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Abstract. Algorithmic numerical weather prediction (NWP)
skill optimization has been tested using the Integrated Fore-
casting System (IFS) of the European Centre for Medium-
Range Weather Forecasts (ECMWF). We report the re-
sults of initial experimentation using importance sampling
based on model parameter estimation methodology tar-
geted for ensemble prediction systems, called the ensem-
ble prediction and parameter estimation system (EPPES).
The same methodology was earlier proven to be a viable
concept in low-order ordinary differential equation systems,
and in large-scale atmospheric general circulation models
(ECHAM5). Here we show that prediction skill optimiza-
tion is possible even in the context of a system that is (i)
of very high dimensionality, and (ii) carefully tuned to very
high skill. We concentrate on four closure parameters re-
lated to the parameterizations of sub-grid scale physical pro-
cesses of convection and formation of convective precipita-
tion. We launch standard ensembles of medium-range predic-
tions such that each member uses different values of the four
parameters, and make sequential statistical inferences about
the parameter values. Our target criterion is the squared fore-
cast error of the 500 hPa geopotential height at day three and
day ten. The EPPES methodology is able to converge towards
closure parameter values that optimize the target criterion.
Therefore, we conclude that estimation and cost function-
based tuning of low-dimensional static model parameters is
possible despite the very high dimensional state space, as
well as the presence of stochastic noise due to initial state and
physical tendency perturbations. The remaining question be-
fore EPPES can be considered as a generally applicable tool
in model development is the correct formulation of the target
criterion. The one used here is, in our view, very selective.

Considering the multi-faceted question of improving forecast
model performance, a more general target criterion should be
developed. This is a topic of ongoing research.

1 Introduction

Long-term improvements in numerical weather prediction
models (NWP) originate from dedicated research to improve
the representation of atmospheric phenomena across all spa-
tial and temporal scales. This involves a slow but steady
development process that gradually improves the predictive
skill of NWP models and reduces their systematic errors
(Simmons and Hollingsworth, 2002). The increased opera-
tional skill can be attributed to improvements in all predic-
tion system components over many prediction system gen-
erations, and covers observing systems, data assimilation,
forecast models, and high-performance computing capabil-
ities. Current thinking is that this gradual progress of the past
decades will continue into the future.

Short-term prospects for prediction skill improvements are
quite different. Short-term developments are typically incre-
mental, such as refinements to existing modeling schemes, or
the introduction of new observing system components. These
are aimed to be implemented as new model releases within
a time frame of some months and are seen as gradual small
steps between model generations. For instance, parameteri-
zation schemes of sub-grid scale physical processes typically
undergo many refinements during their lifetime, while entire
modules of physical processes are replaced relatively infre-
quently. It is a generally accepted fact that in forecast systems
tuned to high predictive skill, the introduction of new and
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more physically justified schemes seldom leads to skill im-
provements without careful and time-consuming model re-
tuning. In this respect, tunable model parameters provide a
practical way to modify the model behavior and tune the
skill, since model resolution, parameterization paradigm, and
other structural matters are usually fixed.

In order to facilitate the model re-tuning, some algorith-
mic tools would be advantageous to save time and effort
and speed up operational implementations. Moreover, in re-
search, the model code is typically modified frequently as
new ideas are tested. It is commonplace that these research
tests are inconclusive, because in the modified modeling sys-
tem various multi-scale interactions and dynamics-physics
feedbacks are not tuned into harmony. These considerations
motivate the search for simple-to-use and accurate yet com-
putationally affordable model tuning algorithms. At the same
time one has to acknowledge that re-tuning of complex multi-
scale modeling systems by optimizing closure parameter val-
ues is an extremely hard problem, and there are almost cer-
tainly no simple solutions available. The basic reason for this
is the fact that while Navier–Stokes systems tend to “forget”
the initial values, the impact of parameter values accumulate
to the state variables with time, and thus this constitutes a par-
ticularly sensitive inverse problem. Therefore, even a partial
solution to the problem would be beneficial. Such a solution
would be, for instance, a method to provide re-tuned “candi-
date” models that would then be passed for closer inspection
from various aspects. Even this would be a step forward from
the current predominantly trial-and-error procedures.

In this paper we will continue to study an ensemble-based
method to estimate optimal closure parameter values and
their uncertainties. The Ensemble Prediction and Parameter
Estimation System (EPPES; Järvinen et al., 2012; Laine et
al., 2012) utilizes ensemble prediction systems to make sta-
tistical inferences about the NWP model closure parameters
as follows. A set of model closure parameters is selected, and
its prior probability distribution is specified based on expert
knowledge as a Gaussian with the distribution parameters
being the mean and standard deviation. A sample is drawn
from this distribution so that each ensemble member has dif-
ferent parameter values that do not change during the inte-
gration. Once observations are available, a likelihood func-
tion is evaluated for each member, and parameter values are
weighted according to their likelihood. Re-sample from the
likelihood-weighted prior is, in fact, a sample from the poste-
rior distribution of the parameter. Such a re-sample is used to
update the prior distribution parameters (mean and standard
deviation). The parameter estimation proceeds sequentially
as the prior parameter distribution for the current ensemble
is first updated to become a posterior distribution, which is
then used as a prior distribution for the next ensemble.

The approach has been shown to perform as intended in
low-order systems, as well as in atmospheric general circula-
tion model ECHAM5 (Roeckner et al., 2003) at low resolu-
tion (Ollinaho et al., 2013). The main remaining questions

are as follows: (i) are the convergence properties of the
EPPES algorithm in the low-dimensional parameter space
preserved as the model state space becomes very high-
dimensional, (ii) do the stochastic model physics perturba-
tions affect the estimation process detrimentally, and (iii) is
it possible to formulate a target criterion (likelihood func-
tion) such that the parameter estimation results in a genuine
and universally acceptable model improvement? This paper
explores questions (i) and (ii), while question (iii) remains a
topic for further research and is only briefly discussed here.

In this paper we present experimentation using the
European Centre for Medium-Range Weather Forecasts
(ECMWF) Integrated Forecasting System (IFS), including
their Ensemble Prediction System (EPS). The experimental
setup is thus close to an operational system, but not quite
identical, since the forecast model resolution is lower than
in the operational system. However, several aspects are now
more realistic than in our earlier experimentation using the
ECHAM5 climate model (Ollinaho et al., 2013). The fore-
cast model resolution has been increased from triangular
truncation 42 and 31 vertical levels (T42L31) in ECHAM5
to TL159L62 in the IFS forecast model. The EPS is now a
genuine system with “native” initial state perturbations and
model uncertainty representation, in contrast to the earlier
“EPS emulator” in the context of ECHAM5. Finally, and
perhaps most importantly, the IFS forecast model is tuned
to a very high level of forecast skill, and therefore it is cer-
tainly very hard to gain any further skill improvements. The
ECHAM5 model, although a very good climate model, was
not tuned to skilful medium-range weather forecasting. This
may partly explain the good performance of the EPPES al-
gorithm, as reported in Ollinaho et al. (2013). We present the
experimental setup in Sect. 2, the parameter estimation and
validation results in Sect. 3, before the Discussion and Con-
clusions.

2 Experimental setup

2.1 The IFS model and subset of parameters

In the experimentation, we use the IFS version that was op-
erational from November 2011 to June 2012 (CY37R3)1,
but at a lower resolution. The forecast model of the IFS is
a global hydrostatic general circulation model of the atmo-
sphere with a spectral, semi-implicit, and semi-Lagrangian
two time-level dynamical solver. We use the model at spec-
tral truncation TL159 (about 125 km) with 62 vertical lev-
els and the model top at 5 hPa. The time step for the model
dynamics and physical parameterizations is 30 min, with the
exception of radiative transfer, which is calculated once ev-
ery 3 h. The model contains a range of parameterizations for
physical processes with their specific closure schemes. The

1IFS documentation is available online athttp://www.ecmwf.int/
research/ifsdocs.
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Table 1.The sub-set of IFS closure parameters with time-invariant parameter variations.

Parameter Description

ENTRORG Entrainment rate for positively buoyant deep convection
ENSHALP Shallow entrainment defined as ENTSHALP× ENTRORG
DETRPEN Detrainment rate for penetrative convection
RPRCON Coefficient for determining conversion from cloud water to rain

experiments reported here concern the estimation of para-
metric uncertainties of convection. It is represented by a bulk
mass flux scheme (Tiedtke, 1989; Bechtold et al., 2008), and
further divided into deep, mid-level, and shallow convection.
The formation of convective precipitation is determined by
the conversion rate from cloud water into rain, evaporation
of precipitation, and the melting rate of snow. In contrast
to the original Tiedtke (1989) scheme as used earlier in the
ECHAM5 runs (Ollinaho et al., 2013), the entrainment and
detrainment formulation in the IFS is shown to closely fol-
low observations and data from cloud-resolving models (de
Rooy, 2013). This makes it even more difficult in practice to
further improve on these parameters here.

The optimization of prediction skill here involves four pre-
diction model closure parameters related to entrainment and
detrainment rates in deep convection, entrainment in shallow
convection, and precipitation formation (Table 1). The choice
of these particular parameters is motivated as follows. First,
the set of parameters has to be rather small for the estimation
to converge with affordable sampling. In our previous exper-
imentation with the ECHAM5 climate model, four and seven
parameters were successfully varied simultaneously. Second,
expert knowledge supports this choice of parameters. Indi-
vidually, they are known to affect mostly the tropical tropo-
sphere. One has to bear in mind, however, that individual im-
pacts due to the parameter variations are based on sensitivity
studies, but the system response to the joint variation of all
parameters is much less explored. Finally, the parameters in
the experiments with the ECHAM5 climate model were very
similar to the ones in Table 1, and thus we can concentrate
here on the impacts of increasing resolution and more realis-
tic stochastic physics on the estimation task.

2.2 The ensemble prediction system

Initial state perturbations in the Centre’s ensemble predic-
tion systems combine two sources. A lower resolution en-
semble of data assimilations (EDA) is run in parallel to high-
resolution data assimilation. The ensemble of background
states is used to generate the initial perturbations. These are
complemented by perturbations based on initial-time singu-
lar vectors (Buizza et al., 2008; Isaksen et al., 2010). Un-
certainty of the forecast model formulation is represented in
these experiments by stochastically perturbing the tendencies
generated by the parameterization schemes (Buizza et al.,
1999; Palmer et al., 2009) and by a stochastic kinetic energy
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Fig. 1. Time evolution of the parameter values in 177 consecutive
ensembles. A vertical column of markers represents parameter val-
ues of one ensemble. The darker colors correspond to values with
high likelihood. The parameter distribution mean valueµ (thick
line) andµ ± 2× standard deviation (dashed lines) are also shown.
For clarity, the default parameter value (thin horizontal line), and
every fourth ensemble only is plotted.

backscatter scheme that adds a stream function forcing to the
momentum equation (Berner et al., 2009).

2.3 Implementation of the estimation algorithm

Details of the ensemble prediction and parameter estima-
tion system (EPPES) can be found in Laine et al. (2012),
which applied the algorithm to a modified Lorenz-95 sys-
tem (Lorenz, 1995; Wilks, 2005). The implementation here
follows closely the one presented in Ollinaho et al. (2013),
which used an EPS emulator. Thus only an outline is pro-
vided here.

In EPPES, it is assumed that for time windowi, the opti-
mal model parameterθ i is a realization of ap-dimensional
random vector, for which we assume a multivariate Gaussian
distribution with a mean vectorµ and a covariance matrix6

θ i ∼ N(µ,6), i = 1,2, . . .

www.nonlin-processes-geophys.net/20/1001/2013/ Nonlin. Processes Geophys., 20, 1001–1010, 2013
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Table 2. IFS parameter values applied in the EPPES tests. Prior mean values correspond to the default model values. Prior standard deviation
(the standard deviation of the proposal distribution of the first ensemble) and bounds (minimum and maximum allowed parameter values)
are subjectively specified. Posterior mean and standard deviation are the EPPES estimates after 177 estimation steps with the specified cost
function.

Parameter Prior Bounds Posterior

mean std. dev. mean std. dev.

ENTRORG 1.75× 10−3 2.63× 10−4 0.9–2.6× 10−3 1.83× 10−3 3.11× 10−4

ENSHALP 2.00 0.30 1.0–3.0 2.15 0.30
DETRPEN 0.75× 10−4 1.13× 10−5 0.4–1.1× 10−4 0.78× 10−4 0.72× 10−5

RPRCON 1.40× 10−3 2.10× 10−4 0.7–2.1× 10−3 1.51× 10−3 2.22× 10−4

The distribution parametersµ and6 are assumed to be
unknown but static in time. In EPPES, the problem of esti-
mating the model parameterθ is formulated as a problem of
estimating the distribution parameters (or, hyperparameters)
µ and6. The interpretation is that there is a mean parameter
valueµ that performs best on average considering all weather
types, seasons, etc., but due to the evident modeling errors,
the optimal parameter value varies according to6 in differ-
ent time windows. Here, the dimensionp of the parameter
vector equals 4.

EPPES is closely related to other ensemble-based estima-
tion methods, such as the particle filter (Kivman, 2003; van
Leeuwen, 2003). It is based on importance-sampling ideas.
Instead of considering the parameter sample as particles that
are propagated in time, they are re-sampled each time from
an updated parameterized parameter perturbation proposal
distribution. This way the well-known problem of collapse
of weights in particle filters does not have a deteriorating ef-
fect on the estimation.

Instead of estimating the actual parameterθ , we aim for
the middle time window variability of locally optimalθ . This
is achieved using hierarchical formulation of uncertainties
with hyperparametersµ and 6. The fundamental idea be-
hind EPPES is that only these hyperparameters related to the
proposal distribution are updated. This allows us to circum-
vent many problems encountered in the estimation of static
model parameters in data assimilation frameworks (see, e.g.,
Rougier, 2013).

Initially, the parametersµ and6 are specified according
to expert knowledge (“prior” in Table 2) with a diagonal co-
variance6, i.e., no prior knowledge about the parameter co-
variance is assumed. Because a Gaussian distribution is used,
parameter bounds are set to prevent the occurrence of non-
physical parameter values (Table 2). Then, a sample is drawn
from this prior distribution, and an ensemble of predictions
is generated using these parameters values. The likelihood of
each prediction is then evaluated as a fit to analyses, and each
parameter vector is weighted by the likelihood. A re-sample
is drawn from the weighted parameter sample, which favors
well-performing parameter values associated with high like-
lihood. In statistics, this mechanism is known as importance

sampling, and the re-sampled values can be considered as
samples from the posterior distributions. Now, the weighted
sample is used to update the hyperparametersµ and6. The
covariance matrix6 represents the middle ensemble vari-
ability of the parameter vectorθ around the mean parameter
µ.

In the experiments with the IFS, the cost function is for-
mulated as a sum of three and ten day squared forecast errors
as follows:

J (θ) = 10·

∑
A

(
z72

f (θ) − za

)2
dA +

∑
A

(
z240

f (θ) − za

)2
dA.

Here z72
f (z240

f ) is a 72 h (240 h) forecast of the 500 hPa
geopotential height,za the verifying operational analysis of
ECMWF valid at the 72 and 240 h forecast ranges, respec-
tively, and dA the areal element of the model grid. The factor
10 makes the two right-hand terms approximately equal in
magnitude, and to some extent balances their contributions
to the cost function. The parametersθ in the formula imply
that the forecasts depend on the sampled parameter values.
We note that the cost function is closely related to the root-
mean-squared forecast error (RMSE) commonly used as a
validation metric in NWP. Finally, the likelihood is defined
as exp(−1/2J (θ)). Note that EPPES as such requires very
little additional computing time, as it essentially monitors the
computations of an EPS system.

2.4 The experiments

The experiment (referred to as “ParVar”) consists of running
a sequence of 50 member ensembles with initial-state per-
turbations, and applying initial time parameter variations. In
addition, a control member is run for each ensemble with-
out initial perturbations, and with default parameter values;
this member does not affect the parameter distribution up-
date. The period of 12 May 2011 to 8 August 2011 was cov-
ered twice a day (00:00 and 12:00 UTC). Thus, 177 ensem-
bles were generated, equaling 8850 test forecasts with differ-
ent parameter combinations. Moreover, an ensemble without
parameter perturbations has been run as a reference. It is re-
ferred to as “Ctrl” and will be discussed in Sect. 3.3.
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Fig. 2a. Pair-wise parameter covariances at the initial time. De-
fault parameter values (µ0) are denoted by dashed lines. The ellipse
represents the prior parameter uncertainty as specified initially (the
95 % probability range of the parameter uncertainty60). The small
markers are the proposed parameter values at the first step; darkness
of color is indicative of the weights given to re-sampled parameter
values.

3 Results

3.1 Evolution of parameter distributions

The evolution of the four parameter values in the 177 con-
secutive ensembles is given in Fig. 1. A vertical column of
markers represents parameter values of one ensemble. Dark
markers correspond to parameter values with high likelihood.
The parameter distribution mean valueµ (thick line) changes
conservatively after the initial “shock”, and remains above
the default parameter value (thin horizontal line) by 4–8 %
for all four parameters. Note, for instance, that the dark mark-
ers for RPRCON are mostly above the default parameter
value, thus “pulling” the mean upwards. The square roots of
the diagonal of the distribution parameter6 give the distribu-
tion standard deviations, shown in Fig. 1 asµ±2× standard
deviation (dashed lines). It reduces markedly (about 36 %)
for DETRPEN, while for other parameters it increases. The
final distribution mean and standard deviations are shown in
Table 2 as posterior values.

The parameter pair-wise covariance ellipses, each corre-
sponding to the 95 % probability region, are presented in
Fig. 2 at the initial time (Fig. 2a), and after 177 estimation
steps (Fig. 2b). Initially (Fig. 2a), the model parameters are
assumed to be independent, and the specified prior parameter
uncertainties appear as ellipses centered at the default value
µ0 (dashed lines). The small markers denote the sample
drawn from the prior distribution. After 177 sampling steps
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Fig. 2b. As Fig. 2a, but after 177 consecutive ensembles; the small
markers are the proposed parameter values at step 177.

(Fig. 2b), the covariance ellipses appear at the new distribu-
tion mean valuesµ, and some are tilted (for instance, DE-
TRPEN vs. RPRCON). This indicates that these parameters
are mutually correlated. The mutual correlation coefficients
evolve more slowly than the mean values (not shown). They
converge gradually towards their final values mainly during
the first 100 estimation steps. For instance, the strongest cor-
relations are−0.7 for between DETRPEN and RPRCON,
and+0.6 between ENSHALP and DETRPEN. They reach
values−0.4 (+0.4) already after 55 (40) iterations.

Note that the default parameter values are inside the poste-
rior 95 % confidence range (Fig. 2b). This is indicative of the
accurate tuning of the default IFS model, and is in contrast to
the experiments with the ECHAM5 model (Ollinaho et al.,
2013).

3.2 Validation of the optimized model

The experiment is validated by running the model with the
default and posterior mean parameter values (Table 2) for
the period 12 May to 8 August 2011. Note that this is the
same period as used for the parameter estimation. A 10-day
forecast is launched every 48 h at 00:00 UTC, totaling 45
forecasts. Initial states for the forecasts are the operational
analyses of the ECMWF without re-doing data assimilation.
The additional effects of the posterior parameter values via
data assimilation are thus ignored. Also, forecast verification
makes use of the ECMWF operational analyses.

We first check that the cost function is smaller in the opti-
mized than in the default model, which is the necessary con-
dition for the estimation procedure to deliver. In the valida-
tion set of 45 forecasts, the cost function is indeed reduced.
However, only the 72 h forecast error contribution separately

www.nonlin-processes-geophys.net/20/1001/2013/ Nonlin. Processes Geophys., 20, 1001–1010, 2013



1006 P. Ollinaho et al.: Parameter variations in prediction skill optimization at ECMWF

(i.e., the first term of the cost function) is reduced at the
95 % confidence level. We consider this condition satisfied
and now proceed to a more detailed validation.

The posterior parameters of Table 2 are validated in
forecast experiments. Next, three metrics of the 500 hPa
geopotential height are used: mean error, root-mean-squared
forecast error (RMSE), and anomaly correlation coefficient
(ACC), defined as

ACC =

∑
dzfdza(∑

(dzf)2
∑

(dza)2
) 1

2

.

Here dzf and dza are the forecast and analysis anomalies
with respect to the climatological mean, which depends on
the day of the year and location. These two metrics comple-
ment each other, since RMSE penalizes forecast bias, while
ACC penalizes incorrect patterns in forecast fields. Thus,
if RMSE is decreased while ACC is not significantly de-
graded, we can conclude that the skill improvement is not
due to smoothing effects, but related either to bias reduc-
tion and/or more accurate forecasts of spatial variations in the
height field. Note that the optimization criterion (likelihood)
is closely related to RMSE, while ACC is more independent
of the criterion used in the estimation.

The optimized model parameters have their largest im-
pact on forecasts in the tropics. Thus the validation results at
500 hPa up to a 10-day forecast range are presented first for
the latitude band 20◦ S to 20◦ N. Figure 3 shows the forecast
skill differences between the default and optimized model for
the three metrics. The notation is such that a positive differ-
ence implies that the optimized model is more accurate than
the default model. In Fig. 3a, the mean error is positive up
to day 6 for all individual forecasts (dots). The mean over all
cases (continuous line) remains positive throughout the 10-
day range. The 95 % confidence interval of the mean (verti-
cal bars) first meets the zero line at day 9.5. The RMSE is
qualitatively similar to the mean error. In Fig. 3b, the RMSE
is positive up to day 4.5 for all individual forecasts (dots).
The mean over all cases (continuous line) remains positive
throughout the 10-day range. The 95 % confidence interval
of the mean of RMSE first meets the zero line at day 10. The
ACC is generally positive as well. In Fig. 3c, the mean over
all cases (continuous line) is positive throughout the 10-day
range, except that at day 8.5 it touches the zero line. The 95 %
confidence interval of the mean ACC first meets the zero line
at day 4.5.

Next, a comprehensive set of forecast verification results
is presented using a so-called scorecard (Fig. 4). It is a con-
cise presentation of a large number of scores for various
geographical regions, variables, levels, and forecast ranges.
In total, the scorecard contains 1710 individual scoring el-
ements. The notation is such that green (red) colors indi-
cate the optimized model scoring better (worse) that the de-
fault model. Small and large arrow heads up (down) indi-
cate that the result is significant at 95 % or 99 % confidence

Fig. 3. Forecast skill score differences between the default model
and the optimized model for the 500 hPa geopotential height in the
tropics (20◦ S to 20◦ N). Notation: positive difference implies that
the optimized model is more accurate.(a) Mean error,(b) RMSE,
(c) ACC. Included are 45 forecast cases between 12 May and 8 Au-
gust 2012 for individual score difference (dots), its mean (contin-
uous line) and the 95 % confidence interval of the mean (vertical
bars).

level, respectively, for the optimized (default) model to score
better. White boxes indicate the models performing equally
well.

The main features in Fig. 4 are as follows. First, there is
striking 99 % significant global degradation of the 100 hPa
geopotential height RMSE. This feature can be explained as
follows. The likelihood formulation targets the forecast er-
ror of the 500 hPa geopotential height, and indeed the opti-
mized model has a significantly reduced RMSE and mean
error at 500 hPa geopotential (as seen in Fig. 4 in the tropics,
and in Fig. 3a). The side effect is that the improved 500 hPa
height has been reached at the expense of geopotential height
at higher levels (at 100 hPa, and very likely also at 200 and

Nonlin. Processes Geophys., 20, 1001–1010, 2013 www.nonlin-processes-geophys.net/20/1001/2013/
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Fig. 4. A forecast validation scorecard for the 45 forecast cases between 12 May 2012 and 8 August 2012 using the following color code:
green is good for the optimized model, while red is good for the default model. Small (large) arrow head indicates 95 % (99 %) level of
statistical significance of the sore difference. The 1st column indicates the area, the 2nd the variable, the 3rd pressure level, and the 4th and
5th columns the ACC and RMS score for forecast days 1–10.

50 hPa). Note, however, that the corresponding ACC is sig-
nificantly improved in the short-range predictions, thus im-
plying that the RMSE degradation is due to increased bias
rather than incorrect height patterns. Second, there is a re-
markable tropical score improvement for temperature and
humidity up to about day 5, and winds up to about day
2. In fact, apart from the degraded 100 hPa height RMSE,
the tropics benefit considerably from the modified parame-
ter values. The improvement in the winds is especially im-
pressive, as it is a very important variable in the tropical
troposphere, and it is generally very hard to improve wind
scores in that region. Convection also plays an important role

in the mid-latitude storm tracks. The effects of the convec-
tion parameter changes can thus be seen in the middle lat-
itude height and wind scores. While these scores are posi-
tive in the Southern Hemisphere in the short range, there is
some degradation in the Northern Hemisphere scores in the
medium range.

3.3 Impact on the ensemble prediction system

The parameter perturbations cause additional ensemble
spread on top of the dispersion due to initial condition per-
turbations and stochastic physics perturbations. Although the
main purpose of the parameter perturbations generated from

www.nonlin-processes-geophys.net/20/1001/2013/ Nonlin. Processes Geophys., 20, 1001–1010, 2013
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Fig. 5. Ensemble verification of the ensemble with parameter vari-
ations (ParVar) and a control ensemble (Ctrl) that uses the same
initial perturbations and model uncertainty representation but no
parameter perturbations for the 200 hPa zonal wind component in
the tropics:(a) ensemble standard deviation (black) and ensemble
mean RMS error (grey);(b) Continuous Ranked Probability Score.
Sample of 90 cases in the period 24 June, 12:00 UTC to 8 August,
00:00 UTC.

the EPPES algorithm is to sample the parameter space and
test the model response, they provide an additional represen-
tation for model uncertainties. No changes to either initial
perturbations or the stochastic physics schemes were made
in order to improve the spread–error relationship at any stage
of the experimentation.

Now, we examine the impact of the parameter variations
on the ensemble forecasts. A control ensemble (Ctrl) serves
as a reference that uses the default values of the four param-
eters for all members. Otherwise, the ensemble configura-
tion of experiment Ctrl is identical to the experiment with
parameter variations (ParVar). In order to omit the initial
phase during which the parameter distribution still evolves
more rapidly, verification statistics have been averaged for
the last 90 ensemble forecasts only. This covers the period
from 24 June, 12:00 UTC to 8 August, 00:00 UTC.

The parameter variations generate additional ensemble
variance mostly in tropical regions. Figure 5a shows the en-
semble standard deviation and the ensemble mean RMS error
for the 200 hPa zonal wind component in the tropics. For both

experiments, the ensemble standard deviation is smaller than
the ensemble mean RMS error. Due to the lower horizon-
tal resolution, both ensembles are more underdispersive than
the operational ensemble configuration, which has a horizon-
tal resolution of TL639. Experiment ParVar has more spread
and a lower ensemble mean RMS error than experiment Ctrl.

The probabilistic skill of the two ensemble experiments
is quantified with the Continuous Ranked Probability Score
(CRPS). The CRPS for 200 hPa zonal wind in the tropics
is shown in Fig. 5b. Experiment ParVar is generally more
skilful than experiment Ctrl in the tropics, except for tem-
perature around 200 hPa (not shown). The impact on CRPS
in the extra-tropics is close to neutral (not shown). The im-
provement that is observed in ParVar may be due to two
aspects. First, the reliability has been improved as the en-
semble spread better matches the RMS error of the ensemble
mean. Secondly, the average skill of the ensemble members
in ParVar is higher than in Ctrl as the mean of the parameter
distribution (µ) has changed. The parameter covariance (6)

guides the parameter sampling towards the well-performing
ones, too. It is left for future work to determine whether one
of the two aspects dominates the skill improvement.

4 Discussion

There is some indication that the three-day forecast error
term in the cost function is the main driver of the forecast
model improvement. It would be of interest to also investi-
gate this aspect, but that it is beyond the scope of this study.

The parameter uncertainty is specified by expert knowl-
edge as prior values for the first ensemble. It reduces
markedly during the estimation process for DETRPEN
(Fig. 1), while it increases for the other three parameters.
The reasons for this behaviour are twofold. First, the expert
uncertainty specification may be too narrow or wide, which
then appears as evolving uncertainty. Second, additional ex-
periments (not shown) without stochastic effects indicate that
system noise tends to slow down the reduction of parameter
uncertainties. Nevertheless, the knowledge about the covari-
ance (Fig. 2b) is new information, and it can potentially guide
use of parameter variations as a source of model error in en-
semble prediction.

The optimized model was validated in the dependent sam-
ple. The EPPES is designed as an online monitoring and pa-
rameter estimation tool: by design it is intended to be run as
a part of the operational ensemble prediction system, with
practically no additional computational cost. Thus, we argue
that the primary objective of the EPPES is to perform well in
the dependent sample.

The degradation of the 100 hPa geopotential height fore-
cast skill can be attributed to forecast error of mean temper-
ature somewhere between 100 and 500 hPa. However, tem-
perature forecasts both at 500 and 100 hPa verify positively.
A possible explanation is the degraded temperature forecast
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at 200 hPa due to missing O2 absorption in the radiation
scheme. For some unknown reason this feature has a less se-
vere impact in the default model.

The EPPES algorithm passed the critical tests in our ex-
periments. The method was able to improve the forecast skill
by tuning low-dimensional static model parameters in high-
dimensional Navier–Stokes systems. The proposal distribu-
tion for parameter perturbations converged to cover regions
where the cost function was improved. The obtained param-
eter values validated well compared to default values in the
already highly tuned ECMWF IFS system. The method ef-
fectively integrates out the initial values uncertainty of the
state space and the effect of added stochastic noise due to
physical tendency perturbations. Furthermore, it is not af-
fected by the problem of collapse of importance-sampling
weights. Despite the generally positive result, the optimized
model cannot be seriously considered as a “candidate” model
for operations. Efforts are needed to formulate a cost function
that would lead to such candidate models. Our current think-
ing is that the target criterion cannot be as selective as the
500 hPa forecast error. Instead, a suitable integral quantity
over the entire atmosphere is being searched.

Finally, in the context of NWP, the characteristic param-
eter distributions (i.e., the distribution parametersµ and6

in our case) are not stationary due to, for instance, seasonal
and inter-annual variability of the atmosphere. Therefore,
one would not expect EPPES, or any other parameter estima-
tion method for that matter, to converge in a strict mathemat-
ical sense. This limits the scope of any parameter estimation
technique. This holds, in fact, for model tuning even today:
models are tuned in limited samples.

5 Summary and conclusions

In this paper, four closure parameters of the ECMWF IFS
forecast model at TL159L62 resolution are estimated using
the Ensemble Prediction and Parameter Estimation System
(EPPES; Järvinen et al., 2012; Laine et al., 2012; Ollinaho
et al., 2013). The estimation procedure is, in short, as fol-
lows. The closure parameters are assumed to follow a Gaus-
sian distribution with unknown but static distribution param-
eters (mean and standard deviation), and the problem is to
estimate these distribution parameters instead of the parame-
ters themselves. Standard ensemble predictions are launched,
added with initial time parameter variations. Initial state and
stochastic physics perturbations are used, just as in the op-
erational ensemble prediction system of ECMWF. The pa-
rameter estimation is similar to a sequential application of
Bayesian inference, where the likelihood is formulated in
terms of three- and ten-day squared forecast error of the
500 hPa geopotential height. The parameter estimation in-
volves 177 ensembles with 50 members from 12 May to
8 August 2011, thus totaling 8850 test forecasts with differ-
ent parameter combinations.

The parameter mean values increase by about 4–8 % for
all four parameters. The posterior distributions indicate no-
ticeable correlation between some parameter pairs. The pos-
terior parameter estimates validate generally positively in a
set of 45 forecasts that is a subset of the training set (i.e.,
a dependent validation sample). In the tropics, the 500 hPa
geopotential height mean error, root-mean-squared error, and
anomaly correlation coefficient indicate a solid improvement
in forecast skill covering almost the entire 10-day forecast
range. A scorecard containing a number of scores for various
geographical regions, variables, levels, and forecast ranges
(in total, 1710 individual scoring elements) also revealed
weaknesses. Although the tropical scores were generally im-
proved, even for winds, scores of the 100 hPa geopotential
height were markedly degraded. This can be attributed to
the selective nature of the likelihood formulation. It is ex-
plicit about the three- and ten-day forecast errors at 500 hPa
geopotential height, and implicit about errors in mean tem-
perature and humidity in the atmosphere below 500 hPa, plus
processes above and below which affect 500 hPa forecast er-
rors. It is not sensitive, however, to height errors (mainly
bias) higher up.

Based on the experimentation, the main conclusions are
as follows: (i) it is possible to directly tune the predictive
skill of a very high dimensional Navier–Stokes system based
on ensemble estimation techniques, and (ii) estimation of a
small number of model parameters is possible in the pres-
ence of stochastic noise due to initial condition and tendency
perturbations. The main remaining question is how to for-
mulate the likelihood function such that it leads to a uni-
vocal improvement in model performance and its predictive
skill. This is our current research topic. Finally, we note that
the EPPES computer codes used here are available online at
http://helios.fmi.fi/~lainema/eppes.
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