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DiscussionsDiffusion-affected passive scalar transport in an ellipsoidal vortex in
a shear flow
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Abstract. By employing an analytical model for a constant-
vorticity distributed vortex, namely, the ellipsoidal vortex
embedded in a constant buoyancy frequency shear flow, the
problem of the passive scalar transport through the vortex’s
boundary is addressed. Since the model’s governing equa-
tions do not allow such transition to occur, we implement
a low-scale diffusion process into the vortex model. Taking
into consideration the diffusion term, we study the passive
scalar transport in a steady state (the boundary of the ellip-
soidal vortex does not change in time) and in a perturbed state
(the boundary of the ellipsoidal vortex changes in time peri-
odically) within the time scope corresponding to the charac-
teristic life cycle of a mesoscale oceanic eddy. An increase
of the passive scalar transport through the boundary in the
perturbed state in comparison with the steady state due to
the irregular dynamics of the surrounding flow is shown. The
applicability scopes of the investigation for studying oceanic
eddies in nature are discussed.

1 Introduction

An ellipsoidal vortex is a constant-vorticity distributed vor-
tex model for studying the dynamics of oceanic meso- and
submesoscale eddies as a whole and for studying the dynam-
ics of passive scalars comprised within the eddies and their
surroundings (Zhmur, 1988, 1989; Meacham et al., 1994).
The ellipsoidal vortex model is constructed under the quasi-
geostrophic approximation and the buoyancy frequency con-
stancy assumption of the surrounding linear shear flow. Al-

though the model is quasi-three-dimensional (the ellipsoid
vortex has a nonzero vertical scale), the dynamics within the
vortex is non-divergent at each horizontal plane, so, the dy-
namics of each horizontal section of the vortex is similar to
the one of the classical Kida vortex (Kida, 1981).

Such an ellipsoidal vortex has the prominent feature of
preserving its boundary form in a linear shear flow, being
generally motionless or performing periodic or aperiodic mo-
tions. However, the surrounding fluid being affected by the
boundary change can exhibit irregular dynamics (Polvani and
Wisdom, 1990; Dahleh, 1992; Zhmur et al., 2011), namely,
the exponential divergence of close trajectories for a finite
time, the phenomenon is widely known in fluid mechanics as
chaotic advection (Aref, 1984, 2002).

The most evident advantage of this model is an analyti-
cally derived stream function that provides an opportunity to
obtain some insight into the leading order dynamics, such
as the response to external shear, and strain, and the possi-
bility of different motion types (rotation, oscillation, elonga-
tion) of vorticity patches in shear flows. However, the pos-
sibility to derive the stream function restricts the number
of processes that, in one way or another, affect the vortex
dynamics in the ocean. The main restriction of this ellip-
soidal vortex model is that its governing equations do not
allow the fluid particles from the vortex and surroundings
to cross the vortex boundary, so, there is no exchange of
fluid particles between the vortex and exterior flow. The vor-
tex’s boundary in this case plays the role of a barrier that de-
nies scalar transport including the chaotic one through itself
(Brown and Samelson, 1994). In order to somehow generate
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438 K. V. Koshel et al.: Diffusion-affected transport

such fluid particle exchange, in this paper, we suggest imple-
menting a low-scale diffusion process to the ellipsoid vortex
model, so that such fluid particle transition between the vor-
tex and its surroundings can occur.

Thus, the main aim of the paper is to study how the imple-
mentation of the diffusion process affects the scalar transport
within the vortex and its surroundings. Such a problem is
of interest partly since, according to satellite measurements
(Chelton et al., 2007, 2011), an oceanic mesoscale eddy al-
though it can last quite a long time it always disappears due
to a certain loss of its vorticity (Balasuriya and Jones, 2001;
Balasuriya, 2004). This suggests that the eddy’s boundary
permits the eddy’s vorticity to pass through it while the back-
ward flux of the exterior vorticity does not compensate the
loss.

2 Ellipsoidal vortex model

A detailed derivation of the ellipsoidal vortex model can
be found, for instance, inMeacham et al.(1994). Here, we
present only the derivation’s points that are necessary for the
present paper. First, the basic approximations of the ellip-
soidal vortex model are the quasi-geostrophicf -plane flow
in an infinitely deep ocean with a constant buoyancy fre-
quency,N = const. Also, it is worth noting that all the fol-
lowing expressions are already dimensionless (for details see
Zhmur et al., 2011). By introducing the length scale,L∗,
the depth scale,H ∗, the velocity scale,U∗, and the buoy-
ancy frequency scale,N∗, one can construct the timescale,
T ∗

=
L∗

U∗ , and the stream-function scale,9∗
= U∗L∗. Given

these scales and approximations, the potential vorticity con-
servation law becomes true in the simplified form (Pedlosky,
1987):

dh

dt
q = 0, (1)

where q =1hψ +
∂
∂z
f 2

N2
∂ψ
∂z

is the potential vorticity, and

1h =
∂2

∂x2 +
∂2

∂y2 is the horizontal Laplace operator,dh
dt =

∂
∂t

+

u ∂
∂x

+ v ∂
∂y

with the horizontal velocities,u andv, satisfying
the geostrophic relations,

u= −
∂ψ

∂y
, v =

∂ψ

∂x
. (2)

ψ is the geostrophic stream function that defines unambigu-
ously the dynamics of the flow (Pedlosky, 1987).

In this simplified formulation, the potential vorticity,q, is
a Lagrangian invariant meaning it can be treated as a pas-
sive scalar. Thus, one can choose a certain volume of the
fluid whose vorticity is different from that of the surround-
ing flow, and then study the evolution of this volume. A few
volume forms are known to preserve their boundary in a lin-
ear shear flow. One of these is the ellipsoidal form which
is believed to be of use for comparing its dynamics with

the one of the meso- and submesoscale eddies in the ocean
(Meacham et al., 1994). Given a, b, andc being the semi-
axes,θ is the angle between semiaxisa and the x-axis. The
ellipsoid evolves in a linear shear flow, withe, andγ being
the strain and surrounding vorticity components of the linear
shear flow. The ellipsoidal form is governed by the following
equations (Zhmur, 1988):

da

dt
= aecos(2θ) ,

db

dt
= −becos(2θ) ,

dθ

dt
= �+ γ −

a2
+ b2

a2 − b2
esin(2θ) , (3)

where

�= σabc̃

∞∫
0

µdµ(
a2 +µ

)(
b2 +µ

)√
ξ (µ)

(4)

is the proper rotation of the ellipsoidal vortex without any

external flow,c̃ =
N
f
c, ξ (µ)=

(
a2

+µ
)(
b2

+µ
)(
c̃2

+µ
)
,

N = const is the buoyancy frequency,f = const is the Cori-
olis parameter,σ = α− γ , α = const 6= 0 is the ellip-
soid vortex’s vorticity. System (3) governs the dynam-
ics of the ellipsoidal vortex’s boundary. According to
Zhmur and Pankratov(1989), the vortex can perform three
characteristic types of motion: two periodic – rotation and os-
cillation, and one aperiodic – infinite elongation. Also, there
are parameters when the vortex is aligned along the strain
and becomes motionless. These types have been thoroughly
studied inZhmur et al.(2011). In this paper, we are only
interested in the periodic types, since these generate the ir-
regular fluid advection in the surrounding flow.

Thus, we will further study passive scalar transport in-
duced in the resulting velocity field being jointly gener-
ated by the linear shear and ellipsoidal vortex (for details see
Zhmur et al., 2011),

u = ex− γy+ cosθṽ+ sinθũ,

v = γ x− ey+ sinθṽ− cosθũ, (5)

where

ũ = −σabc̃

∞∫
λ

ỹdµ(
b2 +µ

)√
ξ (µ)

,

ṽ = σabc̃

∞∫
λ

x̃dµ(
a2 +µ

)√
ξ (µ)

,

x̃ = x cosθ + y sinθ,

ỹ = −x sinθ + y cosθ,

andλ determines whether a fluid particle belongs to the el-
lipsoidal vortex or to its surroundings. For a particle within
the vortex one should takeλ= 0, while for a particle in the
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surrounding flow one should use the positive root,λ > 0, of

the equation, x̃
2

a2+λ
+

ỹ2

b2+λ
+

(
N
f
z
)2

c̃2+λ
= 1.

By using Eqs. (5) and (3) one can evaluate trajectories
of fluid particles within the ellipsoidal vortex and in its sur-
roundings. Since the lengths of the vortex’s semiaxes depend
on time periodically (although the ellipsoid always stays el-
lipsoidal), the surrounding fluid undergoes a periodic pertur-
bation inflicted by the vortex’s form oscillation.

System (5) of the governing equations is a dynamical sys-
tem with “one and a half degrees of freedom” (Lichtenberg
and Lieberman, 1983; Zaslavsky, 1998), where an additional
half degree of freedom implies a time-dependent perturba-
tion of a stationary dynamical system. In the problem under
consideration, such a time-dependent perturbation arises due
to the periodic motion of the ellipsoidal vortex. So, this per-
turbation leads a part of trajectories of the surrounding fluid
particles to exhibit chaotic behaviour (the exponential diver-
gence of close trajectories for a finite time). Although the
model allows us to study the fluid dynamics at different hor-
izontal planes, the present study is concerned only with the
dynamics of the section,z= 0, throughout the paper. Scal-
ing parameters of system (5) were chosen ase = 0.1, c̃ = 1,
andγ = 0. Figure1 shows a typical stream-line pattern of
stationary system (5) with the exterior flow where the strain,
e = 0.1, is dominant over the rotation,γ = 0.

System (5) is stationary when the vortex (grey zone in the
figures) is motionless, and, consequently, does not change its
semiaxes’ lengths. The stationary system’s initial values are
a(0)
b(0) = 1.0551,θ (0)=

π
4 (for details seeZhmur et al., 2011).

Whene > γ then the exterior flow (blue lines in Fig.1) is
hyperbolic, and in the vortex vicinity, a closed recirculation
zone appears (red lines in Fig.1). The bold black curve de-
marcating these two motion types is a separatrix with two
hyperbolic critical points. Ife < γ then the vortex rotates in
the same direction as the exterior flow, hence it does not gen-
erate any specific closed recirculation zone and, therefore, no
separatrix forms.

The dynamics of system (5) is regular, that is, the fluid par-
ticle trajectories coincide with stream-lines similar to those
shown in Fig.1 if the vortex is motionless, what can be
achieved only by specifically choosinga (0) , b (0), andθ (0).
However, in the general case, that is, if one chooses initial
values of the parameters arbitrarily, the corresponding vortex
performs periodic or aperiodic motions.

The periodic motion can be of two types, oscillation and
rotation; while the aperiodic one is infinite elongation (for
details seeMeacham et al., 1994; Zhmur et al., 2011). In this
study, only periodic motion is of interest. When oscillating
or rotating, the vortex perturbs the fluid particle dynamics in
its vicinity, which results in chaotic advection. Figure2 il-
lustrates a Poincaré section of the perturbed system (5) as
a(0)
b(0) = 2, θ (0)=

π
4 , and the other parameters correspond to

those as in Fig.1. To construct this Poincaré section, we
placed 20 markers along the line, which links the two hyper-

Fig. 1. A phase portrait of stationary system (5) ase = 0.1, γ = 0,
a(0)
b(0) = 1.0551, θ (0)=

π
4 . The bold black curve is the separatrix

dividing the closed recirculation zone (red lines) with the vortex (the
grey region), and the hyperbolic exterior flow region (blue lines).

Fig. 2.A Poincaŕe section of system (5) asa(0)
b(0) = 2,θ (0)=

π
4 with

the parameters corresponding to Fig.1. The bold black curves are
the separatrix of the associated steady state.

bolic points, and another 20 along the line, which is orthog-
onal to the first one in order to show the islands of regular
motion, and then followed their trajectories for 30 perturba-
tion periods. The perturbation period in this case is equal to
T = 1.89166. Further we will use this period as a characteris-
tic timescale. We will refer to this case as the perturbed state
(a detailed study of the advection generated by the perturbed
system was conducted inZhmur et al., 2011).

We should emphasize a few points that are essential to the
further analysis. If the system is perturbed by the vortex mo-
tion, a large body of fluid in the vicinity of the vortex (the
region filled with disordered points in Fig.2) starts moving
irregularly, that is, two close fluid particle trajectories expo-
nentially diverge in a finite time. Also, a certain amount of
the fluid (two “islands” of regular motion astride the vortex)

www.nonlin-processes-geophys.net/20/437/2013/ Nonlin. Processes Geophys., 20, 437–444, 2013



440 K. V. Koshel et al.: Diffusion-affected transport

is involved in regular motion (a great body of literature con-
cerning chaotic advection in geophysical hydrodynamics can
be found inKoshel and Prants, 2006; Koshel et al., 2008;
Izrailsky et al., 2008).

It is worth mentioning that the trajectories of fluid parti-
cles, contained within the ellipsoidal vortex (grey region),
cannot intersect the vortex’s boundary. To allow such inter-
sections to occur, we suggest implementing the diffusion pro-
cess into the vortex system. Further we will show that the
joint influence of the diffusion process and the irregular dy-
namics, namely, chaotic advection, affects the fluid particle
transport differently compared to the one with diffusion and
regular motion. The former we will refer to as the perturbed
state case, and the latter as the steady state case.

3 Diffusion implementation

So, the next step is to implement a diffusivity into system
(5). Therefore, consider passive scalar motion in a prescribed
velocity field,U (r, t):(
∂

∂t
+ U (r, t)

∂

∂r

)
q (r, t)= κ

∂2

∂r2
q (r, t) ,

q (r,0)= q0 (r) , (6)

whereq (r, t) is a scalar field of a passive admixture (un-
der certain circumstances it can be, e.g. salinity, temperature,
vorticity), andκ is the diffusivity. Expression (6) is already
written in a dimensionless form.

Now, we introduce an auxiliary scalar field,q̃ (r, t), being
described by the following stochastic equation:(
∂

∂t
+ U (r, t)

∂

∂r

)
q̃ (r, t)= −p(t)

∂

∂r
q̃ (r, t) ,

q̃ (r,0)= q0 (r) , (7)

with p (t) being a delta-correlated vector random Gaussian
process which does not depend onU (r, t), and satisfies the
conditions:

〈p(t)〉 = 0,
〈
pi(t)pj (t

′)
〉
= 2κδij δ

(
t − t ′

)
, i,j = 1,2, (8)

whereδij is the Kronecker delta,δ (t) is the Dirac function,
andt , t ′ are two consecutive instants in time.

The solution of (6) corresponds to the averaging
(Klyatskin, 1994, Koshel and Alexandrova, 1999 in the so-
lution of Eq. (7) over an ensemble of realizations of process
p (t) such that

q (r, t)= 〈q̃ (r, t)〉p . (9)

Equation (9) represents the solution of Eq. (6) in the form
of a continual integral (Mesinger, 1971; Klyatskin, 1994,

2005). Now, one can solve Eq. (7) instead of Eq. (6). By ex-
ploiting the characteristics of Eq. (7), one can readily obtain

d

dt
r(t)= U (r(t), t)+ p(t), r(0)= r0,

d

dt
q̃ (r(t), t)= 0, q̃(0)= q0 (r0) . (10)

System (10) corresponds to system (5) with U (r (t) , t) be-
ing the right-hand terms of Eq. (5), andp (t) being the diffu-
sion term. Then, by making use of the Monte Carlo method,
we take into consideration the diffusion process along the tra-
jectory of a passive scalar (Koshel and Alexandrova, 1999).

4 Diffusion affected transport in the steady state

Now, we present the numerical simulation results. First, we
should mention a few remarks concerning the numerical cal-
culations. Figures 1 and 2 were initially obtained exploiting a
method with an adaptive step control, namely, the Bulirsch–
Stoer algorithm, that uses Richardson extrapolation with the
modified middle point method. However, this method cannot
be applied to calculate trajectories of a stochastic dynamical
system, since the stochastic perturbation depends on the in-
tegration step. Hence, in order to correctly model a stochas-
tic process, the integration step must be constant throughout
the calculation. Therefore, to achieve an acceptable precision
of our calculations, we use the Euler method with a suffi-
ciently small integration step. Thus, first, we chose the inte-
gration step, comparing the obtained deterministic trajecto-
ries of Figs.1 and2 with the ones obtained by the Bulirsch–
Stoer algorithm, and then, calculated the stochastic process
realizations using the Euler method with the constant inte-
gration step. The step we used is 10−3, a smaller step would
result in an overwhelming calculation time.

First, we have executed simulations of the diffusion-
affected passive scalar transport in stationary system (10),
so, the initial parameters correspond to Fig.1. The ellipsoidal
vortex in this case is motionless, so, the passive scalar advec-
tion both within the vortex and in the surroundings is regu-
lar, that is, the trajectories of passive scalars coincide with
the stream lines. To study the dynamics of a scalar concen-
tration field, we have distributed uniformly∼ 1000 mark-
ers within the vortex region (the locus of each marker cor-
responds to the cell of a net covering the vortex), and then
executed 1000 realizations of processp (t). Thus, the initial
concentration within the vortex is 1000 markers in each cell
of the uniformly distributed net covering the vortex. Then we
have traced trajectories of the markers for a time interval, and
memorized the positions the markers have reached.

Figure3 shows the concentration field at the indicated time
as the diffusion is equal toκ = 10−2, and the model’s pa-
rameters correspond to Fig.1. The bold black curve is the
vortex’s boundary that does not change due to stationarity.
According to the figure, diffusion affects the scalar transport

Nonlin. Processes Geophys., 20, 437–444, 2013 www.nonlin-processes-geophys.net/20/437/2013/
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(a) T/4 (b) 5 · T

Fig. 3. Scalar concentration field at the indicated time asκ = 10−2 corresponding to the parameters as in Fig.1. The bold black curve is the
vortex’s boundary corresponding to the initial scalar distribution. Concentration (number of markers) is shown by colour.

weakly through slow spreading of the vortex’s boundary (see
Fig. 3a at timeT/4, whereT = 1.89166 is the characteristic
period of vortex rotation). The concentration field within the
vortex undergoes little changes due to diffusion, and it stays
almost equal to the initial concentration filed. Since there is
no source of markers, in the course of time, the concentra-
tion decreases within the vortex, and markers occupy the sur-
rounding space (see Fig.3b at time 5·T ). Hence, in the steady
state, the concentration field outside the vortex spreads nor-
mally according to a Gaussian distribution.

Figure4 illustrates the probability density of the marker
distribution as a function of the values,a, at the y = x line,
which determine equal-area elliptic rings. In other words,
Fig. 4 depicts how many markers are located within ellip-
tic rings of same area1S at a given instant. All the rings
belong to one elliptic family with ellipticitya(0)

b(0) = 1.0551.
The number of markers is normalized by the total number of
markers,∼ 106, and by the ring area,1S = 0.15. The curves
show that the marker spreading indeed progresses as a Gaus-
sian process both within and outside the vortex. It is also
of essence whether the stochastic process is significantly af-
fected by the numerical error. To confirm that our results are
stable, we calculated the discrepancy between the step we
used and the step of 10−4 for the probability density function
curves shown in Fig.4. The corresponding relative error is
0.00488. Thus, we conclude that the calculation error does
not affect our results significantly.

The next part of the study is concerned with the perturbed
state, when the vortex’s boundary changes in time, which
leads to the irregular dynamics outside the vortex.

Fig. 4. Probability density as a function of the elliptic rings’ major
semiaxisa in the steady state case. The curves depict the probability
density at the instants corresponding to different number of the vor-
tex rotation periods. Vertical dashed line marks the major semiaxis
of the vortex.

5 Diffusion-affected transport in the perturbed state

In this part, we will analyse the diffusion-affected transport
in the perturbed case, that is, when the vortex changes its
semiaxes’ lengths periodically. As the initial conditions we
chosea(0)

b(0) = 2, andθ (0)=
π
4 (see Fig.2). With these initial

conditions, the vortex rotates slightly changing its semiaxes’
lengths. As opposed to the steady state, the passive scalar
advection outside the vortex is now irregular, however, within
the vortex, the advection is always regular.

www.nonlin-processes-geophys.net/20/437/2013/ Nonlin. Processes Geophys., 20, 437–444, 2013
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(a) T/4 (b) 5/4 · T

(c) 2 · T (d) 5 · T

Fig. 5.Scalar concentration field at the indicated time asκ = 10−2 corresponding to the parameters as in Fig.2a. The bold black curve is the
vortex’s boundary corresponding to the initial scalar distribution. Concentration (number of markers) is shown by colour.

Figure5a, b, c, and d depict the concentration field at the
time corresponding to a quarter of the vortex’s rotation period
(T/4), to 5/4 · T , 2· T , and 5· T rotational periods, respec-
tively.

Now we underline a few peculiarities which can be seen in
Fig. 5. First, since within the vortex the dynamics is always
regular, the markers spread according to a Gaussian distribu-
tion, same as in the steady state, however, outside the vortex
the markers spread otherwise due to chaotic advection. To
demonstrate this explicitly we plotted Fig.6, which shows
the probability density as the corresponding rings’ elliptic-
ity is equal to a(0)

b(0) = 2. In accordance with Fig.6, within
the vortex (on the left of the dashed vertical line), the marker
spreading progresses the same way as in the steady state case,
but outside the vortex the spreading obeys another law.

It seems that this law should be a power law, what is in
agreement with the works ofJones, 1994; Rom-Kedar and
Poje, 1999. This difference between the steady and perturbed
states in the distribution laws outside the vortex, roughly
speaking, is because, in the steady state, the probability of a

marker to jump from one deterministic trajectory to another
equals the probability of it to perform a reverse jump to the
initial trajectory, but, in the perturbed state, these chances are
not equal. In this case, if a marker jumps to another determin-
istic trajectory due to diffusion, this trajectory exponentially
diverges from the marker’s initial one, and the probability of
a reverse jump to the initial trajectory decreases compared to
the initial jump probability.

Second, the regions (“islands”) of regular motion astride
the vortex corresponding to nonlinear resonances rotate to-
gether with the vortex, and the diffused markers get into these
regions much later than into the every point of the stochastic
sea (see Fig.5b, c). Within these islands, the marker spread-
ing progresses the same way as within the vortex, namely,
according to the Gaussian distribution, since no exponential
divergence of close trajectories occurs.

Comparing Figs.3b and5d, which correspond to the same
instant in time, one can see that the marker spreading pro-
gresses much faster in the perturbed state. In the perturbed
state the scalar concentration within the vortex is not equal

Nonlin. Processes Geophys., 20, 437–444, 2013 www.nonlin-processes-geophys.net/20/437/2013/
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Fig. 6. Probability density as a function of the elliptic rings’ major
semiaxisa in the perturbed state case. The curves depict the prob-
ability density at the instants corresponding to different number of
the vortex rotation periods. Vertical dashed line marks the vortex’s
boundary.

to the initial concentration almost everywhere, while in the
steady state the initial concentration remains almost the same
in the vicinity of the vortex’s centre. Given the length of the
vortex’s boundary is equal in both cases, and the boundary
throughput is hence also equal, the different rate of the scalar
spreading is because, in the steady state, once a marker left
the vortex, it has the same probability to return inside the
vortex, while, in the perturbed case, the chance of leaving
the vortex is higher than the chance of returning inside it.
This leads to the conclusion that the draining from the vortex
is much effective in the perturbed state. Figure7 depicts the
part of markers which are located outside the vortex at instant
NT ·T . The green and red curves correspond to the perturbed
and steady states, respectively. One can clearly see that the
scalar detraining of the vortex progresses much faster in the
perturbed case.

6 Conclusions and discussion

The cooperative impact of diffusion and advection on the
scalar transport in the model of an ellipsoidal vortex embed-
ded in a linear shear flow has been addressed. Two types of
advection, namely, regular and irregular (chaotic) have been
dealt with. The combined effect of the former and diffusion
has been shown to result in a normal spreading of scalars
outside the vortex, while with chaotic advection the transport
outside the vortex seems to tend to a polynomial-law depen-
dence. This is because chaotic advection results in the expo-
nential divergence of close trajectories. Then, given diffusion
is implemented into the system, the possibility of a scalar to
jump on a close trajectory due to diffusion is not equal to the

Fig. 7. The part of markers which are located outside the vortex at
instantNT ·T . The green and red curves correspond to the perturbed
and steady states, respectively.

possibility of the scalar to jump back on the initial trajectory
since the distance to this initial trajectory is∼ eλ

∗t∗ , whereλ∗

is the Lyapunov exponent, andt∗ is a characteristic diffusion
timescale.

Comparing the steady and perturbed states which induce
the regular and irregular dynamics, respectively, we have
shown that the scalar transport through the vortex’s bound-
ary is more effective, i.e. the scalar emanation from the vor-
tex happens at a higher rate, in the perturbed state. This is
also caused by the exponential divergence since the proba-
bility of a scalar to return to the vortex in the perturbed state
is lesser then the one in the steady state, and, hence, the vor-
tex emanates scalars faster in the former case.

To conclude, we would like to discuss the applicability
scopes of the presented study to the real ocean. In the ocean,
the problem of reliable determination of the diffusivity,K,
is quite challenging (Monin and Ozmidov, 1985; Van Dam
et al., 1999; Zhurbas and Oh, 2004), however empirical esti-
mates give an assessment,K(l)∼ l4/3, wherel is the corre-
sponding scale that the diffusion affects mostly. Our dimen-
sionless diffusion parameterκ corresponds to dimension pa-
rameterK as follows:K ∼ U∗L∗κ, whereU∗, andL∗ are
the characteristic velocity and size scales of the vortex mo-
tion. Since the governing equation of the vortex dynamics
are derived by exploiting the quasi-geostrophic approxima-
tion, our characteristic parameters are to correspond to the
mesoscale dynamics. Thus, by choosing the buoyancy fre-
quency, Coriolis parameter, total depth asN = 2×10−3 s−1,
f = 10−4 s−1,H = 4×104 m,U∗

= 0.1 ms−1,L∗
= 105 m,

andκ = 10−2, we obtain an estimate,K ∼ 102 m2s−1, that
according toOkubo(1971) corresponds to the apparent dif-
fusion scale ofl ∼ 103 m.
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