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Abstract. Algorithmic numerical weather prediction (NWP) Considering the multi-faceted question of improving forecast
skill optimization has been tested using the Integrated Foremodel performance, a more general target criterion should be
casting System (IFS) of the European Centre for Medium-developed. This is a topic of ongoing research.

Range Weather Forecasts (ECMWF). We report the re-
sults of initial experimentation using importance sampling
based on model parameter estimation methodology tar- )

geted for ensemble prediction systems, called the ensemt Introduction

ble prediction and parameter estimation system (EPPES). ) ) . o
The same methodology was earlier proven to be a viabld-CNg-term improvements in numerical weather prediction
concept in low-order ordinary differential equation systems, M0dels (NWP) originate from dedicated research to improve
and in large-scale atmospheric general circulation modeldh® representation of atmospheric phenomena across all spa-

(ECHAMS). Here we show that prediction skill optimiza- tial and temporal scales. This involyes a slow but stt_aaQy
tion is possible even in the context of a system that is (i)development process that gradually improves the predictive

of very high dimensionality, and (ii) carefully tuned to very sk?ll of NWP mode.ls and reduces their s'ystematic errors
high skill. We concentrate on four closure parameters re{Simmons and Hollingsworth, 2002). The increased opera-

lated to the parameterizations of sub-grid scale physical pro;ional skill can be attributed to improvements in all predic-

cesses of convection and formation of convective precipita-lOn System components over many prediction system gen-

tion. We launch standard ensembles of medium-range predicerat'ons' and covers opservmg systems, data gssmllathn,
forecast models, and high-performance computing capabil-

tions such that each member uses different values of the four- = AliE )
parameters, and make sequential statistical inferences aboliteS- Current thinking is that this gradual progress of the past

the parameter values. Our target criterion is the squared foredecades will continue into the future.
cast error of the 500 hPa geopotential height at day three and Short-term prospects for prediction skillimprovements are
day ten. The EPPES methodology is able to converge towardguite different. Short-term developments are typically incre-

closure parameter values that optimize the target criterionMeNtal, such as refinements to existing modeling schemes, or

Therefore, we conclude that estimation and cost function-h€ introduction of new observing system components. These

based tuning of low-dimensional static model parameters i€'€ @med to be implemented as new model releases within
possible despite the very high dimensional state space, & /Mme frame of some months and are seen as gradual small
well as the presence of stochastic noise due to initial state ang(cPS Petween model generations. For instance, parameteri-
physical tendency perturbations. The remaining question peZation schemes OT sub-grid sca!e phyglcgl Processes typlc;ally
fore EPPES can be considered as a generally applicable todindergo many refinements during their lifetime, while entire

in model development is the correct formulation of the targetM0dules of physical processes are replaced relatively infre-
criterion. The one used here is, in our view, very selective duently. Itis a generally accepted fact that in forecast systems
tuned to high predictive skill, the introduction of new and
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1002 P. Ollinaho et al.: Parameter variations in prediction skill optimization at ECMWF

more physically justified schemes seldom leads to skill im-are as follows: (i) are the convergence properties of the
provements without careful and time-consuming model re-EPPES algorithm in the low-dimensional parameter space
tuning. In this respect, tunable model parameters provide greserved as the model state space becomes very high-
practical way to modify the model behavior and tune the dimensional, (ii) do the stochastic model physics perturba-
skill, since model resolution, parameterization paradigm, andions affect the estimation process detrimentally, and (iii) is
other structural matters are usually fixed. it possible to formulate a target criterion (likelihood func-
In order to facilitate the model re-tuning, some algorith- tion) such that the parameter estimation results in a genuine
mic tools would be advantageous to save time and efforand universally acceptable model improvement? This paper
and speed up operational implementations. Moreover, in reexplores questions (i) and (ii), while question (iii) remains a
search, the model code is typically modified frequently astopic for further research and is only briefly discussed here.
new ideas are tested. It is commonplace that these researchin this paper we present experimentation using the
tests are inconclusive, because in the modified modeling syssEuropean Centre for Medium-Range Weather Forecasts
tem various multi-scale interactions and dynamics-physic§ECMWF) Integrated Forecasting System (IFS), including
feedbacks are not tuned into harmony. These consideratiortheir Ensemble Prediction System (EPS). The experimental
motivate the search for simple-to-use and accurate yet comsetup is thus close to an operational system, but not quite
putationally affordable model tuning algorithms. At the sameidentical, since the forecast model resolution is lower than
time one has to acknowledge that re-tuning of complex multi-in the operational system. However, several aspects are now
scale modeling systems by optimizing closure parameter valmore realistic than in our earlier experimentation using the
ues is an extremely hard problem, and there are almost ceECHAM5 climate model (Ollinaho et al., 2013). The fore-
tainly no simple solutions available. The basic reason for thiscast model resolution has been increased from triangular
is the fact that while Navier—Stokes systems tend to “forget”truncation 42 and 31 vertical levels (T42L31) in ECHAMS5
the initial values, the impact of parameter values accumulateéo T 159L62 in the IFS forecast model. The EPS is now a
to the state variables with time, and thus this constitutes a pargenuine system with “native” initial state perturbations and
ticularly sensitive inverse problem. Therefore, even a partialmodel uncertainty representation, in contrast to the earlier
solution to the problem would be beneficial. Such a solution“EPS emulator” in the context of ECHAMS. Finally, and
would be, for instance, a method to provide re-tuned “candi-perhaps most importantly, the IFS forecast model is tuned
date” models that would then be passed for closer inspectiomo a very high level of forecast skill, and therefore it is cer-
from various aspects. Even this would be a step forward frontainly very hard to gain any further skill improvements. The
the current predominantly trial-and-error procedures. ECHAMS5 model, although a very good climate model, was
In this paper we will continue to study an ensemble-basedhot tuned to skilful medium-range weather forecasting. This
method to estimate optimal closure parameter values andhay partly explain the good performance of the EPPES al-
their uncertainties. The Ensemble Prediction and Parametegorithm, as reported in Ollinaho et al. (2013). We present the
Estimation System (EPPES; Jarvinen et al., 2012; Laine eexperimental setup in Sect. 2, the parameter estimation and
al., 2012) utilizes ensemble prediction systems to make stavalidation results in Sect. 3, before the Discussion and Con-
tistical inferences about the NWP model closure parameterslusions.
as follows. A set of model closure parameters is selected, and
its prior probability distribution is specified based on expert )
knowledge as a Gaussian with the distribution parameter€ EXperimental setup
being the mean and standard deviation. A sample is drawr}
from this distribution so that each ensemble member has dif=

ferent parameter values that do not change during the inter the experimentation, we use the IFS version that was op-

gration. Once observations are available, a likelihood func'erational from November 2011 to June 2012 (CY37R3)

tion is evaluated for each member, and parameter values alg 1t at a lower resolution. The forecast model of the IES is
weighted according to their likelihood. Re-sample from thea global hydrostatic general circulation model of the atmo-

likelihood-weighted prior is, in fact, a sample from the poste- sphere with a spectral, semi-implicit, and semi-Lagrangian

rior distribution of the parameter. Such a re-sample is used tcavo time-level dynamical solver. We use the model at spec-

update the prior distribution parameters (mean and standar, al truncation T159 (about 125 km) with 62 vertical lev-

deviation). The parameter estimation proceeds sequentiall)éIS and the model top at 5hPa. The time step for the model

as Fhe prior parameter distribution fpr th.e gurrgnt er]S(.amb,l%lynamics and physical parameterizations is 30 min, with the
Is first updated to become a posterior distribution, which 'Sexception of radiative transfer, which is calculated once ev-

then used as a prior distribution for the next ensemble. ery 3h. The model contains a range of parameterizations for

The approach has been sh'own to perfo'rm as mtenpled IBhysical processes with their specific closure schemes. The
low-order systems, as well as in atmospheric general circula-

tion model ECHAMS (Roeckner et al., 2003) at low resolu-  1|FS documentation is available onlinehtp://www.ecmwf.int/
tion (Ollinaho et al., 2013). The main remaining questionsresearch/ifsdocs

1 The IFS model and subset of parameters
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Table 1. The sub-set of IFS closure parameters with time-invariant parameter variations.

Parameter Description

ENTRORG Entrainment rate for positively buoyant deep convection
ENSHALP  Shallow entrainment defined as ENTSHAXENTRORG
DETRPEN Detrainment rate for penetrative convection

RPRCON Coefficient for determining conversion from cloud water to rain

experiments reported here concern the estimation of pare | - ENTRORG ENTSHALP
metric uncertainties of convection. It is represented by a bulkes| .
mass flux scheme (Tiedtke, 1989; Bechtold et al., 2008), ant '
further divided into deep, mid-level, and shallow convection. 2} .
The formation of convective precipitation is determined by : i
the conversion rate from cloud water into rain, evaporationts; - - . thogslecial)
of precipitation, and the melting rate of snow. In contrast '
to the original Tiedtke (1989) scheme as used earlier in the ! :
ECHAMS runs (Ollinaho et al., 2013), the entrainment and  ° 0 T o 0 T o
detrainment formulation in the IFS is shown to closely fol- _x10®  PETRFEN * RPRCON

low observations and data from cloud-resolving models (de, . . .

Rooy, 2013). This makes it even more difficult in practiceto o. - = - e
further improve on these parameters here.

The optimization of prediction skill here involves four pre-
diction model closure parameters related to entrainment ani
detrainment rates in deep convection, entrainment in shallov
convection, and precipitation formation (Table 1). The choice
of these particular parameters is motivated as follows. First, _ _ _ _
the set of parameters has to be rather small for the estimatiofy'd- 1- Time evolution of the parameter values in 177 consecutive
to converge with affordable sampling. In our previous eXper_ensembles. A vertical column of markers represents parameter v(:al-
. . . . ues of one ensemble. The darker colors correspond to values with
imentation with the ECHAMS climate model, four and seven

full ied simul | q?igh likelihood. The parameter distribution mean vapugthick
parameters were successtully varied simultaneously. Secon ne) andu £ 2 x standard deviation (dashed lines) are also shown.

expert knowledge supports this choice of parameters. Inditor clarity, the default parameter value (thin horizontal line), and
vidually, they are known to affect mostly the tropical tropo- every fourth ensemble only is plotted.

sphere. One has to bear in mind, however, that individual im-

pacts due to the parameter variations are based on sensitivity

studies, but the system response to the joint variation of albackscatter scheme that adds a stream function forcing to the
parameters is much less explored. Finally, the parameters imomentum equation (Berner et al., 2009).

the experiments with the ECHAMS5 climate model were very

similar to the ones in Table 1, and thus we can concentrat@.3 Implementation of the estimation algorithm

here on the impacts of increasing resolution and more realis- ) o .
tic stochastic physics on the estimation task. Details of the ensemble prediction and parameter estima-

tion system (EPPES) can be found in Laine et al. (2012),
2.2 The ensemble prediction system which applied the algorithm to a modified Lorenz-95 sys-
tem (Lorenz, 1995; Wilks, 2005). The implementation here
Initial state perturbations in the Centre’'s ensemble predicfollows closely the one presented in Ollinaho et al. (2013),
tion systems combine two sources. A lower resolution en-which used an EPS emulator. Thus only an outline is pro-
semble of data assimilations (EDA) is run in parallel to high- vided here.
resolution data assimilation. The ensemble of background In EPPES, it is assumed that for time windowthe opti-
states is used to generate the initial perturbations. These amaal model parametdt; is a realization of gp-dimensional
complemented by perturbations based on initial-time singu+andom vector, for which we assume a multivariate Gaussian
lar vectors (Buizza et al., 2008; Isaksen et al., 2010). Un-distribution with a mean vectqr and a covariance matrix
certainty of the forecast model formulation is represented in
these experiments by stochastically perturbing the tendencie& ~ N (1, 2),i =1,2, ...
generated by the parameterization schemes (Buizza et al.,
1999; Palmer et al., 2009) and by a stochastic kinetic energy
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Table 2.IFS parameter values applied in the EPPES tests. Prior mean values correspond to the default model values. Prior standard deviatior
(the standard deviation of the proposal distribution of the first ensemble) and bounds (minimum and maximum allowed parameter values)
are subjectively specified. Posterior mean and standard deviation are the EPPES estimates after 177 estimation steps with the specified co
function.

Parameter Prior Bounds Posterior

mean std. dev. mean std. dev.

ENTRORG 175103 263x10%4 0.9-2.6x103 1.83x103 3.11x10°%
ENSHALP 2.00 0.30 1.0-3.0 2.15 0.30
DETRPEN 0.75¢<104 1.13x10° 0.4-1.1x10% 0.78x10% 0.72x10°°
RPRCON  1.40<103 2.10x10%4 0.7-2.1x103 151x103 222x10°4

The distribution parametegg and X are assumed to be sampling, and the re-sampled values can be considered as
unknown but static in time. In EPPES, the problem of esti- samples from the posterior distributions. Now, the weighted
mating the model parametéris formulated as a problem of sample is used to update the hyperparamgteandX. The
estimating the distribution parameters (or, hyperparametersgovariance matrixx represents the middle ensemble vari-
pandX. The interpretation is that there is a mean parametembility of the parameter vect@ around the mean parameter
valuep that performs best on average considering all weathep.
types, seasons, etc., but due to the evident modeling errors, In the experiments with the IFS, the cost function is for-
the optimal parameter value varies accordingtin differ- mulated as a sum of three and ten day squared forecast errors
ent time windows. Here, the dimensignof the parameter as follows:
vector equals 4. ) B

EPPES is closely related to other ensemble-based estimar(9) = 10- Z (zf72(0) — Za) dA + Z (Zfz“o(o) — Za) dA.
tion methods, such as the particle filter (Kivman, 2003; van A A
Leeuwen, 2003). It is based on importance-sampling ideas.

Instead of considering the parameter sample as particles that Here z{2 (z7*%) is a 72h (240h) forecast of the 500 hPa
are propagated in time, they are re-sampled each time fror§eopotential height, the verifying operational analysis of
an updated parameterized parameter perturbation proposECMWEF valid at the 72 and 240 h forecast ranges, respec-
distribution. This way the well-known problem of collapse tively, and di the areal element of the model grid. The factor
of weights in particle filters does not have a deteriorating ef-10 makes the two right-hand terms approximately equal in
fect on the estimation. magnitude, and to some extent balances their contributions

Instead of estimating the actual parameewe aim for 10 the cost function. The parametdrsn the formula imply
the middle time window variability of locally optimal. This  that the forecasts depend on the sampled parameter values.
is achieved using hierarchical formulation of uncertainties We note that the cost function is closely related to the root-
with hyperparameterg and X. The fundamental idea be- mean-squared forecast error (RMSE) commonly used as a
hind EPPES is that only these hyperparameters related to thealidation metric in NWP. Finally, the likelihood is defined
proposal distribution are updated. This allows us to circum-aS exp{-1/2J(6)). Note that EPPES as such requires very
vent many problems encountered in the estimation of statidittle additional computing time, as it essentially monitors the
model parameters in data assimilation frameworks (see, e.gcomputations of an EPS system.

Rougier, 2013).

Initially, the parameterg and X are specified according
to expert knowledge (“prior” in Table 2) with a diagonal co-
variancex, i.e., no prior knowledge about the parameter co-

variance is assumed. Because a Gaussian distribution is use?ﬂl’rbations, and applying initial time parameter variations. In

parameter bounds are set to prevent the occurrence of NOddition, a control member is run for each ensemble with-
physical parameter values (Table 2). Then, a sample is draWBut initial perturbations, and with default parameter values;

from this prior c_ilstr|but|on, and an ensemble of pred|_ct|onsthis member does not affect the parameter distribution up-
is generated using these parameters values. The likelihood ate. The period of 12 May 2011 to 8 August 2011 was cov-
each prediction is then evaluated as a fit to analyses, and ea '

ed twice a day (00:00 and 12:00 UTC). Thus, 177 ensem-

!oarameter vectoris V\_/elghted by the likelihood. A r_e-samplebles were generated, equaling 8850 test forecasts with differ-
is drawn from the weighted parameter sample, which favors

ll-oerformi N I iated with hiah lik ent parameter combinations. Moreover, an ensemble without
m}e 'Ee: orTlpgt_par?rTe er Vﬁ ues a;sok0|a edwith hig ¢ ! e'parameter perturbations has been run as a reference. It is re-
1nood. In stalistics, this mechanism 1S Known as Importancee raq 1o as “Ctrl” and will be discussed in Sect. 3.3.

2.4 The experiments

The experiment (referred to as “ParVar”) consists of running
sequence of 50 member ensembles with initial-state per-

Nonlin. Processes Geophys., 20, 10Q1641Q 2013 www.nonlin-processes-geophys.net/20/1001/2013/
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ENSHALP
ENSHALP

DETRPEN
DETRPEN

RPRCON
RPRCON

Q% 30 Q%

2 31 2 1 2 2 31 2 3 1
ENTRORG %107 ENSHALP DETRPEN -4 ENTRORG | 44-° ENSHALP DETRPEN

Fig. 2a. Pair-wise parameter covariances at the initial time. De- Fig. 2b. As Fig. 2a, but after 177 consecutive ensembles; the small

fault parameter valuegig) are denoted by dashed lines. The ellipse markers are the proposed parameter values at step 177.

represents the prior parameter uncertainty as specified initially (the

95 % probability range of the parameter uncertaifigy. The small

markers are the proposed parameter values at the first step; darknedsig. 2b), the covariance ellipses appear at the new distribu-

of color is indicative of the weights given to re-sampled parametertion mean valuegt, and some are tilted (for instance, DE-

values. TRPEN vs. RPRCON). This indicates that these parameters
are mutually correlated. The mutual correlation coefficients
evolve more slowly than the mean values (not shown). They

3 Results converge gradually towards their final values mainly during
. o the first 100 estimation steps. For instance, the strongest cor-
3.1 Evolution of parameter distributions relations are—0.7 for between DETRPEN and RPRCON,

) ) and +-0.6 between ENSHALP and DETRPEN. They reach
The evolution of the four parameter values in the 177 con- 5 ,es—0.4 (+-0.4) already after 55 (40) iterations.
secutive ensembles is given in Fig. 1. A vertical column of  Nqte that the default parameter values are inside the poste-
markers represents parameter values of one ensemble. Daglo g5 o4, confidence range (Fig. 2b). This is indicative of the
markers correspond to parameter values with high likelinood g o rate tuning of the default IFS model, and is in contrast to

The parameter distribution mean vajugthick line) changes e experiments with the ECHAMS model (Ollinaho et al.,
conservatively after the initial “shock”, and remains above 2013).

the default parameter value (thin horizontal line) by 4-8%
for all four parameters. Note, for instance, that the dark mark-3.2  validation of the optimized model
ers for RPRCON are mostly above the default parameter
value, thus “pulling” the mean upwards. The square roots ofThe experiment is validated by running the model with the
the diagonal of the distribution paramebgive the distribu-  default and posterior mean parameter values (Table 2) for
tion standard deviations, shown in Fig. ;a3 2x standard the period 12 May to 8 August 2011. Note that this is the
deviation (dashed lines). It reduces markedly (about 36 %)ame period as used for the parameter estimation. A 10-day
for DETRPEN, while for other parameters it increases. Theforecast is launched every 48h at 00:00 UTC, totaling 45
final distribution mean and standard deviations are shown irforecasts. Initial states for the forecasts are the operational
Table 2 as posterior values. analyses of the ECMWEF without re-doing data assimilation.
The parameter pair-wise covariance ellipses, each correThe additional effects of the posterior parameter values via
sponding to the 95 % probability region, are presented indata assimilation are thus ignored. Also, forecast verification
Fig. 2 at the initial time (Fig. 2a), and after 177 estimation makes use of the ECMWF operational analyses.
steps (Fig. 2b). Initially (Fig. 2a), the model parameters are We first check that the cost function is smaller in the opti-
assumed to be independent, and the specified prior parameterized than in the default model, which is the necessary con-
uncertainties appear as ellipses centered at the default valwdition for the estimation procedure to deliver. In the valida-
o (dashed lines). The small markers denote the sampléion set of 45 forecasts, the cost function is indeed reduced.
drawn from the prior distribution. After 177 sampling steps However, only the 72 h forecast error contribution separately

www.nonlin-processes-geophys.net/20/1001/2013/ Nonlin. Processes Geophys., 20, 10002013
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(i.e., the first term of the cost function) is reduced at the -

. . . " . a) Mean error
95 % confidence level. We consider this condition satisfied .

and now proceed to a more detailed validation. o . bt
The posterior parameters of Table 2 are validated in 11111d N ! 3 P
forecast experiments. Next, three metrics of the 500 hPe LI !

geopotential height are used: mean error, root-mean-square e
forecast error (RMSE), and anomaly correlation coefficient *
(ACC), defined as

> dzdza
(X (dzp)? Y- (dza)?)

Here d; and d4 are the forecast and analysis anomalies o ' | i : : !
with respect to the climatological mean, which depends on - ] I
the day of the year and location. These two metrics comple: . :
ment each other, since RMSE penalizes forecast bias, whil: .o :
ACC penalizes incorrect patterns in forecast fields. Thus, s
if RMSE is decreased while ACC is not significantly de- -
graded, we can conclude that the skill improvement is not »
due to smoothing effects, but related either to bias reduc: .
tion and/or more accurate forecasts of spatial variations in the - '
height field. Note that the optimization criterion (likelihood) ,
is closely related to RMSE, while ACC is more independent .
of the criterion used in the estimation. N R

The optimized model parameters have their largest im- o
pact on forecasts in the tropics. Thus the validation results a
500 hPa up to a 10-day forecast range are presented first fc . ! :
the latitude band 208 to 20 N. Figure 3 shows the forecast oLt e !
skill differences between the default and optimized model for ' :
the three metrics. The notation is such that a positive differ- .
ence implies that the optimized model is more accurate thai ' 1 Forecast day
the default model. In Fig. 3a, the mean error is positive up
to day 6 for all individual forecasts (dots). The mean over all Fig. 3. Forecast skill score differences between the default model
cases (continuous line) remains positive throughout the 10and the optimized model for the 500 hPa geopotential height in the

day range. The 95 % confidence interval of the mean (verti-tmpics (20 S to 20 N). Notation: positive difference implies that

cal bars) first meets the zero line at day 9.5. The RMSE i optimized model is more accurafa) Mean error(b) RMSE,

qualitatively similar to the mean error. In Fig. 3b, the RMSE (c) ACC. Included are 45 forecast cases between 12 May and 8 Au-

. . o gust 2012 for individual score difference (dots), its mean (contin-

is positive up to day 4.5 for a”_md'v'du_al foreca;ts (dOt'_s?‘ uous line) and the 95 % confidence interval of the mean (vertical

The mean over all cases (continuous line) remains positive),g).

throughout the 10-day range. The 95 % confidence interval

of the mean of RMSE first meets the zero line at day 10. The

ACC is generally positive as well. In Fig. 3c, the mean over

all cases (continuous line) is positive throughout the 10-daylevel, respectively, for the optimized (default) model to score

range, except that at day 8.5 it touches the zero line. The 95 %etter. White boxes indicate the models performing equally

confidence interval of the mean ACC first meets the zero linewell.

at day 4.5. The main features in Fig. 4 are as follows. First, there is
Next, a comprehensive set of forecast verification resultsstriking 99 % significant global degradation of the 100 hPa

is presented using a so-called scorecard (Fig. 4). It is a congeopotential height RMSE. This feature can be explained as

cise presentation of a large number of scores for varioudollows. The likelihood formulation targets the forecast er-

geographical regions, variables, levels, and forecast rangesor of the 500 hPa geopotential height, and indeed the opti-

In total, the scorecard contains 1710 individual scoring el-mized model has a significantly reduced RMSE and mean

ements. The notation is such that green (red) colors indi-error at 500 hPa geopotential (as seen in Fig. 4 in the tropics,

cate the optimized model scoring better (worse) that the deand in Fig. 3a). The side effect is that the improved 500 hPa

fault model. Small and large arrow heads up (down) indi- height has been reached at the expense of geopotential height

cate that the result is significant at 95 % or 99 % confidenceat higher levels (at 100 hPa, and very likely also at 200 and

ACC =

T
2 b) RMSE

Nonlin. Processes Geophys., 20, 10Q1641Q 2013 www.nonlin-processes-geophys.net/20/1001/2013/
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ACC RMSE
Area Variable Level Forecast day Forecast day
1 2 3 4 5 6 7 8 9101 2 3 4 5 6 7 8 9 10
10m winds
T temp surface J
specific 200 hPa
humidity 700 hPa
100 hpa | |70 I
temperature S00 hPa
850 hPa
n.hem. 1000 hPa
200 hra |° )
winds 850 hPa
1000 hPa
00 s N
geopotential 500 hPa
850 hPa
1000 hPa
10m winds
Zmtemp surface
specific 200 hPa
humidity 700 hPa
100 hPa
temperature 00 hPa
850 hPa
s.hem. 1000 hPa
200 hPa | [0
winds 850 hPa
1000 hPa
T00 rrs I
geopotential 500 hPa
850 hPa
1000 hPa
10m winds
Tmtemp surface
specific 200 hPa_|7[° i
humidity 700hPa LI 1T
100 hPa
temperature 200 hPa
850 hPa
tropics 1000 hPa R i 3 rrrrrrr 3
200 hPa
winds 850 hPa
1000 hPa || |” I
100 hha AR [T .
geopotential 00 hPa
850 hPa
1000 hPa | |° H Il I

Fig. 4. A forecast validation scorecard for the 45 forecast cases between 12 May 2012 and 8 August 2012 using the following color code:
green is good for the optimized model, while red is good for the default model. Small (large) arrow head indicates 95 % (99 %) level of
statistical significance of the sore difference. The 1st column indicates the area, the 2nd the variable, the 3rd pressure level, and the 4th an
5th columns the ACC and RMS score for forecast days 1-10.

50 hPa). Note, however, that the corresponding ACC is sig-in the mid-latitude storm tracks. The effects of the convec-
nificantly improved in the short-range predictions, thus im- tion parameter changes can thus be seen in the middle lat-
plying that the RMSE degradation is due to increased biastude height and wind scores. While these scores are posi-
rather than incorrect height patterns. Second, there is a reive in the Southern Hemisphere in the short range, there is
markable tropical score improvement for temperature andsome degradation in the Northern Hemisphere scores in the
humidity up to about day 5, and winds up to about day medium range.

2. In fact, apart from the degraded 100 hPa height RMSE,

the tropics benefit considerably from the modified parame-3-3 Impact on the ensemble prediction system

ter values. The improvement in the winds is especially im- , .

pressive, as it is a very important variable in the tropical The parameter perturbations cause additional ensemble

troposphere, and it is generally very hard to improve wind spreagl on top of the di_spersio_n due to init?al condition per-
scores in that region. Convection also plays an important roldurbations and stochastic physics perturbations. Although the
main purpose of the parameter perturbations generated from

www.nonlin-processes-geophys.net/20/1001/2013/ Nonlin. Processes Geophys., 20, 10002013
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8 experiments, the ensemble standard deviation is smaller than
------ ParVar the ensemble mean RMS error. Due to the lower horizon-
7 o tal resolution, both ensembles are more underdispersive than
the operational ensemble configuration, which has a horizon-
61 ) tal resolution of T639. Experiment ParVar has more spread
2 s and a lower ensemble mean RMS error than experiment Ctrl.
c The probabilistic skill of the two ensemble experiments
o = is quantified with the Continuous Ranked Probability Score
,,,,,,, (CRPS). The CRPS for 200 hPa zonal wind in the tropics
3 g is shown in Fig. 5b. Experiment ParVar is generally more
skilful than experiment Ctrl in the tropics, except for tem-
2 ; ‘ ; ; perature around 200 hPa (not shown). The impact on CRPS
0 2 4 6 8 10 ; L .
fc-step (d) in the extra-tropics is close to neutral (not shown). The im-
______ ParVar provement that is observed in ParVar may be due to two
4 c aspects. First, the reliability has been improved as the en-
,,,, semble spread better matches the RMS error of the ensemble
mean. Secondly, the average skill of the ensemble members
o in ParVar is higher than in Ctrl as the mean of the parameter
T 3 distribution () has changed. The parameter covariarie (
© guides the parameter sampling towards the well-performing
ones, too. It is left for future work to determine whether one
of the two aspects dominates the skill improvement.
2,
0 2 4 6 8 10 4 Discussion

fc-step (d)

Fig. 5. Ensemble verification of the ensemble with parameter vari- There is some indication that the three-day forecast error
ations (ParVar) and a control ensemble (Ctrl) that uses the saméerm in the cost function is the main driver of the forecast
initial perturbations and model uncertainty representation but nomodel improvement. It would be of interest to also investi-
parameter perturbations for the 200 hPa zonal wind component irgate this aspect, but that it is beyond the scope of this study.
the tropics:(a) ensemble standard deviation (black) and ensemble The parameter uncertainty is specified by expert knowl-
mean RMS error (grey)b) Continuous Ranked Probability Score. edge as prior values for the first ensemble. It reduces
Sample of 90 cases in the period 24 June, 12:00UTC to 8 AUgUStmarkedly during the estimation process for DETRPEN
00:00 UTC. (Fig. 1), while it increases for the other three parameters.
The reasons for this behaviour are twofold. First, the expert
the EPPES algorithm is to sample the parameter space anghcertainty specification may be too narrow or wide, which
test the model response, they provide an additional represerthen appears as evolving uncertainty. Second, additional ex-
tation for model uncertainties. No changes to either initial periments (not shown) without stochastic effects indicate that
perturbations or the stochastic physics schemes were madeg/stem noise tends to slow down the reduction of parameter
in order to improve the spread—error relationship at any stageincertainties. Nevertheless, the knowledge about the covari-
of the experimentation. ance (Fig. 2b) is new information, and it can potentially guide
Now, we examine the impact of the parameter variationsuse of parameter variations as a source of model error in en-
on the ensemble forecasts. A control ensemble (Ctrl) servesemble prediction.
as a reference that uses the default values of the four param- The optimized model was validated in the dependent sam-
eters for all members. Otherwise, the ensemble configuraple. The EPPES is designed as an online monitoring and pa-
tion of experiment Ctrl is identical to the experiment with rameter estimation tool: by design it is intended to be run as
parameter variations (ParVar). In order to omit the initial a part of the operational ensemble prediction system, with
phase during which the parameter distribution still evolvespractically no additional computational cost. Thus, we argue
more rapidly, verification statistics have been averaged forthat the primary objective of the EPPES is to perform well in
the last 90 ensemble forecasts only. This covers the periothe dependent sample.
from 24 June, 12:00 UTC to 8 August, 00:00 UTC. The degradation of the 100 hPa geopotential height fore-
The parameter variations generate additional ensembleast skill can be attributed to forecast error of mean temper-
variance mostly in tropical regions. Figure 5a shows the en-ature somewhere between 100 and 500 hPa. However, tem-
semble standard deviation and the ensemble mean RMS err@erature forecasts both at 500 and 100 hPa verify positively.
for the 200 hPa zonal wind component in the tropics. For bothA possible explanation is the degraded temperature forecast
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at 200 hPa due to missing>Cabsorption in the radiation The parameter mean values increase by about 4-8 % for
scheme. For some unknown reason this feature has a less sat four parameters. The posterior distributions indicate no-
vere impact in the default model. ticeable correlation between some parameter pairs. The pos-

The EPPES algorithm passed the critical tests in our ex{erior parameter estimates validate generally positively in a
periments. The method was able to improve the forecast skilset of 45 forecasts that is a subset of the training set (i.e.,
by tuning low-dimensional static model parameters in high-a dependent validation sample). In the tropics, the 500 hPa
dimensional Navier—Stokes systems. The proposal distribugeopotential height mean error, root-mean-squared error, and
tion for parameter perturbations converged to cover regionsnomaly correlation coefficient indicate a solid improvement
where the cost function was improved. The obtained paramin forecast skill covering almost the entire 10-day forecast
eter values validated well compared to default values in therange. A scorecard containing a number of scores for various
already highly tuned ECMWF IFS system. The method ef-geographical regions, variables, levels, and forecast ranges
fectively integrates out the initial values uncertainty of the (in total, 1710 individual scoring elements) also revealed
state space and the effect of added stochastic noise due teeaknesses. Although the tropical scores were generally im-
physical tendency perturbations. Furthermore, it is not af-proved, even for winds, scores of the 100 hPa geopotential
fected by the problem of collapse of importance-samplingheight were markedly degraded. This can be attributed to
weights. Despite the generally positive result, the optimizedthe selective nature of the likelihood formulation. It is ex-
model cannot be seriously considered as a “candidate” modadlicit about the three- and ten-day forecast errors at 500 hPa
for operations. Efforts are needed to formulate a cost functiorgeopotential height, and implicit about errors in mean tem-
that would lead to such candidate models. Our current thinkperature and humidity in the atmosphere below 500 hPa, plus
ing is that the target criterion cannot be as selective as th@rocesses above and below which affect 500 hPa forecast er-
500 hPa forecast error. Instead, a suitable integral quantityors. It is not sensitive, however, to height errors (mainly
over the entire atmosphere is being searched. bias) higher up.

Finally, in the context of NWP, the characteristic param- Based on the experimentation, the main conclusions are
eter distributions (i.e., the distribution parametgrand X as follows: (i) it is possible to directly tune the predictive
in our case) are not stationary due to, for instance, seasonakill of a very high dimensional Navier—Stokes system based
and inter-annual variability of the atmosphere. Therefore,on ensemble estimation techniques, and (ii) estimation of a
one would not expect EPPES, or any other parameter estimamall number of model parameters is possible in the pres-
tion method for that matter, to converge in a strict mathemat-ence of stochastic noise due to initial condition and tendency
ical sense. This limits the scope of any parameter estimatiomperturbations. The main remaining question is how to for-
technique. This holds, in fact, for model tuning even today: mulate the likelihood function such that it leads to a uni-
models are tuned in limited samples. vocal improvement in model performance and its predictive

skill. This is our current research topic. Finally, we note that
the EPPES computer codes used here are available online at

5 Summary and conclusions http://helios.fmi.fi/~lainema/eppes
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