in K). Error statisticggf ~ Table 11.Test 1 and Test 2 RMSE and AME statististics using five-
estimates in different periods of time using the mean of the Fourierday meariy (values in K).
coefficients from 2001 to 2011.

TEST1 TEST 2
TEST 2
> RMSE AME RMSE AME
RMSE AME MR STDR R

Castelvenere (1999—-2000) 286 227 148 245 o094  Castelvenere 2.87 231 236 137
Solopaca (1999) 274 213 009 274 0.0 Telese 203 158
Bucciano (1984) 311 257 231 2.09 0.95 Guardia Sanframondi 3.02 2.67
Piedimonte Matese (1984-1985) 49 393 3.03 3.85 0.92 Solopaca 1.58 1.27 1.96 1.52
Piedimonte Matese M. (1984-1985) 464 372 284 367 095 Bucciano 266 2.29

Piedimonte Matese 4.5 3.53

Piedimonte Matese M. 4.41 3.49

~
T

We obtained comparable error statistics when applying our
method to LST data during periods different but adjacent to
the periods used to construct the model of spatio-temporal
variability of LST i.e. using only th&s(xo, yo, ¢) at the ref-

erence location. When applying the same model to periods
of time in the past (1984-1988) when sofficobservations

were available for very short periods of time at a few mete-
orological stations, we obtained in some cases slightly larger
error of estimates. The larger deviations were observed for
two stations located at higher elevation where just two years
of observations were available. Although this may suggest

o
T

n
T

e
T

w
—T

N

5 Days Moving average of Ta standard deviation (K)

-

2002 2004 2008 2008 270 a dependence of the regression coefficients on elevation, the
Dak number and distribution of stations is not sufficient to de-
termine a relationship between regression coefficients and

Fig. 10.Five-day moving average standard deviation of obseTged . . -
at Guardia Sanframondi station. elevation. There might be other multiple causes for such

larger errors, including changes in the location of the con-

cerned meteorological stations (documented by different co-
6 Conclusions ordinates available on record for such stations) and changes

in land cover, which would lead to a different relationship

We presented a new approach to map air temperature at hig}petween LST and’,. We have observed that the variability
resolution. The innovation is in the use of time series of landof 7a at the available meteo-stations over a five-day window
surface temperature (LST) observed by a spaceborne imaguggests a significant random noise in the station data. This
ing radiometer to construct a stable model of the spatial and'as a significant impact on the error statistics for daily esti-
annual pattern of LST and, subsequently, to estimate timégnates and we have obtained a smaller RMSE when evaluat-
series of air temperatuf® maps using such model. The spa- ing five-day averages of estimated vs. obserigdVe have

tial and annual pattern of LST is constructed by normaliz-also shown that the spatial annual pattern of LST has a rather
ing the LST g, y,t) at any location to the LSTx, yo, 7) limited inter-annual variability, i.e. the pattern is mainly de-
at a reference locationd, yo). In our study the latter is a termined by the combination of the yearly evolution of solar
node where gridded climate data are available for both pasiradiance with rather stable landscape properties such ter-
and future climate. Once the model, y, r) has been con- rain, land cover (albedo, aerodynamic roughness) and soil
structed we estimatBy(x, y, r) using only theTa(xo, yo,7) at  thermal properties.

the reference location. The relationship betw&gand LST

has been constructed using a limited number (just four in this

study) of meteorological stations. This is inherently different AcknowledgementsThe work was carried out within the Ital-
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