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Abstract. Seismic signal processing is an important task in
geophysics sounding and represents a permanent challenge
in petroleum exploration. Although seismograms could in
principle give us a picture of a geological structure, they are
very contaminated by spurious signals and the ground roll
noise is a strongly undesired signal present in the seismo-
grams – it does not carry physical information about the deep
geological structures. This fact demands a big effort in devel-
oping new filtering methodologies. Using discrete wavelet
transform, an efficient filtering for suppression of the ground
roll is presented. In this method, seismic data is decomposed
in multiple scales. We can remove the noise as a surgical op-
eration in each scale, just from the regions where they are
present or strong, allowing us to preserve the maximum of
relevant information.

1 Introduction

Discrete wavelet transform is an invertible integral transfor-
mation that is implemented by measuring the correlation be-
tween the signal and one mother wavelet function. Differ-
ent from the short-time fourier transform, the wavelet trans-
form does not use a constant window to localize the events
in frequency and space but uses a frequency-adaptive scale
function (Daubechies, 1990). Its translations along the signal
determine the location, and its stretches and squeezes deter-
mine the scale information. These properties are essential for
the analysis of nonstationary signals. The scale localization
corresponds to the frequency localization, due to the inverse
relationship.

In geophysics the application of the discrete wavelet trans-
form was motivated by exploration of nonstationary pro-

cesses’ real data which contain multiscale features by nature
(Grossmann et al., 1984). The seismic data is a time series
with time-varying frequencies that can be found in real pro-
cesses. The study of such processes aims at transforming and
representing the data so that the frequency content can be
obtained locally in time. Therefore, the discrete wavelet is
a convenient tool for various seismic-data-processing tasks,
such as noise attenuation, because data are represented in
time and frequency simultaneously (Deighan, 1997).

As a discrete transform, the discrete wavelet transform has
been formulated as a unifying approach to several usages of
filter banks. Daubechies, Mallat, and others demonstrated the
relation between wavelet coefficient calculations, defined as
integral convolutions and the filter banks (Strang te al., 1984;
Mallat, 1989a,b). This joint selectivity is useful when there
are regions in the signal or image whose frequency content is
to be preserved or minimally affected (Corso et al., 2003;
Mallat, 1992). The combination of discrete multiscale de-
compositions with attenuation procedures on the calculated
wavelet coefficients yields filters with joint selectivity in both
the time and frequency domains (Daubechies, 1990).

Figure1a shows the graphical representation for the orig-
inal seismic data analyzed. It is a set of signals (traces) ac-
quired at several geophones (acoustic sensors) arranged at
the ground level. We observe signal noise (ground roll noise
in cone form) contaminating the seismic reflections (hyper-
boles). The ground roll is a slowly decaying, low-frequency
component in seismic records, related to Rayleigh surface
waves, thus appearing as a component with low constant
apparent velocity (Yilmaz, 1987). As a surface component,
these waves do not interact with subsurface structures asso-
ciated with oil reservoirs. This means that they do not carry
physical information about the deep geological structures
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and therefore they become undesirable signals. However, be-
cause of the slow decay, the ground roll appears as a strong
component during a long period of time. It masks the reflec-
tive component that contains information about the deep ge-
ological structures. Because of this it is difficult to identify
the reflections of interest in the regions of the seismogram
where superposition of these two components occurs. Since
multiscale decomposition of seismic data aims to character-
ize the time-dependent frequency of subsurface, the wavelet
transform is well suited for such problems and has power-
ful application potential in seismic data processing (Deighan,
1997).

Our paper is organized as follows. In the next section we
present a short mathematical background about the discrete
wavelet theory of the article and fix the mathematical nota-
tion. In Sect. 3, we present in detail our method for ground
roll attenuation and the results. Finally, in Sect. 4 we make
some final remarks.

2 The wavelet transform

In this section we present the necessary information and re-
lations concerning the continuous and discrete wavelet trans-
forms. This mathematical framework is the basis for the de-
composition of the seismic data, and it establishes the no-
tation we use in this work. A detailed formalism of wavelet
transform can be found in, among others,Daubechies(1992);
Mallat (1998).

As Fourier analysis distributes a signal among a series of
sines and cosines, wavelet analysis does the same with a
wavelet as the decomposition basis. While the Fourier trans-
form does not provide any spatial localization in the fre-
quency domain, the wavelet transform is localized in fre-
quency as well as in space. The wavelet transform doesn’t
use a constant window to localize the events in frequency
and space as does a windowed Fourier transform but uses a
frequency-adaptive scale function.

2.1 The continuous wavelet transform

The continuous wavelet transformd(s,u) of a function
f (t) ∈ L2(R) in the scales and timeu is defined as

d(s,u)= 〈f,ψs,u〉 =

+∞∫
−∞

f (t)ψ?s,udt, (1)

where

ψs,u(t)=
1

√
|s|
ψ

(
t − u

s

)
(2)

represents a basis of functions called wavelets. Hereψ? is
the complex conjugate ofψs,u(t), and the parameterss andu
are real numbers (s 6= 0) that represent dilatations and trans-
lations of one fixed function, the mother waveletψ(t).

The continuous wavelet transform is an invertible integral
transformation that is implemented by measuring the corre-
lation between the signal and one mother wavelet. Its transla-
tions along the signal determine the location, and its stretches
and squeezes determine the scale information. The scale lo-
calization corresponds to the frequency localization, because
scale is effectively the inverse of frequency. In continuous
wavelet transform the location and scale are given by a con-
tinuous parameter.

2.2 Discrete and orthonormal wavelet transforms

In real situations, seismic data are discretized in time. How-
ever, in order to implement the wavelet transform on sampled
signals, we need to discretize the scale and location param-
eters. Wavelet transforms implemented on discrete values of
scale and location are called discrete wavelet transforms. A
basis of orthonormal discrete wavelets can be constructed by
choosings = 2j andu= n2j with j and n integers. Each
value of 2j is known as scale andj is the scale index. The
parametern is the translation index, which determines the
position of the wavelet in time. The conditions for choos-
ing s = 2j andu= n2j are discussed byDaubechies(1992).
This basis is called family Daubechies wavelets.

The corresponding discrete waveletψj,n is defined as

ψj,n(t)=
1

√
2j
ψ

(
t − n2j

2j

)
, (3)

wherej andn, respectively, are integers associated with di-
latations and translations parameters.

Let f (t) be any signal inL2(R). There are bases{ψj,n}
such thatf (t) can be expanded, up to arbitrary high preci-
sion, by a linear combination of the wavelets as

f (t)=

∑
j

∑
n

dj,nψj,n(t), (4)

where the functionsψj,n are called discrete wavelets, are
square integrable with zero mean, and may have some van-
ishing moments. The criterion of zero mean is related to the
fact that one wants to have the possibility of reconstructing
the original function from its wavelet decomposition. The re-
sulting set of wavelets{ψj,n} for all j andn integers form
an orthogonal basis. The remarkable property of this basis is
that the functions are orthogonal to their translates and their
dilates (Mallat, 1989a,c; Daubechies, 1992).

The wavelet coefficientsdj,n of the functionf (t) ∈ L2(R)
are computed by taking the inner product off (t) with the
different waveletsψj,n:

dj,n = 〈f,ψj,n〉. (5)

The discrete wavelet transform off (t) is associated with
timescale representation of the decomposition processes,
where time location and scale are given by indicesn andj ,
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Fig. 1. (a)The original seismic data where the ground roll is present. It corresponds to record 25 as describe in Yilmaz’s book.(b) This is
the result after suppression of the ground roll.(c) The suppressed portion of the original seismic data.

respectively. The coefficientsdj,n give information on the be-
havior of the functionf (t) at scale 2j and time 2jn. There-
fore representation is said to be at resolutionj or at scale 2j .
The difference between two successive approximations is the
detail at resolutionj .

3 Methodology and results

We present here the analysis of seismic data which was ob-
tained from the Center for Wave Phenomena of the Colorado
School of Mines. It has 90 traces, corresponding to equally
spaced geophones from the source, and 2048 samples per
trace (Fig.1a). The samples correspond to the time, both in
arbitrary scale, which imply eleven scales for decomposition
in the wavelet basis considered.

Our proposed method for suppressing ground roll in seis-
mic data is based in the multiscale (multiresolution) decom-
position scheme (Mallat, 1989a,c) using the orthogonal dis-
crete wavelets. The advantages of being orthogonal are that
any error in the input signal will not grow under transforma-
tion and that stable numerical computations are possible. We
optimize procedure by choosing the family of Daubechies
wavelets, since these wavelets are perfectly compact in time
and have minimum support for a given order of approxima-
tion (Daubechies, 1988, 1992). The compactness allows a fil-
tering process that affects strictly the events in scales and a
delimited region of the seismic data. These procedures can be
done in a surgical way, filtering the noise only in the space–
time region and scales in which it is present, and keeping the
other regions and scales unfiltered.

In a previous filter (Corso et al., 2003), using the contin-
uous wavelet transform, the coherent noise region was iden-
tified globally in the space–time region and the filtering was

applied in a scale band below a chosen scale threshold. Con-
sidering that region of the seismic data corresponding to a
bunch of low-frequency components should not be exclu-
sively ground roll noise, an attenuation factorAf is intro-
duced. WhenAf = 0 there is no filtering; at the opposite
limit, whenAf = 1 the signal is completely removed. How-
ever, we use an attenuation factor adapted for each scale.
The signal reconstruction (using the inverse discrete wavelet
transform) allows the partition of their components in indi-
vidual scales.

The multiscale decomposition of the seismic data takes
into account the timescale localization properties of the
wavelet transform. The adaptative filter works in the follow-
ing way. The decomposition represents the seismic data in
several scales. So, for a given scale, the ground roll becomes
more localized in the timescale domain and therefore can be
more easily subjected to a surgical removal. In scales where
the ground roll and reflections are all included, we used the
attenuation factor. Thus, the filter works by reducing the co-
efficients, for a factorAf , in at scale. The scales where there
is just ground roll are disposed of. The attenuation factor is
not used in the scales where the ground roll is not visible.
Since the scale is 2j , different values ofj represent different
scales. In this example, the indexj ranges from 1 to 11. The
scale indexj = 1 has the finest resolution and indexj = 11
has the coarsest resolution with the lowest frequency content.
Finally we reconstruct the cleaned seismic data by scale.

The results of the decomposition in multiscale, using the
discrete wavelet transform, are shown in the Fig.2. Fig-
ures2a and b show the seismic data for scale indexesj = 1,2
andj = 3, respectively. They have relatively higher frequen-
cies which are dominated by reflection events (hyperboles).
There is no significant ground roll noise is present. So, we do
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Fig. 2. Multiscale decomposition of the original seismic data (Fig.1a), using the discrete wavelet transform.(a) is the decomposition in
scalesj = 1,2 that corresponds to the largest frequency content.(b) and(c), respectively, represent decomposition in scalesj = 3 andj = 4,
which correspond to intermediate frequency.(d), (e) and(f), respectively, represent decomposition in scalesj = 5, j = 6 andj = 7− 11,
which correspond to the lowest frequency content.

not apply any attenuation process in these scales. In Fig.2c
we have intermediate scale indexj = 4 and we see that the
ground roll is localized in a small region (in the top central
region). So, we apply the filter just in this localized region
of the seismic data to attenuate the ground roll. Figure2d
corresponds to intermediate scale indexj = 5. In this scale
the ground roll starts to appear and becomes dominant. The
reflection events are almost invisible. However, a signal of
physical relevance is also present. Then, we used the discrete
wavelet transform following the methodology developed by
Corso et al.(2003) for attenuating the ground roll in this
scale. Figures2e and f correspond to the scale indexesj = 6
andj = 7− 11, respectively. We can notice that the seismic
data just corresponds to the ground roll and no physical rele-
vant information.

The result of the filtering process is shown in Fig.1b and c.
We can note an efficient attenuation of ground roll in Fig.1b.
This is evidenced when one looks to Fig.1c, where just the
removed portion is shown. The reconstruction was performed
by simply excluding the scales where the ground roll noise
is dominant, considering the scales attenuated and the scales
with just reflection events. If there is only noise in a particu-
lar scale or region, that part of the signal can be simply elimi-
nated. As we can observe in Fig.2c the ground roll is located
in a small region. With that, it becomes easy to eliminate it
without affecting the other regions.
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4 Conclusions

We have constructed a filter based on the discrete wavelet
transform for processing seismic data. The main goal of
this paper is to show an alternative method of removing the
ground roll that contaminates the seismic data and disturbs
their interpretation. To improve the filtering, seismic data
were submitted to a multiscale decomposition. With multi-
scale decomposition, we have been able to localize and iden-
tify characteristics of the data in a certain scale, verifying if
the ground roll is present in that scale. Then we have just
attenuated it in that scale. These procedures can be done in
a surgical way, filtering the noise only in the space–time re-
gion and scales in which it is present, and keeping the other
regions and scales unfiltered. This operation preserves the
maximum of information contained in the faint, scattered
waves coming from the deep layers.

The method of multiscale decomposition has been shown
to be valuable in the preservation of information we are in-
terested in. This is particularly relevant to situations in which
the characteristics of the ground roll can be well discrimi-
nated. This method shows improvements over the previous
ones, especially for the high degree of adaptability to the sig-
nals, as well as for the improvement of the localization prop-
erties of the filter. In this method the filtering is much more
selective and surgically precise because it is performed scale
by scale. That is the reason why it is more efficient.

Acknowledgements.Financial support from the Brazilian agencies
CNPq, FAPERN, FACEPE, FINEP and CTPETRO is acknowl-
edged.

Edited by: A. Lanorte
Reviewed by: G. Corso and one anonymous referee

References

Corso, G., Kuhn, P., Lucena, L. S., and Thomé, Z.: Seismic ground
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