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Abstract. Consideration is given to the influence of an un- accredited to seismic activity. However, it is now more ac-
derwater landslide on waves at the surface of a shallow bodygepted that submarine mass failures also contribute to a large
of fluid. The equations of motion that govern the evolution portion of tsunamisTinti et al., 2001), and recent years have

of the barycenter of the landslide mass include various disseen a multitude of works devoted to the study of such un-
sipative effects due to bottom friction, internal energy dissi- derwater landslides and the resulting effect on surface waves
pation, and viscous drag. The surface waves are studied i(Bardet et al.2003 Chubarov et a).2011; Didenkulova et

the Boussinesq scaling, with time-dependent bathymetry. Aal., 2010 Fernandez-Nieto et al2008 Grilli and Watts
numerical model for the Boussinesq equations is introduced 999 2005 Okal, 2003 Okal and Synolakis2003 Poncet
that is able to handle time-dependent bottom topography, andt al, 201Q Tinti et al, 2001). As suggested iffrritz et al.

the equations of motion for the landslide and surface wave42007), it is possible for underwater landslides and earth-
are solved simultaneously. quakes to act in tandem, and produce very large surface

The numerical solver for the Boussinesq equations carwaves
also be restricted to implement a shallow-water solver, and A natural question to ask is whether the effect of under-
the shallow-water and Boussinesq configurations are comwater landslides on surface waves can be such that they may
pared. A particular bathymetry is chosen to illustrate the gen{pose a danger for civil engineering structures located near the
eral method, and it is found that the Boussinesq system preshore. Consequently, one important issue is the wave action
dicts larger wave run-up than the shallow-water theory in theand in particular the run-up and drawdown at beaches in the
example treated in this paper. It is also found that the finitevicinity of the landslide. While the drawdown itself may not
fluid domain has a significant impact on the behavior of thepose a threat, one consequence of a large drawdown can be
wave run-up. the amplification of the run-up of the following positive wave
crest Dutykh et al, 20113 Tadepalli and Synolakj4996.

There have been many numerical and a few experimental
studies devoted to this subject, but it is generally difficult to
include many of the complex parameters and dependencies
. , of a realistic landslide into a physical model. Therefore, most
Surface waves originating from sudden perturb_anns of t_h%orkers attempt to distill the problem to a model setup where
bottom topography are often termed tsunamis. Two dls'many effects such as turbulence and sedimentation are disre-

tlnctthgeniranon dmeghanl_sms of afts_lunam| Aare unglengatig:rded. For examplé&rilli and Watts(2005 study tsunami
earthquakes and submarineé mass farures. Among the bro nsitivity to several landslide parameters in the case of a

class of submarine mass failures, landslides can be Chara?éndslide in a coastal area of an open ocean. In particular

terized als trar;]slabtmnal fa|lu]£<|as ﬁ?at t(;avel c02r15|dfara'ble dISEjependence on the landslide shape and the initial depth of
tandcecs:lslong t19e7 ot'jomhpro ie( Lan l\Natftsl 0d05|.5>r|0r q the landslide location are studied, and it is found that the
and Coleman1979. In the past, the role of landslides an landslide with the smallest length produced the largest wave

rockfal_ls in the excitation of tsunamis may have bee_n un-height and run-up, and that the wave run-up at an adjacent
derestimated, as most known occurrences of tsunamis were

1 Introduction
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268 D. Dutykh and H. Kalisch: Boussinesq modeling of underwater landslides

beach is inversely proportional to the initial depth. The work Bathymetry and landside position at t =50 s
in Grilli and Watts(2005 relies on integrating the full water- 0 ‘ ‘ T o - Landslide
wave equations using an irrotational boundary-element code, —— Solid bottom

and using an open boundary with transmission conditions
(Grilli et al., 2001, 2010. While most works have consid-

ered a given dynamics for the landslide, the bottom motion *-10r
in Grilli and Watts(2009 is described by an ordinary differ-
ential equation similar to the one used here. Thus the motion -15
of the landslide is computed using a differential equation de-
rived from first principles using Newtonian mechanics. How-  -20 ‘ ‘ ‘ ‘ !
ever to expedite comparison with experiments, the landslide 0 20 40 69 80 100 120
in Grilli and Watts(2005 is considered to have moved on a
straight inclined bottom with constant slope.

More recently,Khakimzyanov and Shoking2010 and

Chubarov et al(2011) have also used a differential equation
to find the bottom motion. One major novelty in their work

is that the landslide motion is computed on a bottom with aNgenerally give good results, unless there are strong back-
arbitrary shape. The time-dependent bathymetry is then useground currents in the fluid. Another effect that is not taken
to drive a numerical solver of the shallow-water equations.5ccount of here is the wave resistance on the landslide due
An advantage of this approach when compare6iitii and  to waves created by the motion of the landslide. However,
Watts (2009 is the reduced computation time. On the other a5 observed iiMarbitz et al.(2008), this effect is negligible
hand, the description of the wave motion in the shallow-waterfor most realistic cases of underwater landslides. Viscosity
theory is only approximate, and in particular, one importantjs included in the dynamic model for the landslide as will
effect of surface waves, namely the influence of frequencype shown in the next section. In order to capture the effect of
dispersion is neglected. slide deformation during the evolution, a damping termin the
The main aim of the current work s to study the dispersive gquation of motion is included to model the internal friction
wave generation in a closed basBe(sel et al.2012 usinga i, the landslide mass.
more realistic landslide modeChubarov et a).2005 while The paper is organized in the following way. In Sect. 2, the
keeping the simplicity of the shallow-water approach. To this equation of motion for the landslide is developed. Then in
end, we use the so-called Peregrine system, which is a partigsect, 3, the Boussinesq model is recalled. In Sect. 4, solitary-
ular case of a general class of model systems that arise in thgaye solutions of the Peregrine system are found numeri-
Boussinesq scalingBpussinesq1871). A common feature  ca|ly. In Sect. 5, the numerical scheme for the Boussinesq
of all Boussinesg-type systems is that they allow a simplifiedsystem is explained and the numerical method is tested using
study of surface waves in which both nonlinear and disperhe exact solutions of Sect. 4. Section 6 contains results of nu-
sive effects are taken into account. In the present case, Wgerical runs for a few specific cases of bottom bathymetry,
need to use a Boussinesq system that can handle complgxparameter study of wave run-up in relation to the initial

and time-dependent bottom topography. Such a system wagepth of the landslide, and a comparison with the shallow-
derived byWu (1987, and can be used in connection with \yater theory.

the dynamic bathymetry. An example of the type of situation

considered here is shown in Fifj, which shows how the

bathymetry is given by the combination of a solid bottom, 2 The landslide model
and a landslide profile sliding along the fixed bottom.

We conduct two main experiments. First, a comparisonin this section we briefly present a mathematical model of un-
with the shallow-water theory is carried out. Second, the de-derwater landslide motion. This process has to be addressed
pendence of the tsunami characteristics on the initial deptlcarefully since it determines the subsequent formation of wa-
of the landslide is investigated. The main findings of theter waves at the free surface. In the present study, we will
present work are that the predictions of the shallow-waterassume the movable mass to be a solid body with a pre-
and Boussinesq theory are divergent for the cases treated cribed shape and known physical properties. Since the land-
this paper, and that the effect of a finite fluid domain, such asslide mass and volume is preserved during the evolution,
a river, lake or fjord Poncet et a).2010, can lead to signif- it is sufficient to determine the position of the barycenter
icantly different behavior when compared to tsunamis on anx = x¢(z) as a proxy for the motion of the whole body. As
open ocean (see al&eisel et al.2012. observed in the introduction, most studies of wave generation

The Boussinesq model in this paper is based on the asdue to underwater landslides are baseg@scribed bottom
sumption of an inviscid fluid, and irrotational flow. These motion or on solving the equation of motion on a uniform
are standard assumptions in the study of surface waves, arglope while taking account of different types of friction and

Fig. 1. The fixed bathymetry = hg(x) and the position of the land-
slide after 50 s. The position of the barycenter is indicated by a black
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viscous terms. Examples of such works include the follow-wherem is the landslide mass an#; (¢) is the tangential
ing: DiRisio et al.(2009; Pelinovsky and Poplavski1996); component of the sum of forces acting on the moving sub-
Watts et al.(2000. A more general approach was recently merged body. In order to project the forces onto the axes of
pioneered bKhakimzyanov and Shokin@010, where cur-  the local coordinate system, the angle) betweent and
vature effects of the bottom topography were taken into ac-Ox is needed. This angle is determined by

count. Since this model is applicable to a wider range of ,
cases, we follow the approach Khakimzyanov and Shok- ?() = — arctar(hg(x)).

ina (2_01(). However, in addition to the effec.ts included by | ot us denote byw andp, the densities of the water and
Khakimzyanov and Shokina, our model also incorporates thgqsjide material correspondingly. Ufis the volume of the
effe(_:t of internal friction in the_shde material (_gl\_/en b)_/ the slide, then the total mass is given by the expression
dissipative forcefi) and the action of bottom friction, given

by Fp. m = (Pe + CW,OW) v, ()

The static bathymetry is prescribed by a sufficiently _ - . .
smooth single-valued function = —ho(x), and the land- where ¢y is the added mass coefficient. As explained in

slide shape is initially prescribed by a localized function Batchelor2000, a portion of the water mass has to be added
2= ¢o(x). To be specific, in this study we choose the fol- to the mass of the landslide since it is entrained by the under-
water body motion. For a cylinder, the coefficiegtis equal

lowing shape function for the landslide mass: . >,
exactly to one, but in the present case, the coefficient has to

%<1+ Coim))y Ix — xo| < % be estimated. The vplume of the_ sliding material is given by
folx) = A x—xol > & (1) v =w-.s, whereW is the landslide width in the transverse
) — X0 2

direction, andS can be computed by

In this formula, A is the maximum height, the length of
the slide andy the initial position of its barycenter. Itis clear S = / Co(x)dx.
that the model description given below and the method of nu-

merical integration used in the present work is applicable to he last i | v for th icul
any other smooth profile, as long as it is sufficiently localized | e last integral can be computed exactly for the particular
and fully submerged. choice in Eg. {) of the landslide shape to give

Since the landslide motion is translational, its shape at time 1
t is given by the function = ¢ (x, 1) = ¢o(x — x¢(2)). Recall V= QMW-
that the landslide center is located at a point with abscissa
x = x¢(7). Then, the impermeable bottom for the water wave
problem can be easily determined at any time by simply su
perposing the static and dynamic components. Thus the bo
tom boundary conditions for the fluid are to be imposed at

The total projected force acting on the landslide can be
conventionally represented as a sum of the fafgaepre-
ls_enting the joint action of gravity and buoyancy, and the total
contribution of various dissipative forces.

The gravity and buoyancy forces act in opposite directions,
z=—h(x,t) = —ho(x) + {(x,1). and their horizontal projectiofig can be easily computed by

To simplify the subsequent presentation, we introduce the / :
; o Fo(t) = (o0 — pw) W ,1)sin(é dx.
classical arc-length parameterization, where the parameterg( )= (e = pw)We [ £0x.1) ( (x))

s = s(x) is given by the formula R

N Now, let us specify the dissipative forces. The water resis-
tance to the motion of the landslidg due to viscous dis-
— — |/ 1 (£Y)2
s=Lx= / L+ (rp(®))7dk. ) sipation is proportional to the maximal transverse section of
*0 the moving body and to the square of its velocity. In addition,
The functionL (x) is monotone and can be efficiently in- the coefficient sign(g ) is needed to dissipate the landslide
verted to yield the original Cartesian abscissa L~1(s). kinetic energy independently of its direction of motion. Thus
Within the parameterization in EcR), the center of the land-  the forceF; takes the form
slide is initially located at a point with the curvilinear coor- _ ds\ 1 ds\ 2
dinates = 0. The local tangential direction is denoted by  Fr= —Slgn<a)§cdprW(a) )
and the normal direction by.
A straightforward application of Newton’s second law re- wherecq is the resistance coefficient of the water. The fric-
veals that the landslide motion is governed by the differentialtion force Fs is proportional to the normal force exerted on

equation the body due to the weight:
d?s . ds
mF:Fr(I), Ff = —cssign @ N(x,1).

www.nonlin-processes-geophys.net/20/267/2013/ Nonlin. Processes Geophys., 2028672013



270 D. Dutykh and H. Kalisch: Boussinesq modeling of underwater landslides

The normal forceV (x, ¢) is composed not only of the normal
components of gravity and buoyancy forces, but also of the
centripetal force due to the variation of the bottom slope:

Landslide trajectory
T

100

xc(t)

N(x.0) =(pe — pw)gW / £(x.1) cog(f (x)) dx .
R

0 50 100 150 200 250

ds\ 2
+ng/C(x,t)/<(x)(d—j> dr.
R

Landslide speed
T

Herek (x) is the signed curvature of the bottom, which can
be computed using the formula

hg(x)

K(x) = —_—3-
(1+ (h6(x))2) 2 o 50 100 150 200 250

We note that the last term vanishes for a plane bottom since

k(x) = 0inthis particular case. Energy loss inside the sliding Fig. 2 Posmo_n and_veloc!ty of the barygenter of the Iandshde_as
. . L functions of dimensional time for three different values of the fric-
material due to internal friction is modeled by

tion coefficientcs.
ds

Fi=—cyor WS —,

i vO¢ dr
wherecy is an internal friction coefficient. Finally, dissipa-
tion in the boundary layer between the landslide and the solic{;
bottom is taken account of by the term

A We ds |ds
= —(C _——
b bPw dr lar

s(0) ands’(0). In the remainder we always take homoge-
eous initial conditions, and consider the motion driven only
y the gravitational acceleration of the landslide. However,
different boundary conditions might also be reasonable from
a modeling point of view.
’ In order to approximate solutions of Edl)(we employ
the Bogacki-Shampine third-order Runge—Kutta scheme.

wherecy, is the Clezy coefficient. The integralsZy » 3(r) are computed using the trapezoidal

Finally, if we sum up the contributions of all the forces de- rule, and once the landslide trajectary= s(¢) is found, we
scribed above, we obtain the second-order differential equause Eq. ) to find its motionx = x¢(¢) in the initial Cartesian

tion coordinate system. This yields the bottom motion that drives
3 the fluid solver.
(y + cW)Sﬁ =(y — 1)g(Il(t) — Cfa(t)Ig(t)) For illustrative purposes we show a few examples of land-
4 ) slide trajectories over the bottom profile depicted in Rig.
—a(t)(qug(z) + %ch) (g) The other parameters used in the simulations are given in

Sect.6 and also in Tabl&. We performed a series of sim-

() ulations in order to study the effect of various dissipative
terms on the landslide trajectory. The dependence on the fric-
tion coefficientcs is shown in Fig.2 where the landslide

wherey = ::_\f/ > 1 is the ratio of densities; (r) = Sig”(%) barycenter position.(¢) and its velocityvc(t) are shown

and the integral; » 3(¢) are defined by as functions of time for; = tan(1°), tan(2°) and tan3°).

In the case of the weak frictior = tan(1°), the landslide

Ty(t) = /;(x t)sin(@(x))dx reaches a sufficient speed to escape from the basin depicted
R

ds ds |ds
—_— C JE—
dr

— oS hd
Va T

)

in Fig. 1. For the latter case-(= tan(3°)), we show also si-
multaneously the landslide speedt) = % and its acceler-
duc d?x¢

D)= /{(x,t)cos(e(x))dx, ationac(t) = gt = ;5 in Fig. 3. In particular, one can see
R

that the acceleration is a discontinuous function whose jumps
correspond exactly to moments of time where the spged
changes its sign, in accordance with the employed model in
Eqg. @). However, in our model there are also two new dissi-
pative termsF; and F, whose importance has to be studied
In order to obtain a well-posed initial value problem, also. We fix the value of; = tan(3°) for all subsequent ex-
Eqg. @) has to be supplemented with initial conditions for periments, and we will vary only the two other coefficients

I3(t) = /{(x,t)/c(x)dx.
R

Nonlin. Processes Geophys., 20, 26785, 2013 www.nonlin-processes-geophys.net/20/267/2013/
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Fig. 3. Velocity and acceleration of the barycenter of the land-
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slide as a function of dimensional time. The friction coefficient is Fig. 5. Position and velocity of the barycenter of the landslide as
cf =tan(3°). The discontinuities in the acceleration are due to the functions of dimensional time for three different values of the fric-
coefficient sigrﬁ%s;) in the definition of the friction force.
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tion coefficientcy,.

is given, the next step is to consider the coupling between
the bathymetry variations and the evolution of surface waves.
The main assumptions on the fluid are that it is inviscid and
incompressible, and that the flow is irrotational. Under these
assumptions, the potential-flow free surface problem governs
the motion of the fluid. However, in the present case, the
fluid is shallow, and the waves at the surface are of small
amplitude when compared to the depth of the fluid. In that
case, the potential-flow problem may be simplified, and the
model used in this paper is a variant of the so-called classical
Boussinesq system derived Bpussinesq1877).

Let us first consider the case of an even bottom, and a con-
stant fluid depthiy. Denote a typical wave amplitude lay
and a typical wavelength by. The parametesx = dio then
describes the relative amplitude of the waves, and the param-

2 « ” -
eterp = 72 measures the “shallowness” of the fluid in com-

Fig. 4. Position and velocity of the barycenter of the landslide as parison to the wavelength. In the case when lo#mdg are
functions of dimensional time for three different values of the fric- small and approximately of the same order of magnitude, the

tion coefficientey.

¢y andcp for other fixed parameters given in TalleThese

system

N +doux + (nu)x =0,
d3 ®)

numerical results are presented in Figand5. One can see  u, + gny + Uty — 2ty =0
that the influence of these parameters on the landslide tra- 3
jectory is weaker. However, we choose to keep them in themay be used as an approximate model for the description
model in order to have more latitude for fine-tuning the slide of the evolution of the surface waves and the fluid flow. In
trajectory if need be. Eq. 6), n denotes the deflection of the free surface from its
rest position, ana denotes the horizontal fluid velocity at a
heightz = do(—1+ +/1/3) in the fluid column ifz is mea-
sured from the rest position of the free surface. The same

h i  the landslide is d ined dth equation appears if the velocity is taken to be the average of
Once the motion of the landslide is determined, and therey, e yqrizontal velocity over the flow depth.

fore the time-dependent bathymetr§x, 1) = ho(x) — ¢ (x, 1)

3 The Boussinesq model

www.nonlin-processes-geophys.net/20/267/2013/ Nonlin. Processes Geophys., 2028672013
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The system in Eq.5) was first derived byeregrin(1967), 4 Solitary waves
and falls into a general class of Boussinesq systems, as shown
in the systematic studie®6na et al, 2002 Nwogu, 1993. Before the numerical method for approximating solutions
As opposed to the shallow-water approximation, the pressur€f EQ. () is presented, we digress for a moment, and ex-
is not assumed to be hydrostatic, and the horizontal velocitylain how to find numerically exact solutions of the system
varies with depth. In fact, the horizontal velocity profile is in Eq. ). These solutions will later be used to test the imple-
a quadratic function of (Whitham 1974. Non-hydrostatic = mentation of the numerical procedure. Assuming the special
effects lead to the appearance of linear dispersive terms iform
the governing equations. The problem of landslide-generated
waves has been addressed in the fully nonlinear shallow wal - 1) = 1), u(x. 1) =u(§), §=x—cit,
ter framework Watts et al. 2003 Chubarov et a).2005 Yu
etal, 2007 Beisel et al.2010. Nevertheless, several authors
have recently obtained interesting results even in the linea

and substituting this representation into the governing
rEq. ®), the following appears:

(Sammarco and RenZ008 Seo and Liu2013 or nonlin- —csn' + ((d + n)u)/ =0,
ear Fernandez-Nieto et al2008 Didenkulova et a.201Q 1 22
Beisel et al.2012 hydrostatic models. —cu’ + é(uz)’ +gn + CSE”W =0.

The derivation of Eq. %) given in Peregrin(1967) also
featured an extension to non-constant but time-independermissuming decay of both andu to zero as|x| — oo, the
bathymetry. However, the present case of a dynamic botintegration of the mass conservation equation frem to &
tom profile calls for a system that allows for time-dependentgives the following relation betweepandu:
bathymetry, and such a system was derivedMn (1987).

Given a bottom topography described by —h(x, 1), the —, — " , n= d-u ) @
system takes the form d+n cs— U
o+ ((h+nu), +h =0 The momentum balance equation can now be integrated to
¥ ’ yield
1 h? (6)
ur+ 8Ny +uuy = Eh(ht + (hu)x)xt - Euxxb d2 , 1,
—cs<u—§u )—i—éu +gn=0. (8)

In order for this system to be asymptotically valid, we need
o ~ B as before. Moreover, concerning the unsteady bottom Finally, in order to obtain a closed form equation in terms
profile, we make the assumptions titat< O(¢gY/?), and  of the velocityu, we substitute the expression in Eq7) (
hy < O(aBl/?). for 5 into Eq. @). The resulting differential equation can be
In comparison to the shallow-water equations with a time-written in operator notation as
dependent bottom topography, the system in E).hés ad-
ditional terms on the right-hand side of the second equationLu =N (u),
The effect of these terms is to incorporate frequency disper- ) .
sion into the model. One practical aspect of this modifica-Where the linear operatdt and the nonlinear operatdf are
tion is that wave breaking can be completely avoided as longiefined respectively by
as the amplitude of the waves is small enough. Wave break- 22 1
ing is also possible in evolution systems of Boussinesq type., = ¢, (u — —u”) and NV (u) = Zu’+
(Bjorkavdg and Kalisch2011 Briganti et al, 2004, but the 3 2
amplitudes occurring in the present problem are far from the - \yjje nothing formal appears to be known about existence
breaking limit. The phase speed of a small-amplitude linearyt ¢ 4jized solutions of Eqs7f and @), it is straightforward
wave of wavelength 72/ kin gEq' (6) with a stationary even  compute approximations of solitary waves numerically. In
bottom has the fora” = —77—, while the phase speed is articular, one may use the well-known Petviashvili iteration

gdu

Cs — U

1+ 242 .
method, which takes the form
given byc? = gdota”k“% in the linearized full water wave
problem. Thu_s one mlght argue thgt the Qispgrsion _in_E)q. ( 1 (tn, N (un))\ ™ ?
is too strong in comparison with dispersion in realistic wa- #n+1 =L N (un)- L) 9)
n» n

ter waves. However, as discussedBimrkavag and Kalisch

(2011, the linear dispersion relation of Ed)(is still closer The exponeny is usually defined as a function of the de-
to the dispersion relation of the original water-wave problemgree p of the nonlinearity, with the rule of thumb that the
than most other standard Boussinesq equations that featuepressiony = pL_l generally works well. In our case, the

even faster decay of the phase speed with incredsing nonlinearities are quadratic, so that we chopse 2, and
henceg = 1.

Nonlin. Processes Geophys., 20, 26785, 2013 www.nonlin-processes-geophys.net/20/267/2013/
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Fig. 6. Comparison of the numerical approximation of solitary wave solutions offttp Grimshaw’s third-order asymptotic approximation
of solitary waves using the Euler equations for the full water wave problem. The upper panel shows the surface elevation, and the lower panel
shows the horizontal velocity at= do(—1+ /1/3).

The Petviashvili method was analyzedStepanyants and Amplitude - Wave speed diagram
Pelinovsky(2004), and can be very efficiently implemented ; = : ‘ :
using the fast Fourier transform (FFTjr{go and Johnsgn ] A 1
2009. The iteration can be started for instance with the third-
order asymptotic solution dérimshaw(1971). The iterative
procedure is continued until the,, norm between two suc- Li2p
cessive iteration is on the order of machine precision. Fig-
ure 6 shows approximate solitary-wave solutions of Eg). (
with various wave speeds, and compares them to the third-
order asymptotic approximation of solitary-wave solutions of
the full water-wave problem obtained IBrimshaw(1977).
The left panel shows comparisons of the free-surface ex- 104k
cursion, while the right panel shows a comparison of the
horizontal component of the velocity field, evaluated at the 102

non-dimensional heightgiven byz = —1+ ./1/3. Figure7 . ‘ ‘ ‘ ‘ ‘ ‘ ‘
shows a comparison of the wave-speed—amplitude relation 0 005 01 015 B2 025 03 03

between the solitary-wave approximation of Eg). &nd the

ninth-order asymptotic approximation to the full water-wave Fig. 7. Amplitude—speed relation of solitary wave solutions of

problem obtained benton(1972. Eg. G) and of Fenton’s ninth-order asymptotic approximation of
solitary waves using the Euler equations for the full water wave

problem.
5 The numerical scheme

For the numerical discretization, a finite-volume discretiza-
tion procedure similar to the one usedBarth (1994 and
Barth and Ohlberge(2004) is employed. Let us take as a H; + [Hul, =0, (10)
unit of length the undisturbed dep#h of the fluid above the 12 1 1
barycenter of the landslide, and as a unit of time the ratio"’ + [z +(H=-W)], = Ehh”’ + Eh(h”)”’

d—?. Then the Peregrine system in Eg6) (s rewritten in 1,

8 h Uy (11)
terms of the total water deptH as

The system in Eqs1(Q) and (L1) can be formally rewritten
in the form

Vi + [F(V)]x = Sp + M(V), (12)

www.nonlin-processes-geophys.net/20/267/2013/ Nonlin. Processes Geophys., 2028672013
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where the density and the advective flu¥ (V) are de- Since the discrete solution is discontinuous at cell inter-
fined by facele.Jr% (i € Z), we replace the flux at the cell faces by the
i so-called numerical flux function
H u
VE( ), F(V)E(l 2 )
u 2u”+ (H—h) F(V (g D) ~ Fia (Vi Vi,

The source term is defined by SR ) _
whereVH’El denotes the reconstructions of the conservative
2

Sp = (1 0 > variablesV from left and right sides of each cell interface (the

Shhsn reconstruction procedure employed in the present study will
be described below). Consequently, the semi-discrete scheme
takes the form

0 /.
M V = . dV| 1 3
M <%h<hu>xxt—%h2um> o T oaplFiet —Figl =6 (13)

and the dispersive term is defined by

We begin our presentation with a discretization of the hy-  In order to discretize the advective fliiV), we follow
perbolic part of Egs.10) and (L1), which is the classical non-  the method ofGhidaglia et al(1996 2001) and use the fol-

linear shallow-water system, and then discuss the treatmenbwing finite volume characteristic flux (FVCF) scheme:
of dispersive terms. The Jacobian of the advective fl(x)

i i FV) + F(W FW) — FV

is easily computed to be FOV, W) — ( )-; W) A ( )2 ( )'
aF(V) uH

AV) = == =(1,) The first part of the numerical flux is centered, while the

second part is the upwinding introduced through the Jacobian
and itis clear that\(V) has the two distinct eigenvalues sign-matrixU(V, W) defined by

A =ute, ¢ =~H. UV, W) = signfAGV +W))],

The corresponding right and left eigenvectors are thesign(A) = R-diags™,s™)-L,

columns of the matrices ] ] ]
wheres* = sign(A™). After some simple algebraic compu-

— 1 -1 -1 . .
R — (H H>’ L - p-1_ (H c; ) tations, one can find

Cy Cg 2\—-g-1 cs_l
_ 1 sT 45~ (H/cs) (sT —57)
We consider a partition of the real linR into cells o (cs/H) (st —s7) sT 45~ ’

(or finite volumes)C; = [xl._%,xH_%] with cell centersyj =
2(x 1+X; 1) (i € Z). Let Axj denote the length of the cell

i-1
Ci.In the foIIowing we will consider only uniform partitions
with Axj = Ax, Vi € Z. We would like to approximate the
solutionV (x, t) by discrete values. In order to do so, we in-
troduce the cell average ¥f on the cellC; (denoted with an

overbar):

the sign-matriXU being evaluated at the average state of left
and right values.

Finally, the source tern$y(x,?) = (O, %hhm), which is
due to the moving bottom, is discretized by evaluating the
bathymetry function and its derivatives at cell centers:

1
E/Sb(x,t)dx ~ (0, $h(xi, 1) by (xi, 1)).

Vit) = (Hi@), ui(t)) = —fV(x )dx.

Recall that the bathymetry is composed of the static part

. . . and of the landslide subject to a translational motion:
A simple integration of Eq.12) over the cellC; leads to

the exact relation h(x. 1) = ho(x) — £ (x. 1) = ho(x) — fo(x — xc(0)).
ﬂ + i[]F(V(X-_,’_l,t)) — ]F(V(x._;,t))] The derivativeh,;; can be readily obtained from the for-
dr Ax ! mula

= ax / Sp(Vydr = §. dxe o 2d%o

hae(r,1) = g (r = el ”‘(m) 55— ().
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5.1 High-order reconstruction cell. Let L (x) denote this approximately reconstructed func-
tion, which can be written in the form
In order to obtain a higher order scheme in space, we need

to replace the piecewise constant data by a piecewise polyz,(x) = V; + S - XA

. . . . . . ’ X € ['xiflvxl'+l]‘
nomial representation. This goal is achieved by various so- Ax 2 2
called reconstruction procedures such as MUSCL TKBI{ In order for L(x) to be a non-oscillatory approximation,

gan 19735 van Leer 1979 2009, UNO (Harten and Osher e use the parabolic interpolati@(x) constructed below

1987, ENO (Harten 1989, WENO (Xing and Shu2009  tg estimate the slope within each cell:
and many others. In recent studies on unidirectional wave

models Dutykh et al, 20139 and on Boussinesg-type equa- o _ A » minmo _Q 0 dQ 0
tions Qutykh et al, 2011, the UNO2 scheme showed a S = Axxmi (( @i =0, (x' + ))
good performance with small dissipation in realistic propa-

ga:]ion anfd rurr: uz simulations. C;orr]]seqléently, Wil retaip t:'SWhlIe the solution gradient is estimated on the dual mesh as
PC eme tor tte |scIrEet|zlat|on do tl e advective flux of they i oren performed in more modern schemBarth, 1994
eregrine system in Eqs1() and {L1). Barth and Ohlberge2004). A brief summary of the UNO2

T_he main _|dea qf the UNOZ. sgheme IS to construpt aNONaconstruction can be also found Dutykh et al.(2011h
oscillatory piecewise-parabolic interpolaR{x) to a piece- 20133

wise smooth functioV (x) (seeHarten and Oshef987, for
more details). On each segment containing the f@gg € 5.2 Treatment of the dispersive terms

[xi, xi+1], the functionQ(x) = qi+% (x) is locally a quadratic
polynomial and wherevar(x) is smooth we have

In other words, the solution is reconstructed on the cells

In this section, we explain how to treat the relevant disper-
sive terms in the second E4.1) of the Peregrine system nu-

Q) — V(x) = 0 + O(AxD), merically. We propose the following approximation for the
dQ av second component a@ff (V) of M(V):

—=x+0) — — = 0+ O(AX?).
o0 T ¢ (Ax%) iy = L B )i = 20 i
: 2 Ax?2

Also, Q(x) should be non-oscillatory in the sense that the 2
number of its local extrema does not exceed thaV/ o). ——h2 Gn)iva = 200)i + (i1

Sinceq, +1(x.) = Vj andq, +1(xl+l) V11, it can be writ- f_3 Ax?
hi /- ~\
ten in the form — 2A|x2 (hi—l _ éhi)(ut)i—l
_ 2 hi (- 1\ _
Giy3 ) = Vit bR + s (hiea = S ) i,
NIt Vi E & = Xig1) - N
°i+%{ b x “Ax §©i+%{ } X Ax2 J Note that this spatial discretization is of the second order
O(Ax?) so as to be consistent with the UNO2 advective flux
whered, 1{V} Vig1—V; and®; 1V is closely related discretization presented above. If we denotd blye identity
to the second derivative of the mterf)olant sime 1 (V) = matrix, we can now rewrite the semi-discrete scheme in the
2 form
szq;:rl(x). The polynomial qi+%(x) is chosen to be _
the least oscillatory between two candidates interpolat- dH + i[]}p@(\'/) -FPW] = o,
ing V(x) at (xj—1,xi,xi+1) and (xi,x;+1,xi+2). This re- gt_ Ax
quirement leads to the following choice @, 1{V}= (I_M).d_” + i[]ﬁf)(\‘/) _]F(Z)(\‘/)] = S@,
t Ax B

minmod®;{V}, D;+1{V}) with i
whereIFi_Ll’z) (V) are the two components of the advective nu-

Di{V} = Viy1 — 2Vj + Vi1, merical flux vectoif at the right ¢) and left () faces corre-
Di41{V} = Viyo — 2Vij1 + Vi, spondingly, antﬁéz) denotes the discretization of the second
component ofp.
and where minmodx, y) is the usual minmod function de- In order to advance the numerical solution forward in time,
fined as one has to invert the matri¥ — M) at every time step. This
is no problem in practice, since the matrix appears to be well
minmodx, y) = %[sign(x) + sign(y) 1 x min(|x|, |y]). conditioned in all cases we have considered. In fact, the in-

vertibility of the matrix(/ — M) can be rigorously shown to
To achieve the second ordé(Ax?) accuracy, it is suf-  hold for small enoughAx since the matrix is then diago-
ficient to consider piecewise linear reconstructions in eacmally dominant. The criterion for diagonal dominance in the
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present case is seen to be whereg, is a local error estimation at time step and the
constant$;, B2 anda are defined by
2 - 1 h? hi -
14+ — g2 |4 ' j. 1 1 1
+3Ax2 e 6Ax2+2Ax2 i1+ a=-, Pr=-—, Po=—.
4 4p 4p
1 h? hi - . .
— 4 hial. The parametep gives the order of the scheme, ape= 3 in
6 AxZ  2Ax? our case.

The adaptive strategy in Eq14) can be further improved

_ Using a Taylor expar_n/sion to EXPIess the terms, and i e smooth the factop, before computing the next time
hi+1 as ]’li_]_ = ]’li — Axh (Xi) + O(AX ) and ]’lH_l = ]’li + StepAtn+1:

Axh'(xi) + O(Ax?) , respectively, the criterion reduces to
1+ Tlxzfziz > % +0O(1), and this is guaranteed to hold for Afn+1= PnAln, Pn = @(pp).

small enoughh.x. The functionw(p) is called the time step limiterand

5.3 Time stepping should be smooth, monotonically increasing and should sat-
isfy the following conditions:

We assume that the linear system of equations is already in- ,

verted, and we have the following system of ordinary differ- ®*(@ <1 @(to0) > 1 o) =1w@) =1

ential equations: One possible choice was suggeste8aderlind and Wang

V,=N(V,1), V(0 =V (2009:

In order to solve numerically the last system of equations,, (p) =1+« arctar(’o — 1).
we apply the Bogacki—Shampine method proposed by Prze- ke
myslaw Bogacki and Lawrence F. Shampine in 19B8-( In our computations the parameiers set to 1.
gacki and Shampind 989. It is a Runge—Kutta scheme of
the third order with four stages. It has an embedded second5.4 Validation
order method that is used to estimate the local error and thus,
to adapt the time step size. Moreover, the Bogacki—Shampinérhe scheme described in this section is implemented in MAT-
method enjoys the first same as last (FSAL) property SO that_AB, and runs on a workstation. To check whether the imple-
it needs approximately three function evaluations per stepmentation is correct, we use the approximate solitary waves
This method is also implemented in thde23 function in  ©f Ed. (), computed in the last section. These are used as
MATLAB ( Shampine and Reichelt997). The one step of initial data in the fully discrete scheme, and integrated for-

the Bogacki_shampine method is given by Ward in t|me The Computed SO|uti0nS are then Compared to
the same solitary waves, but shifted forward in spacetfy
ki =NV, 1), wherec is the wave speed, anglis the final time. This proce-

ko = NNV™ + %Atnkl, th + %At), dure is repeated a number of times with different spatial grid

sizes. As a result, it is possible to find the spatial convergence
(D) o A 1 A rate of the scheme. As is visible in Fig, the convergence
VI =V 4 At (Gka + 3k2 + gka), achieved by the practical implementation of the discretiza-
ka = NV 1o+ Ag), tion is very close to the theoretical convergence rate. Since
the temporal discretization is adaptive, we do not present a
VI = v 4 Ap (Rky + Sk + Lka+ Lka). . SV
2 + Atu(zgk1 + ke + 3ks + gka) convergence study in terms of the timestep

ks = NVO) + 2 Atuko, 1, + 3 A1),

Here V(™ ~ V(,), At is the time step an¥/y' ™™ is a
second-order approximation to the solutid(y, 1), so the

difference betweel "+b andv{'*" gives an estimation of e have just shown the convergence of our scheme under the
the local error. The FSAL property consists in the factthat  mesh refinement. Even if the solution we used in validation
is equal toky in the next time step, thus saving one function js fyly nonlinear, it only exists on the flat bottom. Since in
evaluation. _ _ _ the present study we are mainly interested in the wave gen-
If the new time stepAs41 is given by Anp1=  eration by bottom motion, the next validation test will be en-
pPnAty, then, according to the H211b digital filter approach tjrely devoted to this question. Namely, we are going to use
(Soderlind 2003 Soderlind and Wang200§, the propor-  an analytical solution to the linearized full Euler equations

5.4.1 Wave generation by moving bottom

tionality factorp, is given by also known as the Cauchy—Poisson problem. The use of this
S\BL; 8§ \Bo _ solution in tsunami generation problems was first proposed
Pn= (:) (6 1) Pt (14) by Hammack1973.
n n—
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Convergence rate in L., norm
.

—6— FV scheme, slope = 1.995
= = =2nd order

10

277

Convergence rate in Ly norm
!

—©— FV scheme, slope = 2.446
= = =2nd order

10°

Fig. 8. Convergence rate of the finite-volume scheme inftAe-norm (left panel) and th&2-norm (right panel). The numerical integration
of a solitary wave as shown in Fif.is compared to a translated profile. It appears that the second-order convergence is achieved.

We consider the linearized water wave problem for a fluid
layer of uniform depth; = —dp = const. However, a por-
tion of the bottom can move vertically, and the bottom de-
formation is given by a smooth function(x, ), such that
Z(x,0) = 0. At any given time, the bottom profile is given
by z = —do + ¢ (x, ). Moreover, we will make a special as-
sumption about the structure of the bottom deformation:
t, =T, TeH=1-e*,

a>0 r>0.

Obviously, we have to assume thaf|| < 1 so that the

Table 1. Values of various parameters used to simulate the wave
generation by moving bottom.

Gravity accelerationg 1.0
Gravity accelerationg 1.0
Undisturbed water deptlay 1.0
Bottom displacement amplitude: 0.05
Bottom oscillation inverse lengtliy Z—O
Bottom localization parameteky 0.7x10°3
Vertical uplift speedw 1.0and 20

linear approximation be valid. Then, the free surface eleva-

tion at any time is given by the following formulel@mmack
1973 Dutykh et al, 2006:
2

(. 1) = ot So(k)

27 J coshkdp) x
R
e~ —coqwt) — 2 sin(wt)

—ikx
P, e " dk,

(15)

where Eo(k) is the Fourier transform otg(x) and w =
J/gktanhkdp) is the wave frequency corresponding to the
wavenumbek. The above integral can be easily computed
using the FFT algorithm. To fix the ideas for numerical com-
putations, we will take the following localized oscillatory
bottom deformation:

Zo(x) = acos(kox)e_)‘oxz, Ao > 0.

The values of all parameters used in nhumerical simula-

tion are given in Tablel. The nonlinearity parameter/dp
is chosen to be .05, which is far above the nonlinearity

study. In order to simulate this setup using the Peregrine sys-
tem, we consider a symmetric 1-D computational domain
[—220 220Q] discretized intoN = 2000 equal control vol-
umes. The time stepping tolerance parameter was set far be-
low the spatial discretization errorw(O(sz)). First, we

will take a moderately fast bottom uplift corresponding to
the parametesw = 1.0. Computational results are presented
in Fig. 9a—e. One can see that the overall agreement is
fairly good even if some small differences can be noticed
in Fig. 9c—d. However, the resulting wave form predicted by
the Peregrine system follows closely the linearized full Euler
solution in Eq. 15). Now, we will double the bottom uplift
speed ¢ = 2.0). This result is presented in Figj0a—e. One

can see more substantial differences during the generation
phase (see panels b—d). However, here again the resulting
wave is surprisingly well represented by the Boussinesqg-type
equations. The observed discrepancies during the generation
phase are essentially due to the simplified structure of the
vertical speed in Boussinesg-type equatiobatykh et al,
2013h.

of the earthquake-generated tsunamis. However, we think
that this value corresponds better to the scope of the present
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Fig. 9. Free surface waves generated by a moderately fast bottonkrig. 10.Free surface waves generated by a fast bottom motion. The
motion. The blue dashed line corresponds to the analytical Cauchyblue dashed line corresponds to the analytical Cauchy—Poisson so-
Poisson solution, while the solid black line is our numerical solution lution, while the solid black line is our numerical solution to the

to the Peregrine system. The time snapshots are takes- at5,
t=4,t=28,t =20, andt = 80, from top to bottom.

Nonlin. Processes Geophys., 20, 26785, 2013

Peregrine system. The time snapshots are taker=a1.5, r = 8,
t =15,t = 25, andt = 70, from top to bottom.
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wave gauges located.at= 40 andx = 60 show similar wave
heights for both the shallow-water and the dispersive system,
but a qualitative divergence, as small oscillations are already
developing that are not captured by the shallow-water sys-
tem. Once the waves have propagated to the wave gauges
located ate = 80, the dispersive oscillations have amplified,
so that the wave height is larger by a factor of 2 to 3 than the
) . wave height predicted by the shallow-water system. Going
® ) further to the wave gauges locatedxat 100 andx = 120,

the now rising bottom starts to have a damping effect on the
Fig. 11. The physical setup of the problem. The riverbed is indi- \yaves.
cated in dark grey. The computational fluid domain is shaded light The maximum and minimum free surface elevation over

grey, and the landslide is visible in black. Note the difference in hor'the whole domain are shown in Fig3. On the lower panel
izontal and vertical scales in the left panel. The upper panel showsOf the same FigL3, we show the maximal unsigned horizon-
a close-up of the left beach and part of the landslide in a one-to-on

aspect ratio. %al velocity. One can see that for short times the hydrostatic
and dispersive models give very close extreme values. Later
the differences start to appear due to the accumulation of dis-
6 Numerical results persive effects.
Figure 14 shows the development of the kinetic energy
Let us consider a one-dimensional computational domairof the landslide mass and simultaneously the total (kinetic
I =[a,b] =[0,220] composed of two regions: the genera- plus potential) energy contained in the body of the fluid
tion region and a sloping beach on the right. More specif-and the surface waves. Energy development is an impor-
ically, the static bathymetry functiohg(x) is given by a  tant question in the study of tsunamis, and there have been

smoothed out profile generated from the expression studies exclusively devoted to this questidin{i and Bor-
tolucci, 2000. Energy issues connected to water wave mod-
ho(x) = { do+tand(x —a) + p(x), a=x=m, els of Boussinesg-type have also been studied befdirarfd
do+tans(m —a) —tand(x —m), x > m, Kalisch 201Q 2012 Dutykh and Dias2009. While these

models contained a source of energy, in the case at hand, the
work done by friction as the landslide slides down the bottom
p(x) = A1sechky (x — x1)) + Azsechka(x — x2)). acts as a drain of energy, and after the landslide has come to
rest, all energy has been transferred to the fluid. However,

In essence, this function represents a perturbation of theot all energy can be considered as residing in the wave mo-
sloping bottom by two underwater bumps. We made thistion, because a significant amount of energy is needed to lift
nontrivial choice in order to illustrate the advantages of ourthe water from the final position of the landslide to the initial
landslide model, which was designed to handle general nonposition of the landslide. This results in a large increase in
flat bathymetries. The parameters can be chosen in order tpotential energy of the fluid, and only a fraction of the poten-
fit a given bathymetry, but the particular values used heretial energy of the landslide is transferred to the wave motion.
are A1 =4.75, A» =8.85, k1 =0.06, k» =0.13, x1 =45, This fact has also been explained in previous woHarbitz
x2 =80, andn = 120. The bottom profile for these parame- et al, 2006.
ters is depicted in Figll. Of course, in general, if the bot- In order to compute the wave energy in the fluid, we use
tom topography is known, then a numerical bathymetry mapthe integral
could also be used.

We now present some results of the solution of the sur- b
face wave problem using the model in Sect. 3 integratedE,, = / {§n2+%(ho+n)u2} dx, (16)
numerically with the method of Sect. 5. A landslide is in- 2
troduced on the left side of the bathymetry, and using the
method of Sect. 2, its path along the bottom is determinedvhich arises from the shallow-water theory. The kinetic en-
by following the barycenter. Simultaneously, the system inergy of the landslide is given by
Eq. () is solved with the time-dependent bottom topography
given from the solution of the landslide problem. The prob- E5 = %mvz, (17)
lem is integrated up to a final tim@. Figure12 shows wave
records at six virtual wave gauges for both the dispersivewith the generalized mass given by Eq. 8), andv = % as
system in Eg. §) and the shallow-water system. It appears defined in Sect. 2. Figurg4 shows the development of the
from this figure that the shallow-water system underpredictsvave energy and kinetic energy of the landslide. The upper
the development of free-surface oscillations. In particular, thepanel shows the energy according to the shallow-water and

where the functiomp(x) is defined as

a
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Table 2. Values of various parameters used in numerical computations.

Symbol Parameter Units Values
g gravitational acceleration nTé 9.81
do water depth at =a m 1.0-2.0
tan(s) bottom slope a
A landslide amplitude m .65
l landslide length m 52
cw added mass coefficient .a
cd water drag coefficient .0
cf friction coefficient tari3°)
y density ratio water/landslide a
ch friction coefficient with bottom B3x 1074
cv viscous friction coefficient P7x 1073
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Fig. 12. Time series of the surface elevation at wave gauges located=at0, x = 60, x = 80, x = 100 andx = 120. The solid (blue)
curve depicts the wave elevation computed with the dispersive system r6)Egnd the dashed curve represents results obtained from the
shallow-water system. All variables are non-dimensional.

Nonlin. Processes Geophys., 20, 26785 2013 www.nonlin-processes-geophys.net/20/267/2013/



D. Dutykh and H. Kalisch: Boussinesq modeling of underwater landslides 281

Maximum and minimum free surface elevations

Max. free surface (Peregrine)
Min. free surface (Pereregrine)
= = = Max. free surface (NSWE)

= = = Min. free surface (NSWE)

n(t)/A

Fig. 13.Maximum and minimum of the surface excursion, and the horizontal velocity as a function of (non-dimensional) time.
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] o Fig. 15.Run-up on the left and right beach using Etp)( computed
Fig. 14.Development of the wave energy, and the kinetic energy of yith the dispersive system (solid curve) and the nonlinear shallow-

the landslide as a function of (non-dimensional) time. Note that theyyater system (dashed curve) as a function of (non-dimensional)
kinetic energy of the landslide starts from 0 (all energy is potential) tjme.

and also ends at O (all energy has been dissipated or transferred to
the fluid).

numerical experiments. The maximum value was generally
about 05.
dispersive model. The lower panel shows the kinetic energy To compute the wave run-up and drawdown, we use exact
of the landslide. representations given lfyhoi et al.(2011) (a similar formula
We have also computed the Froude numies= ——"—  was also derived iDidenkulova and Pelinovsk008. On
during the evolution. Here is thex component of the veloc- the right beach, the undisturbed water depth at the edge of
ity of the barycenter of the landslideg the position of the  the computational domain is= 3, and the distance from the
barycenter, and(xc) the corresponding local water depth. computational domain to the shore linelis= 30. Using the
This number was always found to be much less than 1 in alhallow-water wave speed, the travel time of a wave from the
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edge of the computational domain to the shore is computed Waimalampituce s Wi ampiue
as
2L L ;\ 06 T -oss
T=—=2|—. (18) : 3 /\/%L/N
\ gh 8% E 0.55 § -0.6 : :
Then the formula for the wave run-upat the shore reads

05 1 15 2 05 1 15 2
t—T

t—1 dn o o
R = _— e — _X,', T d‘[ 19 Maximal run-up on the left Maximal run-up on the right
/ (l — 'L')z - T2 dr ( ) ( ) 075
0 06
with x = 220. At the left beach, the undisturbed water depth %“‘5‘5 §
is h =1.642, and the distance to the beach.is- 11.2814. % o8 % 07
A similar formula can then be computed foe= 0. R g
Figure 15 shows the run-up on the left and right beaches “ :
both in the Boussinesq scaling and in the shallow-water the- ~ °* o5 7 W s P

ory. While the agreement is fair on the left beach, it appears
immediately that the Boussinesq theory predicts a wave runfig. 16. Maximal and minimal wave amplitude, and the maximum
up on the right beach that is much larger (roughly by a fac-run-up on the left and right beaches as a function of the initial depth
tor of two) than the wave run-up according to the shallow- of the center of the landslici#.

water theory. A possible explanation for this divergence is the

nature of the numerical solver when applied to the shallow-

water system. In this case, there is continuous numerical dIS:§tudy have been that the motion of the underwater landslide is

sipation through the handling of hyperbolic wave breaking. . ) : i . . )
Since the waves do not break in the Boussinesq scaling, thcﬁietermlned by integrating a second-order ordinary differen

dissipation i t t  least h ler. The dif al equation derived from first principles of Newtonian me-
ISSipation 1S not present, or at least much smaller. 1he d ‘chanics, and that the wave motion is studied in the Boussi-

ference.cetlrr]l aIBso be.read off Lror: tITe comf)ansort] of the ngzesq scaling, which allows for both nonlinear and disper-
energy In In€ boussinesq and snallow-water System provideqy, o ofacts. The dynamics of the motion of the bottom have

in Fig. 14. It can be seen there Fhat the wave energy n thebeen developed following recent workKiakimzyanov and
shallow-water model starts to diverge from the BOUSSIneSGShOkiHB(ZOlQ. The Boussinesq model that has been utilized

tr\nN(()adeenl tit(arzorgqr:?ree;zg:igg?fz SSOI. T?]?I d;??;i”fﬁﬁ?ﬁ;ﬂ here allows for a dynamic bathymetry, and was derivaffin
wol inuously untr, : ! '(1987). The numerical method used in this paper is an exten-

the Boussinesq energy IS abp_ut 50% Iargc_ar than the Shallc’Wéion of the method put forward Barth(1994 andBarth and
water energy. Note that significant run-up in Fig.does not Ohlberger(2004
happen until non-dimensional time= 75, at which time the '

. ) . The results presented in Se6tclearly show that disper-
energy in the Boussinesq system is already much larger thagion may have a strong effect on the run-up and drawdown at
in the shallow-water system.

) . . the beaches, but it is not clear which of the two models (the
In Fig. 16, we have plotted the maximum wave amplitude,

2 . . shallow-water or the Boussinesq model) paints a more real-
the minimum wave amplitude, and the maximum wave run-

. . .~ istic picture of the actual wave conditions. We have no wa:
up on the left and right beaches. In comparison to previous P y

studies, such a6rilli and Watts(2009, where an open do- of quantifying the energy dissipation in the shallow-water

) dit that 1 h imal solver other than comparing the total wave energy with that
main was Used, It appears that, In our case, the maximal a4, Boussinesq model. As the difference is rather large, we
plitude, and the run-up have a minimundgtbetween 1 and

- . : expect a significant amount of numerical dissipation in the
\}Qi\}ema(r;nrg::tﬁgg X\:]?fﬁol??((;tn\’\tﬁ: Igfl:%de;i?]t) Tv:(émsl:;r::tlyshalIovv.-wate.r simulation. While th.e shallqw—water model
) . . simulation might be closer to physical reality where actual
de_zcreasmg functions afp. The ph_enomenon of rising am- amping occurs because of molecular viscosity and fluid-
plitude and run-up may be accredited to resonant effects th
are absent on an open domain (such as an ocean beach), be% .
cannot be neglected for tsunamis generated by landslides igre

. taken as the basic governing equations in this work.
rivers and lakes.

Of course, this difference could be more or less pro-
nounced depending on the particular case under study. For
7 Conclusions example, the divergence between the shallow-water theory
and the dispersive model is stronger at the right beach than

The influence of an underwater landslide on surface wavest the left beach. The results also show that a finite domain
in a closed basin has been studied. The key features of thexhibits different behavior than a half-open domain (such as
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used inGrilli and Watts 2005 with respect to the depen- Boussinesq, J.: ®orie de l'intumescence liquide appel onde
dence of the wave run-up on the initial depth of the landslide. solitaire ou de translation se propageant dans un canal rectan-
While the run-up is a strictly decreasing function of the initial ~ gulaire, C. R. Acad. Sci. | Math., 72, 755-759, 1871.

depth in an open domain, a closed domain appears to exhibRriganti, R., Musumeci, R. E., Bellotti, G., Brocchini, M., and

resonant effects, which make the dependence more complex. Foti: E.: Boussinesq modelling of breaking waves: descrip-
tion of turbulence, J. Geophys. Res.-Oceans, 109, C07015,

d0i:10.1029/2003JC002068004.
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