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Abstract. Climate — the “coarse-gridded” state of the
coupled ocean-atmosphere system — varies on many time
and space scales. The challenge is to relate such variations
to specific mechanisms and to produce verifiable
quantitative explanations. In this paper, we study the
oceanic component of the climate system and, in particular,
the different circulation regimes of the mid-latitude wind-
driven ocean on the interannual time scale. These
circulations are dominated by two counterrotating, basin-
scale gyres: subtropical and subpolar.

Numerical techniques of bifurcation theory are used to study
the multiplicity and stability of the steady-state solutions
of a wind-driven, double-gyre, reduced-gravity, shallow-
water model. Branches of stationary solutions and their
linear stability are calculated systematically as parameters
are varied. This is one of the first geophysical studies in
which such techniques are applied to a dynamical system
with tens of thousands of degrees of freedom..

Multiple stationary solutions obtain as a result of nonlinear
interactions between the two main recirculating cells
(cyclonic and anticyclonic) of the large-scale double-gyre
flow. These equilibria appear for realistic values of the
forcing and dissipation parameters. They undergo Hopf
bifurcation and transition to aperiedic solutions eventually
occurs. The periodic and chaotic behavior is probably
related to an increased number of vorticity cells interacting
with each other,

A preliminary comparison with observations of the Gulf
Stream and Kuroshio Extensions suggests that the internal
variability of our simulated mid-latitude ocean is an
important factor in the observed interannual variability of
these two current systems.

Correspondence to: S. Speich

1 Introduction

Dynamical systems theory has been applied to climate
variability on different time scales. The pioneering work of
Budyko (1969), Sellers (1969), and North et al. (1981) has
introduced multiple equilibria to the study of paleoclimatic
variations. Intraseasonal variability of the atmosphere (e.g.,
Charney and DeVore, 1979; Legras and Ghil, 1985; Vautard
and Legras, 1988; Strong et al., 1995), seasonal-to-
interannual variability of the ocean-atmosphere system in
the tropics, in particular the El Nifio-Southern Oscillation
(ENSO) phenomenon (e.g., Philander, 1990; Neelin et al.,
1992; Jin et al. 1994), and interdecadal-to-millenial
variability of the oceans’ thermohaline circulation
(Stommel, 1961; Bryan, 1986; Weaver et al., 1991; Thual
and McWilliams, 1992; Quon and Ghil, 1995) have been
studied by following successive bifurcations through limit
cycles to strange attractors, This approach was motivated
by the nonlinearities of the equations governing the
atmosphere and oceans. The behavior of their solutions
changes qualitatively only at isolated points in phase-
parameter space, the bifurcation points. Behavior along a
single branch of solutions, between such points, is
modified only quantitatively and can be explored by
linearization about the basic state which changes smoothly
as parameters change (e.g., Ghil and Childress, 1987).

The truly nonlinear behavior near bifurcation points
involves robust transitions, of great generality, between
single and multiple equilibria (saddle-node, pitchfork and
transcritical bifurcations), equilibria and limit cycles (Hopf
bifurcation), and on to tori and strange attractors
(Guckenheimer and Holmes, 1983). Chaos and strange
attractors are not restricted to low-order systems
(Constantin et al., 1989; Témam, 1988). The detailed
exploration of finite- but high-dimensional attractors in
climate dynamics has begun in the last decade (e.g., Legras
and Ghil, 1985; Lorenz, 1990; Dijkstra and Neelin, 1995).
The mathematical tools of dynamical system theory permit
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us to explore the system's phase-parameter space from the
simplest, most symmetric states to highly complex and
realistic ones, with much Tower symmetry in space and
time. The exploration can proceed in its first stages by
analytical methods (e.g., North et al., 1981; Jin and Ghil,
1990) and more fully by numerical algorithms, such as
pseudo-arclength continuation (Keller, 1977; Legras and
Ghil, 1985; Dijkstra, 1992); the method we use
systematically in the present study belongs to the latter.

Continuation methods enable one to follow efficiently a
branch of steady-state solutions as a single parameter varies
continuously, rather than merely computing trajectories of
a particular system of equations for a large number of
different parameter values. An additional advantage of these
methods is that unstable steady states can also be
computed; these might not be of direct physical relevance,
but they do show how branches of stable steady states are
connected and can influence the behavior of time-dependent
solutions nearby (Ghil and Childress, 1987, Ch. 6).
Continuation methods have been applied to atmospheric
models with 0(102-103) discrete variables (e.g., Legras and
Ghil, 1985; Keppenne, 1989). The work we present in this
paper represents the first oceanographic study of a model
with O(10%) variables, a number which starts approaching
that of advanced general circulation models [Q(105-106)].
The linear stability of a continnum of steady states is
determined simultaneously by the present method; this
feature is important, since it enables one to monitor the
occurrence of limit cycles via Hopf bifurcation of the steady
states,

Our aim here is to investigate the nonlinear behavior of a
model of the double-gyre mid-latitude wind-driven
circulation and the dependence of its flow regimes on the
major physical parameters that control it. Numerical
simulation of idealized single- and double-gyre ocean basins
has been crucial in the study of nonlinear effects added to
the classical Stommel and Munk models and of the
dynamics of western boundary currents (WBCs), their
separation from the coast and confluence in mid-latitude jets
such as the Gulf Stream and the Kuroshio Extensions (e.g.,
Bryan, 1963; Robinson, 1983; Cessi et al., 1987; Le
Provost and Verron, 1987; Ierley and Young, 1988; Cessi
and Thompson, 1990; Verron and Jo, 1994). In our study,
we emphasize multiple equilibria and low-frequency
variations. Evidence of such variability is restricted by the
paucity of oceanographic data for the major extratropical
current systems. Still, a few observational studies do
suggest interannual variability of the Kuroshio-Oyashio
(Qiu and Joyce, 1992), the Gulf Stream-Polar Current
(Auer, 1987; Brown and Evans, 1987; Levitus, 1990;
Hanson, 1991), and the Brazil-Malvinas current systems
(Olson et al., 1988). Theoretical studies of interannual
variability, in particular that of the WBCs, have been rather
limited and the mechanisms governing this variability are
not fully understood so far (Ierley, 1990; McCalpin and
Haidvogel, 1995).

Only recently has a dynamical-systems approach been
brought to bear on the dynamics of WBCs (Jiang et al.,
1995a; Cessi and Ierley, 1995). Multiple equilibria of the
wind-driven, single-gyre quasi-geostrophic (QG) vorticity
equation (Veronis 1966a; b) were studied by Cessi and
Ierley (1995) using Newton’s method rather than forward
integrations. The picture resulting from their numerical
work involves up to seven multiple steady states in a
parameter space defined by the lateral viscosity and bottom
friction. No oscillatory solutions for the QG model could
be found by this method.

Jiang et al., 1995a (JJG hereafter) have obtained multiple
equilibria, oscillatory and chaotic solutions of a wind-
driven, primitive-equation (PE), reduced-gravity model, by
computing model trajectories for a fairly large number of
parameter values. They imposed a symmetric double-gyre
zonal wind stress, constant in time, as used in many eddy-
resolving, QG numerical simulations (e.g., Holland 1978).
By repeated experiments with different wind-stress
magnitudes and dissipation coefficients, they were able to
construct approximate bifurcation and catastrophe diagrams
depicting the dependence of the steady-state solutions on
these two parameters. Multiple steady states, periodic and
aperiodic solutions arise in succession as the wind forcing
is increased. The multiple equilibria have a nearly
antisymmetric structure with respect to the mid-basin axis
where the wind-stress curl is zero, defined as the R-line. JJG
showed the intrinsically nonlinear nature of the solutions
so obtained. In their results, despite the symmetric wind
forcing, the point of separation from the coast of the WBCs
is found south or north of the R-line, as observed in the real
ocean (e.g., Boland and Church, 1981; Olson et al., 1988).

The purpose of the present article is to provide a
complete quantitative description of double-gyre, wind-
driven mid-latitude ocean dynamics in a shallow-water,
reduced-gravity model with simplified geometry forced by a
constant zonal wind stress. The PE shallow-water
formulation of JJG showed a wide spectrum of model
responses to such a forcing, including nearly antisymmetric
equilibria and internal ocean variability. For the classical
QG approach, asymmetric solutions have been obtained
more often by prescribing an asymmetry in the zonal wind
stress (e.g., Moro 1990). So far, multiple equilibria only
have been shown to exist for a barotropic QG model forced
by an antisymmetric zonal wind pattern (Cessi and Ierley
1995), although Le Provost and Verron (1987) were able to
obtain unstable barotropic flows for some values of their
physical parameters in a double-gyre QG model, while
McCalpin and Haidvogel (1995) obtained only chaotic
solutions in theirs. Haidvogel et al. (1992) argue that
higher-order, ageostrophic effects are important in WBC
separation, while using basically a QG model. For reasons
of continuity in our systematic exploration of internal
ocean variability and nonlinear effects, we examined
essentially the PE model of JIG, rather than attempting to
select an intermediate balanced model (McWilliams et al.,



1990). The model choice is dictated ultimately by the
competing requirements of relative simplicity and
reasonable size, to permit the application of an advanced
pseudo-arclength continuation code (Dijkstra, 1992), and of
acceptable physical realism, to capture a significant subset
of upper-ocean dynamics. The model is described in Section
2, and the pseudo-arclength methodology is presented
succinctly in Section 3, with further details in an appendix.

In Section 4 we analyze the stationary solutions, and
their dependence on some of the model’s nondimensional
parameters: the amplitude of the forcing, the Ekman
number, the Rossby number, the nondimensional 8
parameter, and the bottom drag coefficient. We discuss how
model solutions vary in number, stability and spatial
features with the parameters. In Section 5, the nature of the
oscillatory instabilities and the limit cycles they give rise
to are investigated. In Section 6, transitions to aperiodic
solutions is studied through the computation of specific
trajectories, The dependence of this transition on the basin
size is emphasized, along with a brief comparison to
available ocean data.

A summary of the results follows in Section 7. Despite
the model's simplicity, its behavior is relatively realistic in
the solutions' spatial patterns and in the temporal
variability of the oscillatory solutions. This suggests that
the model, used here mostly for illustrative, methodological
purposes, might still have some relevance to mid-latitude
oceanic flows.

2 Model Formulation

We focus on the nonlinear behavior of the wind-driven
circulation in a closed ocean basin whose dynamics is
governed by reduced-gravity, shallow-water equations (JJIG),
forced by a double-gyre antisymmetric wind-stress pattern,
The mid-latitude ocean is modeled as a single layer of fluid
of constant density p and variable thickness A(x, y, 1),
overlying a deep and motionless layer of density p + Ap.
The model domain is confined to a rectangular basin given
by 0 €x <L and 0 £y £ D. The equilibrium depth is fixed
at H = 500 m, to have the model’s (barotropic) Rossby-
wave velocity close to the (first baroclinic) mode which is
dominant in the mid-latitude oceans. Since all
thermodynamic effects are neglected in the model, the
interface between the two fluid layers is an isopycnal
surface, thought of as the ocean's permanent thermocline
(Pedlosky 1987).
The governing partial differential equations (PDEs) are:

a—U+v'.(Uv)=
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—g’h%— fU+AV?V - RV, (2.1b)
o v v
i m (2.1¢)
where
Ui+ Vj= hv = h(ui+vj) (2.1d)

is the upper-layer mass-flux vector, while 1 and v represent,
respectively, the eastward and northward components of the
velocity in the upper layer, and / the upper-layer thickness;
g’ is the reduced gravity, g'=g(Ap/p), with g the
acceleration of gravity. We solve the equations on the beta-
plane, ie.,f=f, + B,y

The standard parameter values used here follow JJG, with
L =1000 km, D =2000 km, f, = 5-10-5 s~1!,
Po=1022 kg m~3, and g’ = 0.031 m s~2. The size of
the domain to be investigated in detail has been dictated by
the compromise between a marginally eddy-resolving grid
of Ax=Ay =20km and a total number of discrete
variables that the continuation method can handle. A much
larger domain, with L = 6400 km and D = 4400 km, is
studied in section 6.2, where model results are compared to
the observations.

The zonal wind stress, 7%, forcing the ocean flow appears
as a body force in Eq. (2.1a) and is constant in time and
proportional to the standard sinusoidal pattern
—Toco3(2my/D) often used in such mechanistic studies
(e.g., Holland and Lin, 1975); the proportionality factor,
Ty, is the amplitude of the wind. Horizontal eddy diffusion
is represented by an harmonic operator with a coefficient A
= 300 m? s~1, while bottom friction is of Rayleigh-type
and it is scaled by R = 5-10~8s~1.

The normal flow is zero at the lateral boundaries, while
the boundary conditions for the tangential velocity are
expressed by the relations:

(1-ypv+ }'?=0 atorsill, Z, (2.22)
X

(I=y)u+ }f%ﬂ) aty =0, D, (2.2b)
y

where the boundary viscosity parameter ¥ has the limiting
values of 0 for no-slip boundary conditions and 1 for the
free-slip ones. Here, we assumed no-slip boundary
conditions. Sensitivity experiments to no-slip versus
intermediate and free-slip boundary conditions were carried
out by JIG, following Haidvogel et al. (1992). With
intermediate and free-slip boundary conditions the model
becomes more energetic but the essential flow structures are
preserved. McCalpin and Haidvogel (1995) assumed free-
slip and obtained more chaotic solutions for similar
parameter values, in agreement with the results of JJG.

At the coast (the solid boundaries here) both velocity
components vanish, so the no-slip boundary conditions are
mathematically correct, but the boundary layers are
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insufficiently resolved in this and similar models. Verron
and Blayo (1995) showed sensitivity of Gulf Stream
separation in the QG equations to different numerical
implementations of the no-slip boundary conditions. This
sensitivity appears to be similar to that noticed by
Haidvogel et al. (1992) in their QG study of j~dependence
of solutions. Equally detailed studies of solution dependence
on the numerical aspects of boundary conditions in a PE
model like the present one are beyond the scope of the
exploratory study at hand.
We introduce nondimensional variables by

¥=L¥, y=1y, 0)=UG), t=2=r,

h=HK, t=1,7. (2.3)
The characteristic value of the velocity U is simply taken
to be equal to 1 ms~!, a reasonable magnitude for the

velocity in a WBC. The system of equations (2.1)
becomes:

8[%—?+V-(Uﬂ):|=
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X
aVv
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y
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where all the variables are nondimensional and the primes
have been dropped. The nondimensional parameters are: the
Rossby number &= U'/(f,L), the Froude number
F = g'H/(U*)?, the Ekman number E = A/(f,L2), the
nondimensional Rayleigh viscosity coefficient ut = R/f,,
B = B,L?/U", the nondimensional wind-stress amplitude
o = 1,/(f,HU"p), and the basin aspect ratio v = D/L.

By moving the nonlinear term to the right-hand side of
Egs. (2.4)

U ¢
i SRS v 9 — Fp 2t
5 (Ua)— Fh 8x+(£ +By)V

+ e EVU -7yl + 707", (2.5a)
av 3h ;.
E:—V-(Vn)—th—(s +By)U

+e'EVPV - g7luy, (2.5b)
ot dx oy

and discretizing in space, it is possible now to write the
system (2.5) in a general, compact vector form

aw
rie F(W;P), (2.6)

where W=(U,V,h) is the state-variable vector,
F =(f}, f3, f3) is the corresponding right-hand side vector,
and P=(8,e,0,4,V,E, F) isthe p-dimensional vector of
parameters. The discretization here is by finite differences
[see details in Jiang (1994)], so W is a d-dimensional
vector consisting of the unknowns at the grid points and F
is a nonlinear mapping R? x RP? —R¥, where d indicates
the number of discrete scalar variables in (2.6), considered
as a system of ordinary differential equations (ODEs) for the
components of W.

The ODE system (2.6) is the object of this study. It is
autonomous, i.e., the time variable does not occur in the
right-hand side explicitly, since the forcing is constant in
time. As a dynamical system, it is forced and dissipative
(e.g., Lorenz, 1963; Ghil and Childress, 1987, Ch. 3). We
shall investigate the system’s attractors, their properties,
and their relevance to the mid-latitude wind-driven oceanic
circulation.

3 Numerical Methods

We study first the model’s stationary solutions and follow
their behavior as the parameters change. This will help us
examine later the nonstationary flow regimes (Legras and
Ghil, 1985; Ghil and Childress, 1987, Ch. 6).

A steady-state solution W of system (2.6) satisfies the set
of nonlinear algebraic equations

F(W;P)=0. 3.1

The number of equations here is very large, d= 0(10%),
and the numerical solution algorithm is comprised of two
main parts: () the continuation method to advance one step
along a branch of steady states as a parameter is varied, and
(i) an eigenvalue solver to determine the linear stability of
the newly computed steady state.

3.1 Computation of Steady Flows in Phase-Parameter
Space

To determine branches of steady solutions of (3.1) as one of
the parameters (say A) is varied, the pseudo-arclength
continuation method (Keller 1977; Legras and Ghil 1985)
is used. Knowing the solution of (3.1), W,, for a given
parameter value Ay, F(W,; 4,) =0, one searches for
solutions W (A) near the point (W, A,) by using an
approximate version of the implicit function theorem:

JF

— (W -W, ) e

JF

= (;L—,to)=0, EXY

where JF/0W and JF/0A are matrices of partial derivatives
evaluated at (W, 1) = (W, 1,). The particular



continuation method used here solves (3.2) as an ODE in
the “arclength” s given by ds? = |dW]* +|a%|2, using a
predictor-corrector method: A given solution branch (W(s),
A(s)) through (W, A,) is parametrized by the arclength s,
to permit continuation around the turning points associated
with saddle-node bifurcations. Here IWIl stands for the
length of the vector W, in the appropriate dimension of
Euclidean space, namely d = 15000.

The "evolution" equation along the branch is obtained by
following the tangent

WIW-W)+A,(A-2,)~As=0 ; (3.3)

(Wo, 4o) is a starting solution, known analytically or
numerically, or a previously computed point on the given
branch, As is the step length, and the dot stands for
differentiation with respect to arclength s. To solve the
system of equations (3.1, 3.3), Euler-Newton steps are
taken (see the Appendix for details).

To monitor singularities on a particular branch, several
indicator functions are used. Turning points are detected by
following the slope of the tangent vector (W, 1) along the
branch. Other singularities, like Hopf bifurcation points,
must be detected by solving the linear stability problem.
For simple bifurcation points (i.e., transcritical or pitchfork
bifurcations) there are computationally easier alternatives,
for example it suffices to compute the sign of det(dF/dW),
instead of solving the linear stability problem at each point
(W, 4) and computing all the eigenvalues (see Appendix).

3.2 Computation of the Linear Stability of a Particular
Steady State

The discrete linear equations governing the evolution of
infinitesimal disturbances on a particular steady state of the
discretized nonlinear problem (3.1) lead to a generalized
eigenvalue problem

Ax = nBx, (3.4)

where A and B are d x d matrices; in current fluid-
dynamical applications d =0(10%-10%), depending on the
accuracy desired. A is, in general, nonsingular, while B is
diagonal and may become singular, through the
incompressibility condition.

Traditional eigenvalue solvers, such as the QZ
algorithm, (e.g., Golub and Van Loan, 1989) — that
determine all eigenvalues and, if desired, all eigenvectors —
are impossible to use for problems of this size. In many
hydrodynamic stability problems, the initial instability of a
certain steady flow pattern occurs only through a few
modes. In the discretized linear stability problem (3.4) one
wishes, therefore, to compute a small number of
eigenmodes, i.e., those with eigenvalues closest to the
imaginary axis: the "most dangerous" modes. This
motivated several studies to develop specific algorithms for
the given task.
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Table 1. Standard values for the dimensionless parameters in Eq. (2.6).

Parameter Value

€ 0.2-107!

o 0.2448.1072

E 0.6-1075
1.0-1073

ki 2.0-10!

v 2

F 1.55-10!

Following Christodoulou and Scriven (1988), Dijkstra
(1992) used a combination of the spectral transform and the
Simultaneous Iteration Technique (Steward and Jennings,
1981), abbreviated here as SIT, do to so. The idea of the
algorithm is to transform the eigenvalue problem in such a
way that the most dangerous modes become dominant (i.e.,
have largest absolute value). In this way, generalized power
methods (Golub and Van Loan, 1989) can be used on the
transformed problem.

The first step of the eigenvalue algorithm is the
application of a complex mapping to the generalized
eigenvalue 1,

k-1
K+1’

n=b+a (3.5)

where b is real and a is positive. The parameter » shifts
the generalized spectrum along the real axis, whereas the
parameter a stretches it. The left complex plane Re(n —
b) <0 is mapped into the unit disk | xl <1, with the
imaginary axis Re(n — &) = 0 being mapped onto the unit
circle I k1l = 1.

The eigenvalue problem (3.4) is transformed by (3.5) to

Cx = Dix, (3.6)

where C=A+(a-b)Band D=-A +(a +b)B
Although 3 is singular, the matrices C and are generically
not singular and we therefore consider the problem

Dk = kx. 3.7

Equation (3.5) has the requisite property of mapping the
most dangerous modes of (3.6) onto the dominant modes of
(3.7); the eigenvalues 1 = oo are mapped onto ¥ =— 1.

SIT is particularly well suited to determine a prescribed
number of dominant modes: It consists of a succession of
filtering and reorientation stages. During a filtering stage,
components in the direction of the dominant eigenmodes
increase in amplitude. After each filtering stage, the
reorientation stage finds an approximation to the
eigenvalues A and associated eigenvectors by solving an
eigenvalue problem of small order with standard methods,
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for instance QR (Golub and Van Loan, 1989). The
combined filtering and reorientation process is performed a
number of times, until convergence occurs according to a
certain stopping criterion (Stewart and Jennings, 1981).
The corresponding small number of accurate eigenvalues 1
of (3.4) are found from (3.5). Details are provided in the
Appendix.

4 Stationary Solutions

The results are presented in the form of bifurcation
diagrams, with the parameter under consideration on the

1000

0.0030

0.0015

Fig. 1. Bifurcation diagram and flow patterns
of steady solutions as a function of the forcing
parameter ¢ . Other parameter values as in
Table 1. Solid lines indicate stable, dashed
lines unstable branches. Arrows point to the
branch segment along which the solutions
exhibit the flow pattern illustrated.

abscissa and a quantity W characterizing the solution on the
ordinate. JJG used for W the meridional position of the
confluence between the two separated WBCs in their
approximate bifurcation diagram. Since the exact position
of this confluence point is hard to determine with precision,
we use here for W the value of the minimum upper-layer
thickness (ULT on the plots), i.e., the value of the
shallow-layer thickness at the center of the strong cyclonic
recirculating cell within the subpolar gyre, close to the
confluence point. Solid lines indicate stable and dashed
lines unstable branches, The singularities are labeled L for
limit or turning points, i.e., saddle-node bifurcations, and
HB for Hopf bifurcation points, respectively. Sometimes
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Fig. 2. Bifurcation diagram and flow patterns
of steady solutions as a function of the Ekman
number E£. Other parameters as in Table 1;

1000 0

EN is used to denote a computational endpoint of a
particular branch in the plot.

The patterns shown in the figures are contour plots of
the deviation of the upper-layer thickness from its value at
rest, i.e., from unity in nondimensional units. Solid lines
are for positive and dashed lines for negative values.
Following JJG, we call the basin's zonal axis of symmetry,
along which the curl of the wind stress is zero, the R-line.

4.1 Bifurcation Structure for Increasing Wind Stress
The bifurcation diagram of steady solutions, as the wind-

stress amplitude o varies, is shown in Fig. 1. The values
of the dimensionless parameters are listed in Table 1.

layout and labeling as in Fig. 1.
1000

Starting from the solution at rest, for which no forcing is
present, we follow the branch for increasing values of o
The branch of steady solutions that issues from the origin
stays unique as long as the wind-stress amplitude is small.
Along this branch, the minimum value of the upper-layer
thickness decreases at first in a linear fashion. The flow
pattern is nearly antisymmetric and related to the
antisymmetric solutions that have been found in classical
studies of the double-gyre wind-forced ocean (e. g., Veronis,
1966a; 1966b; Verron and Le Provost, 1991). The slight
departure from exact antisymmetry is due to the tilting of
the thermocline associated with a zonal flow (the eastward
jet) on a B-plane, as documented already by the linear
component of JIG’s double-gyre model.
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0.004

0 0.003

0.002t

Fig. 3. Loci of the Hopf bifurcation points HB;,, (solid) and HB,, (dash-
dotted) and the limit point L (dashed: see Fig. 1 for identification) as a
function of the Ekman number £ ; abscissa is E-108.

As oincreases, the two recirculating cells — situated first
against the western boundaries — become stronger and move
slightly eastward. At ¢ = 0.1410-1072, the branch
undergoes an abrupt change of slope, as the rate of growth
of the cyclonic cell's intensity increases. The circulation
becomes more asymmetric, with the cyclonic cell markedly
stronger than the anticyclonic one. The subtropical gyre's
waters cross the R-line and wrap partially around the
cyclonic cell's eastern part, pulled by its greater intensity.

Up to the value ¢ = o7 = 0.2232-1072 the solution is
unique, but multiple equilibria occur for o> of, since two
additional solution branches exist in this range. One of
these branches is stable (the upper branch), while the other
(the intermediate branch) is unstable. This structure seems
to arise as a perturbed pitchfork bifurcation (e.g.,
Guckenheimer and Holmes 1983). The latter is expected to
occur in a system of équations having a reflection
symmetry along the R-line [compare Quon and Ghil (1992)
for multiple equilibria of an idealized, two-dimensional
ocean’s thermohaline circulation]. This bifurcation is not
structurally stable and can be destroyed by small
perturbations, as it happens in the present case, due to the
slope of the sea surface and thermocline associated with the
eastward jet on an f-plane. Indeed, the classical barotropic
vorticity equations with double-gyre wind-stress forcing, as
well as the associated boundary conditions, are symmetric
with respect to the zero wind-stress curl axis, given here by
y =0.5; more precisely, the symmetry of the solutions
about this axis is givenby U > U,V —= -V, and h — -
1). In this case, there is a pitchfork bifurcation on the
symmetric branch that causes its loss of stability and the
appearance of two new, stable solution branches (see
Section 4b of JJG). The solutions along either branch are
asymmetric and exhibit the same mirror symmetry with
respect to those on the other branch as the solutions along

the now unstable branch had with respect to themselves.
On the contrary, in the present PE double-gyre formulation
the basin-wide tilting of the thermocline is not invariant
under reflection in the R-line [see also Section 3¢ and
Appendix B of JIG].

The solutions on the upper branch are characterized by
the anticyclonic cell being stronger and capturing through
nonlinear advection a tongue of the subpolar water along its
eastern edge across the R-line. In between the two stable
branches — upper and lower — the nearly antisymmetric
solutions reappear but they have lost their stability. This
unstable branch merges with the upper branch at o= op.
The upper and lower branch here are reversed with respect to
the approximate bifurcation diagram of JJG (Fig. 3 there),
as the confluence point lies above the R-line when the
cyclonic recirculation cell is stronger, and hence its central
thickness is smaller.

For three different values of the wind stress, each of the
three steady-state branches passes through a Hopf
bifurcation. The first to be destabilized are the solutions on
the upper branch (Gg,p = 0.2572-1072), then the lower
branch (Ggp, = 0.2749-1072) and, finally, the unstable
branch (Gpys = 0.3330-10-2).

4.2 Dependence on the Ekman Number

The impact of a varying viscosity coefficient on the
multiplicity and stability of the solutions discussed in the
previous subsection is considered next. The bifurcation
diagram illustrating how the solutions vary with the
viscosity parameter E for a fixed value of o= 0.24483-10~
2 with & g, B, v, and F as in Table 1, is plotted in Fig.
2. Once again, the structure of the diagram shows a
perturbed pitchfork bifurcation. For large values of E, only
the lower solution branch exists: the flow pattern is nearly

1.5] ' !

1.0} ]

0.0l .

Fig. 4. Angular frequency @, of the oscillatory instability (radians per
nondimensional time unit) along the Hopf bifurcation loci HB,,, (solid)

and HB,, (dash-dotted) in Fig. 3.
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antisymmetric and there is no strong recirculation. As the
viscosity is decreased, the smaller-scale structures gradually
reappear, being less dissipated. At E; = 6.69.1076, a
turning point leads to a second fold. For E < E three
branches of solutions coexist. They present the same
qualitative behavior as the three branches in Fig. 1. As in
that diagram, each equilibrium branch leads to a Hopf
bifurcation, at distinct values of E.

The loci of the turning point and Hopf bifurcation points in
the (o, E)-plane are shown in Fig. 3. The qualitative
structure remains the same for each value of E . As the
dissipation decreases, the Hopf bifurcations by which the
lower branch (solid) and upper branch (dash-dotted) lose
their stability approach slowly the turning point (dashed),

1000 layout and labeling as in Fig. 1.

i.e., the solutions on these branches can be destabilized
more easily as the system becomes less dissipative, in
accordance with our general fluid-dynamical intuition. For
values of E larger than 7.0-10-%, the slope of the HBy,,
locus increases abruptly. The situation in which the
northward WBC overshoots the R-line, i.e., the lower
branch of the bifurcation diagram depicted in Figs. 1 and 2,
seems therewith to be always stabler than the other
solutions with which it coexists at the same parameter
values. This higher stability of the model’s subtropical
gyre being dominant is in pleasant, but possibly
coincidental, agreement with the observed relative size of
the two gyres in every ocean basin.
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The dependence of the angular frequency at Hopf
bifurcation on E, along the bifurcation loci in Fig. 3, is
shown in Fig. 4. For small values of E, the frequencies
characterizing the oscillating behavior along the upper and
lower branches are of the same order of magnitude. While
the period of the Hopf bifurcation on the upper branch
(dash-dotted) decreases but little with E, a rapid transition to
higher frequencies characterizes the lower branch (solid) for
values of E between 5.0-1076 and 5.5-1075. After this
transition, the periods characterizing the two Hopf
bifurcations differ by an order of magnitude: order of a few
weeks for the lower branch and about 30 months for the
upper one. The frequencies along the two branches increase
linearly and very slowly with E until E =7.0-1076,

Thereafter, the oscillation frequency for the lower branch
decreases again, while we did not compute the upper-branch
frequency behavior for larger values of E.

4.3 Dependence on the Rossby Number, on Beta, and on
the Bottom Friction

The behavior of the solutions as the Rossby number &
varies is presented in Fig. 5 for all other parameter values
as in Table 1. For small values of &, only the lower branch
of solutions exists. As the nonlinearities increase, the
unstable branch (dashed) and the upper stable branch
develop. For this parameter, too, the solutions transfer their
stability from steady to periodic behavior. Hopf
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bifurcations arise for £ = 0.2653-10-! on the upper branch
and €= 0.2846-1071 on the lower one.

The bifurcation structure of the solutions is presented for
a varying f in Fig. 6a and for a varying bottom friction g
in Fig. 6b; all other parameter values are as in Table 1. For
both of these parameters, as it was the case for a varying
Rossby number, Ekman number, and wind forcing, a
perturbed pitchfork bifurcation as well as the transition
from stable or unstable steady states to periodic solutions
through Hopf bifurcations characterize the behavior of the
system. For large values of ¢t and f3, only the stable steady
solution with dominant subtropical gyre obtains. For
smaller values of these two parameters — more precisely,
for B < B, =21.9420 and for y < py = 0.1373-10"2 — the

unstable and upper stable branch arise. The Hopf
bifurcations are located, in Figs. 6a and 6b respectively, at
Brpup = 18.6410 and uyp,, = 0.7948-1073 on the upper
branch and at Bgppny = 14.4526 and pigpp, = 0.6348.10°3
on the lower branch.

The behavior of the solutions as 1 varies does not differ,
qualitatively, from that in Fig. 1, whereas some differences
appear as f3 varies. Indeed, the flow pattern at the Hopf
bifurcation point on the lower branch in Fig. 6b shows a
striking increase in size of the major dipole structure,
across the detached jet, and a greatly increased strength of
the subpolar with respect to the subtropical recirculation.
On the contrary, the structure of the circulation at the Hopf
bifurcation point on the upper branch does not differ very
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much from those presented in the previous bifurcation
diagrams.

5 Hopf Bifurcation and Periodic Solutions

Time-periodic solutions branch off the Hopf bifurcation
points. The spatial structure of these periodic solutions can
be determined, close to their onset, by investigating the
eigenvectors (w1,wy) corresponding to the pair of complex
conjugate eigenvalues which cross the imaginary axis at
(*im,). This time-periodic linear transition state is given

by

500

1000
DEVIATION

2000

1500

1000

500t

500

1000

up
0.75 bottom left, and ¢ = 1 at bottom right. Contour

(1) =sin(w,f)w, —cos(w,w,, 0<t< 2n/w, (5.1)

In Fig. 7a, contours of the deviation of the upper-layer
thickness are plotted in the four corner panels at four
equidistant times ¢ (in units of n/@,) for the transition
state at the point Hy,; 0 = Oyyp = 0.2572-1072 and all
other parameter values are as in Table 1. The steady basic
state upon which the oscillatory instability grows is shown
in the center panel, In Fig. 7b, the transition structure is
plotted for the Hopf bifurcation point on the lower branch
Hpy, 0 = 6gpy = 0.2749.10-2. The evolution in time of
the two transition structures is similar, except for the

location in space of the main features.
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The destabilizing mechanism appears to be related with
Rossby-wave-like features and their finite-amplitude
saturation as interacting multipole vortices. For both
branches, the strongest features of the transition state are
located over or close to the corresponding dominant
recirculation cell. In panel (a) (upper branch) the
approximate symmetry axis of the alternating-sign features
is oriented roughly SW-NE, while in panel (b) (lower
branch) it is more nearly W-E. The wave length of the
fastest-growing perturbation is slightly shorter for the
upper branch while the period is much longer,
@,"? = 0.1804 radians per nondimensional time unit vs.
@, = 1.248 radians per nondimensional time unit for the
lower. The differences are probably due to the different

2000
1500
1000 F

5007,

OL 0P

0 500 1000

balances between internal, dispersive and forcing terms in
the case where the cyclonic (lower branch) vs. the
anticyclonic (upper branch) recirculation dominates. These
balances favor different "wave guides" for the forced-
dissipative, standing wave trains observed, and different
nonuniform background flows in each wave guide. We also
note that the spatial features of the variability decay rapidly
away from the active separation, confluence and
recirculation area; this observation justifies a posteriori the
use of such a small basin size by JJG and through all but
section 6.2 here.

A physical explanation of the destabilization process can
be provided by analyzing the time-dependent behavior of the
total field for a periodic solution, obtained asymptotically
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by forward integration. For the sake of brevity, we
illustrate only a periodic solution belonging to the upper
branch, on which the subpolar gyre is dominant in size
with analogous arguments likely to apply to the lower
branch. In Fig. 8a are plotted snapshots of the upper-layer
thickness deviation for o= 0.3131-1072, at each eighth of
a period T of the oscillatory cycle, T = 34.8 months in
dimensional units.

For the solutions on the upper branch, the amplitude of
the thickness deviations in the anticyclonic recirculation
cell is larger than that in the cyclonic one. The two cells
thus form an asymmetric dipole and interact nonlinearly
across the zone where the two WBCs merge and form an
intense eastward jet. Due to the asymmetry, the anticyclone

drags the cyclone southeastward (=0 - 4.35 months) ;
this aspect of asymmetric dipole behavior is well-known
from laboratory studies (e.g., Flierl et al., 1983; Nguyen
Duc and Sommeria, 1988; Fedorov et al., 1989; Van Heijst
and Flor, 1989), as well as from theoretical and numerical
studies (e.g., Flierl et al., 1980; Legras, 1992; Speich et
al.,, 1995b). As the cyclone begins to penetrate further
across the symmetric line, it drags in turn northwestward
some "warm" water (characterized by the anticyclonic
vorticity of the subtropical gyre in this adiabatic model)
along it southeastern boundary, by analogous nonlinear
interactions (+ = 8.70 — 13.05 months).

As a consequence of this tripole interaction, the
southward penetration of the cyclonic cell is slowed down,
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and the cyclone begins to retract to its initial position
extending just south of the R-line (r =17.40-21.75
months). In the meantime, the tongue of "warm” water
penetrates deeper into the subpolar gyre, until it reaches a
small recirculating cyclonic cell — manifest as a distortion
of the contour lines in the north-central region — and a
nonlinear interaction starts between the two cells of
opposite vorticity.

A quadrupolar structure characterizes now the flow
structure (¢ =26.10~- 30,45 months) and acts to
dissipate the positive vorticity associated with the "warm"
water that has penetrated north of the R-line. The
corresponding vorticity anomalies are plotted in Fig. 8b and
document further the description just given. Consequently,
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the flow finds itself again in the unstable dipole
configuration where a stronger anticyclonic cell interacts
nonlinearly with a weaker cyclone through the eastward jet,
pulling "cold" water southward, and the sequence of
counterflow to the north, with formation and dissipation of
additional vortices, starts over again.

In Fig. 9 are shown the anomalies of the upper-layer
thickness that correspond to the total fields shown in Fig.
8a, i.e., the difference between the instantaneous fields and
the limit cycle’s mean state. The good agreement with the
periodic evolution of the eigenvectors in Fig. 7a reinforces
the hypothesis of Rossby-like wave growth, local
steepening and multipole interactions as the physical
mechanism responsible for the destabilization of the steady
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state and the saturation of the oscillatory instability. Both
figures also show clear outward propagation of
approximately concentric wave fronts from the most active
part of the flow field to the outer, more quiescent reaches of
the domain.

6 Transition to Aperiodic Solutions and Comparison
with Observations

6.1 Limit Cycles and Chaotic Solutions

In section 5, we have seen how stationary solutions lose
their stability by Hopf bifurcations which give rise to
periodic solutions. In order to gain insight into the
behavior of the flow for parameter values beyond the Hopf
bifurcation points, a number of numerical integrations of
the evolution equations (2.1) were carried out. This
numerical study is not exhaustive but provides a reasonably
good qualitative picture of model behavior in certain
regions of phase-parameter space; these regions are either
physically more realistic, since the real ocean belongs to
this parameter space range, or else they are explored to
complete our knowledge of possible model behavior types.
The stability transfer from stable stationary solutions to
stable periodic solutions occurs through supercritical Hopf

200 400 600 800 1000

are ordered as in Fig. 7. Contour interval is
0.02 (in dimensionless units).

bifurcation for most of the parameters studied, with a stable
equilibrium giving way to a stable limit cycle, whether for
increasing ¢ values or decreasing E values (see Ghil and
Tavantzis, 1983, p. 1040). To illustrate how the behavior
of solutions changes across these Hopf bifurcations,
evolution of the trajectory as ¢ increases is shown in Figs.
10 a—d. The phase-space trajectory is projected onto a plane
spanned by the potential (x-axis) and kinetic (y-axis)
energies. The solutions presented in the four panels belong
to the upper branch of the bifurcation diagram in Fig. 1.

For values of ¢ smaller than at the Hopf bifurcation, the
model trajectories converge to a fixed point (Fig. 10a); they
converge to a simple, oval-shaped limit cycle for a narrow
range of parameter values above the Hopf bifurcation (Fig.
10b). This limit cycle grows in size and its shape becomes
more distorted for larger values of ¢ (Fig. 10c). As o grows
further (Fig. 10d), kinks develop in the limit cycle, and the
trajectory no longer asymptotes to a closed orbit; in this
latter case, the behavior of the solutions is deterministically
aperiodic. Regularities are still present in such a solution,
e.g., intermittent spells of quasi-stationary evolution or
regular oscillations. This typically happens when weakly
unstable fixed points or periodic orbits are contained within
the (presumably strange) attractor, as shown for large-scale
atmospheric flows by Legras and Ghil (1985), in an
intermediate-resolution model, and by Kimoto and Ghil
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Fig. 10. Evolution of the trajectory projected on the phase plane defined by the potential (x-axis) and kinetic (y-axis) energies, as the wind stress o
increases: (a) o= 0.2544.107%; (b) o= 0.2818-107%; (¢) 0=0.3131-107% and (d) ¢ =0.3327-10"2. Other parameters as in Table 1.

(1993a; 1993b) in a 40-year data set. The detailed
exploration of the present system's irregular behavior is left
for future work.

6.2 Dependence on Basin Size and Observational Validation

The most striking difference among ocean basins, the North
Atlantic and North Pacific, say, is their difference in size.
We carried out, therefore, sensitivity studies with respect to
varying aspect ratio and total basin dimensions, through
forward integrations of (2.1) using different parameter
values.

First, we slightly increased the zonal dimension L of the
basin, while keeping its meridional dimension D fixed. The
behavior of the solutions for the resulting aspect ratiov
equal to 2.00, 1.82 and 1.67 is shown in terms of the
potential- and kinetic-energy evolution in Figs. 11a and b,
respectively. The solutions pass from purely periodic,
nearly sinusoidal oscillations for v =2 to a more and more

aperiodic and anharmonic behavior for smaller values of
this parameter. Furthermore, as the zonal extent of the
domain increases and thus v decreases, the dominant
period, as well as amplitude, of the oscillations increases.
This is rendered even more obvious by the kinetic energy’s
power spectra shown in Fig. 12: the broad spectral peak
shifts from 32 months to 62 months and on to 77 months.
To compare the numerical results with the observed
circulation of an ocean basin, we performed a numerical
integration of system (2.1) for a rectangular basin close in
size to the North Atlantic; its double-gyre circulation
extends roughly from 20 N to 60 N. All parameter values
are those of Table 1 except for o =0.2074-10-2, while
L = 6400 km and D = 4440 km. The spatial resolution
of the model is kept the same as in all the previous
experiments, Ax = Ay =20 km. The state variables
evolve irregularly in this simulation, as shown in Figs.
13a,b for the potential (panel a) and kinetic (panel b)
energy. Nevertheless, the system's trajectory is trapped in a
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(1993a; 1993b) in a 40-year data set. The detailed
exploration of the present system's irregular behavior is left
for future work.

6.2 Dependence on Basin Size and Observational Validation

The most striking difference among ocean basins, the North
Atlantic and North Pacific, say, is their difference in size.
We carried out, therefore, sensitivity studies with respect to

varying aspect ratio and total basin dimensions, through

forward integrations of (2.1) using different parameter
values.

MAXIMUM ENTROPY SPECTRA
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Fig. 12. Maximum-entropy spectra of the kinetic-energy time series of
Fig. 11b. The order of the method (number of monthly lags) is 20. Solid
line : v =2; dashed line : v=1.82; dotted line : v= L.67. The peaks are
located respectively at 32, 62, and 77 months, respectively.
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First, we slightly increased the zonal dimension L of
the basin, while keeping its meridional dimension D fixed.
The behavior of the solutions for the resulting aspect ratiov
equal to 2.00, 1.82 and 1.67 is shown in terms of the
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potential- and kinetic-energy evolution in Figs. 11a and b,
respectively. The solutions pass from purely periodic,
nearly sinusoidal oscillations for v =2 to a more and more
aperiodic and anharmonic behavior for smaller values of
this parameter. Furthermore, as the zonal extent of the
domain increases and thus v decreases, the dominant
period, as well as amplitude, of the oscillations increases.
This is rendered even more obvious by the kinetic energy’s
power spectra shown in Fig. 12: the broad spectral peak
shifts from 32 months to 62 months and on to 77 months.

To compare the numerical results with the observed
circulation of an ocean basin, we performed a numerical
integration of system (2.1) for a rectangular basin close in
size to the North Atlantic; its double-gyre circulation
extends roughly from 20 N to 60 N. All parameter values
are those of Table 1 except for ¢ = 0.2074-102, while
L =6400km and D = 4440 km. The spatial resolution
of the model is kept the same as in all the previous
experiments, Ax = Ay =20 km. The state variables
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reconstructed modes (see references in text for SSA details). The order
of the method is 20.

evolve irregularly in this simulation, as shown in Figs.
13a,b for the potential (panel a) and kinetic (panel b)
energy. Nevertheless, the system's trajectory is trapped in a

relatively small region of phase space, as shown by the
projection on the kinetic-potential energy plane in Fig. 14.

To obtain additional information on the complicated
behavior apparent from these figures, we subjected different
global state variables to Singular Spectrum Analysis (SSA:
Colebrook, 1978; Broomhead and King, 1986; Fraedrich,
1986: Vautard and Ghil, 1989). This analysis extracts a few
principal modes of variability from the system's time
series. SSA results for the kinetic-energy signal are
presented in terms of the power spectrum of the time series,
as reconstructed (Ghil and Vautard, 1991; Vautard et al.,
1992) from its first eight modes (Fig. 15). The SSA
window width chosen is of 120 months (i.e., 10 years).

0 1000 2000 3000 4000 5000

Fig. 16. Snapshot of the upper-layer thickness deviation after 35 years of integration for the experiment of Fig. 13. Contour interval is 30 m.

6000
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Three peaks clearly stand out; they correspond to the
periods of 6 years, 3.2 years and 16 months, respectively.

The dynamics of the flow in this simulation is
characterized by a high number of cyclonic and anticyclonic
recirculation cells, as shown in a snapshot of upper-layer
thickness deviation after 35 years of integration (Fig. 16).
The multipole interactions, that lie at the root of the
periodic and aperiodic solution behavior for the smaller
basin previously discussed, reach here a higher degree of
complexity, as the number of cells interacting with each
other increases. This explains the much more irregular
behavior of the solutions in the larger basin,

Still, the most vigorous flow features are concentrated
near the separation of the WBCs and the confluence of the
eastward jet, in a region not much larger than the
2000 km-by-1000 km basin we thoroughly analyzed. The
intensity of the closed and open recirculation cells decays
away from the separation and confluence points, in
agreement with the concentrically decaying features in Figs.
7a and 9 here, as well as with the oceanic variability
inferred from satellite altimetry (Fu et al., 1994; Speich and
Ghil, 1994, and references there).

Atmosphere Data Set (COADS). Meridional
distance in km.

In order to get a first impression of how these numerical
results compare with the real ocean, we have begun an
exploration of the variability of the Gulf Stream and the
Kuroshio Extension, close to their point of separation from
the western boundaries. These areas are most active in both
the real ocean [Fig. 3b of Speich and Ghil (1994)] and the
present North Atlantic simulation (Figs. 13 — 16 here). In
particular, we analyzed the position of these currents' axes.
To do so, we calculated the monthly-mean distance of the
meridional position of the sea-surface isotherm T= 15" C
from 40 N latitude, at two different longitudes, between
January 1970 and December 1992 (Fig. 17). The data we
used were derived from the Comprehensive Ocean-
Atmosphere Data Set (COADS: Woodruff et al., 1987).
This analysis shows most of the Gulf Stream's interannual
variability at 50 W to be at the same periods as that
resulting from the simulation with a 6400 km by 4440 km
basin size: the dominant peaks for the Gulf-Stream axis
position, at 6 years and 20 months (Fig. 18a), agree
surprisingly well, for such a simple model, with the model
peaks at 6 years and 16 months. The North Atlantic
simulation parameters were not specifically tuned to obtain
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Fig. 18. Maximum-entropy spectra of the jet-axis time series from Fig.
17: (a) North Atlantic Ocean; (b) North Pacific Ocean. The time series
were projected onto the first twelve SSA modes (same methodology as in
Fig. 15); the order of the MEM was 20; the SSA window was 120 months
(i.e., 10 years).

these results — they agree with those which had been used,
prior to any observational comparison, for the complete
investigation of model behavior (Table 1). Furthermore, the
same peaks were found for other values of the strength of
the forcing and eddy viscosity (not shown). Only the choice
of H value (unchanged in all the runs) was originally made
by JIG in order to have the model’s barotropic Rossby
wave propagation speed similar to the baroclinic speed
observed in the mid-latitude ocean,

An analogous analysis for the Kuroshio axis at 146 E
yields dominant peaks at 9 years and 29 months (Fig. 18b).
This observational result is in qualitative agreement with
the numerical results of Figs. 11 and 12, which show that
the model’s periods of variability increase with the width of
the basin. The amplitude of the fluctuations in the
Kuroshio axis also exceeds noticeably that in the Gulf
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Stream (compare Figs. 17a and b), in agreement with the
effect of basin size on the model’s oscillations in kinetic
and potential energy (Figs. 11a, b). The 29-month mode
detected in the northwestern Pacific cannot be attributed
(Speich et al. 1995a) to the Quasi-Biennial (QB) oscillation
known from the Equatorial Pacific (Rasmusson et al.,
1990; Keppenne and Ghil, 1992; Jiang et al., 1995b): the
former maintains its amplitude while the latter decays, and
the former leads the latter by a few months when both are
strong (not shown here).

7 Summary and Conclusions

By using techniques of numerical bifurcation theory, the
multiplicity and stability of solutions to a simple, shallow-
water model of the double-gyre, wind-driven ocean
circulation have been determined for a rectangular mid-
latitude basin, governed by Egs. (2.1, 2.2). Multiple steady
states exist in certain regions of parameter space.
Circulation patterns which spontaneously break the
symmetry imposed by the wind-stress forcing appear as
steady stable solutions of the model for realistic values of
the parameters as forcing increases, dissipation decreases, or
other parameters change (Figs. 1, 2, 5, and 6).

The region where the asymmetry of the solutions
manifests itself most strongly is localized near the western
boundary, where the intensity of the currents is largest and
so are the nonlinear effects. Indeed, as the mechanical
forcing —i.e., the wind-stress magnitude — increases so does
the system's nonlinearity. The strong asymmetry as well as
the multiplicity of the solutions arises from the nonlinear
interactions between the two recirculating cells that form
near the western boundary, one in the subtropical, the other
in the subpolar gyre. Initially situated near the middle of
each half basin for a weak wind stress, these two cells
slowly converge towards the basin's — and the forcing's —
zonal symmetry axis, where they undergo stronger and
stronger mutual nonlinear interactions.

Two different stable steady states emerge depending on
which recirculation cell, cyclonic or anticyclonic, is more
intense. It is the strongest cell that pulls water from the
other across the basin's center line. These two main
vorticity cells form an asymmetric dipole and entail a
displacement of the confluence point north or south of the
center line; consequently, the northward or southward
western boundary current (WBC in the main text)
overshoots when the strongest recirculating cell is the
cyclonic or anticyclonic one, respectively. The solution
with the opposite near-symmetry still exists, but only as
an unstable steady state. The solution with the subtropical
gyre dominating in extent the subpolar one seems to be
stabler (Fig. 3), in agreement with the observed relative
size of the two gyres in all ocean basins that possess both.

For even stronger forcing or weaker dissipation, the
system's stationary solution branches undergo Hopf
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bifurcation. The occurrence of such oscillatory instabilities
can be also attributed to alternating nonlinear interactions
between the two main cells forming the asymmetric dipole
and giving rise to two smaller recirculation cells. The
oscillatory dynamics of the resulting asymmetric
quadrupolar structure is evident both in the linear transition
patterns at the bifurcation point (Fig. 7a) and in the upper-
layer thickness anomalies for a numerical experiment
beyond that point (Fig. 9). By augmenting the forcing, the
solutions become aperiodic as an increased number of
recirculating cells interact with one another and, therefore,
lead to more complex dynamics.

In the relatively limited subspace of parameters we have
explored, the solutions exhibit the same qualitative
behavior. Indeed, the perturbed pitchfork bifurcation and the
two Hopf bifurcations — one each from the two stable
steady-state branches — arise for all the parameter variations
we have considered (Figs. 1, 2, 5 and 6a,b). This suggests
the proximity of a pure pitchfork singularity in phase-
parameter space, whose perturbation and unfolding could
give rise to the behavior along the various transects we
took {Golubitsky and Schaeffer, 1984).

While important thermodynamic processes and finite-
amplitude effects are missing from our study, we have
shown that a reduced-gravity, shallow-water, wind-driven,
double-gyre model possesses a rich variety of behavior
patterns, according to the values of the forcing, dissipation
parameters, Rossby number, basin size, and the amplitude
of the B-effect; some aspects of this behavior are quite
robust We performed a set of forward integrations focused
on the impact of different aspect ratios on the solutions'
behavior. These showed that, for increasing basin width,
the period and amplitude of the oscillations increases, and
Hopf bifurcation, as well as transition to aperiodic
solutions, takes place for smaller value of the wind stress ©
(Figs. 11 and 12).

While our numerical study lacks realism in several
respects, the results are suggestive. It is interesting to
speculate on the possible relationship between the
solutions obtained here with the circulation in the mid-
latitude oceans. In the last 40 years there have been
dramatic advances in our understanding of the western
boundary layer’s fundamental role in closing the circulation
of the world’s subtropical and subpolar gyres (Pedlosky,
1987, and references there). The nature of the currents’ final
separation from the western boundaries and its location,
however, still give rise to considerable discussion (e.g.,
Ierley, 1990; Haidvogel et al., 1992). The low-frequency
variability of these features suggested by our numerical
study resembles, at least at a first glance, observations of
the Gulf Stream, Kuroshio-Oyashio, East Australia, and
Brazil and Malvinas current systems. Boland and Church
(1981) reported that the East Australia Current has a point
of detachment that can vary by as much as 500 km. A
similar behavior for western boundary currents (WBCs in
the main text) in the South Atlantic is discussed by Olson

(@)

2 e I T L b
" el
: o.oif o \}frf \‘F[h/ l‘ \Tﬂl‘“‘ﬂ \L Wil ‘;D .
g L
5 I i:‘* !?1\ | | !“ nl
SN (I
R o | | | |
L—g;—.ir s Ra:;S;gnaL | l
Time (months) |
6 years
’ E_“J( —— RCs -2 (C)
s 10
=
)
%
10t ]
m‘o E)o 005 T ol T Woil;ﬁr _____ij

Frequency (1/months)

Fig. 19. Time evolution of the meridional position of the WBC
confluence point for the numerical simulation of Fig. 13: (a) eigenvalue
spectrum obtained by SSA; (b) the raw signal (light solid) and the time
series reconstructed from the first two SSA modes (heavy dashed); and
(c) the maximum-entropy spectrum of the first two reconstructed modes
combined; MEM order and SSA window width as in Fig. 18.



et al. (1988), with the observed excursions in latitude of the
separation of the Brazil and Malvinas Currents ranging over
800-1000 km. All these reported variations take place in
several months.

In order to pursue the investigation in a slightly more
realistic context, we performed a set of forward integrations
in a rectangular domain that resembles in size the North
Atlantic basin, between 20 N and 60 N. These experiments
all showed strongly irregular time-dependent behavior
(Figs. 13 and 14). Singular Spectrum Analysis (SSA:
Vautard and Ghil, 1989; Ghil and Vautard, 1991), carried
out on the time evolution of the total kinetic energy,
reveals three principal modes of variability for the model in
this domain: 16 months, 3.2 years, and 6 years (Fig. 15).
These peaks coincide with those we obtained in examining
by SSA the variability of the position of the Gulf-Stream
axis (Figs. 17 and 18a).

In fact, in our North-Atlantic sized domain, the 6-year
peak is directly related to the meridional fluctuations of the
position of the confluence point, defined as the zero-
anomaly point of the deviation of the upper-layer thickness
from its value at rest 80 km east of the western wall.
Indeed, the first two SSA eigenvalues for the time series of
the latitudinal excursions of this point (Fig. 19a) account
for the lowest-frequency variations in it (cf. the part of the
signal reconstructed from these two modes and the raw
signal in Fig. 19b) and their spectral peak is narrow and
centered at 6 years (Fig. 19¢). The order of magnitude of the
meridional fluctuations of the simulated confluence point
and the observed anomalies of the 15° C isotherm position
in the North Atlantic are about the same (cf. Figs. 17a and
19b): the simulation gives somewhat larger fluctuations
because of the model’s limited vertical resolution. Plaut et
al. (1995) have suggested that the non-ENSO related peak
of 7-8 years in three centuries of Central England
temperatures might be due to the downstream effects on the
Gulf Stream extension of this 6-year peak. The spectral
shift towards lower frequencies we obtained for the observed
fluctuations of the 15°C isotherm position in the
northwestern Pacific (Figs. 17b and 18b) goes in the same
direction as our numerical results that show dominant
periods increasing with increasing width of the basin (Figs.
11 and 12).

Mid-latitude ocean dynamics is, of course far more
complex than revealed by the present study. Nevertheless,
the preliminary agreement between the simulated and the
observed North Atlantic behavior seems to support the idea
that part of the double gyre's interannual variability might
come from an internal mechanism like the one described
here. The wind-stress forcing, of course, is not fixed in
time — as assumed here — and its own seasonal and
interannual variability can only add to the interest of the
problem and the complexity of the observational behavior.
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Appendix A: Computational
Continuation Method

Aspects of the

After discretization of the governing PDEs, by finite
differences (as in the main text) or by spectral methods, the
determination of a certain steady state is transformed into
the computation of a solution to a nonlinear system of
algebraic equations of the form

®(u,1)=0 (A.la)
Here u indicates the d-dimensional state vector and 4 a
particular parameter. The state vector can represent grid-
point values, u = W, as for (3.1) in the main text, or
spectral coefficients as in Legras and Ghil (1985) A branch
Y of steady solutions (u(s), A(s)), s, <5 < sp, is a
smooth one-parameter family solutions of (A.1a). Since an
extra degree of freedom is introduced by the arclength s, we
need a normalization condition

Z(u(s), A(s),5)=0 (A.1b)
to close the system of equations.

A.1 Pseudo-Arclength Continuation

Geometrically, we want to determine the graph of a curve
v IS R— R™, with y(s )—(uj (s),A(s)) , such that

the equations (A.1) are satisfied. Suppose that we know, at
some point §,, a solution (uo,lo) of the equation (A.1a).
In many applications this is easy, since some trivial
solution can always be found. The tangent to the curve
Y = y(s) at s=s5.. is given by the vector
}'f(so)=(1.'1r(so ),/l(so)j . By differentiating ®(y(s))=
with respect to s we find

(dq))ly(s) ¥(s)= [(Du @, ]7’(3)

oD
qu)l e Dd(pl 8_;'
=l e e i) =0,
o0,
DD, D, 8_/1{

where D; = 8/81-:]-. If (uo,/lc) is not a bifurcation point,
then dim ker([fbu CI);L]))=1 and therefore [CI)u cI)A]
has rank d. Hence we can determine §(s,) as the nullspace
of the d*(d +1) matrix (d®) I,

First we put the matrix [EI) &3 ] into upper-triangular
form; this is shown for d =3, w1th x indicating nonzero
elements:

X x x x
0 x x x| (A.2a)

0 0 x =x
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The last row cannog be entirely zero, and therefore the
tangent v=(u’,1,) can be computed by solving

X x x X 0
0 x x x 0 (A2b)
v=| |, .
0 0 x x 0
0 0 01 1
with its length |v|| normalized by
wla, +A2=1. (A2¢)

Once u,. 4,1, and A, are determined, we can
calculate a further point on the same branch by taking in
(A.1b)
E(u,ﬂ.,s)=ﬁz(u—uu)-}-io(ﬂ,—lu)—(s—so) (A.1b7)
and solve the system (A.1) given a prescribed step length
As = 5—5,. This form of the continuation method is called
the pseudo-arclength method.

To solve the equations (A.1) we apply an Euler-
predictor/Newton-corrector algorithm; let & indicate the
Newton iteration index. The Euler predictor is given by
= A, +Asd,.

ul =u, +Asu,; A (A3a)

Once u®, u*, A* and A* are calculated, the equations

(A.1) are linearized about this solution, i.e.

k+1 /’Lk +A/‘Lk+1.

u - uk +Auk+] Z,L“

(A.3b)
In every Newton iteration, this increments
(Auk“,Alk"‘]) are determined by solving the linear
system

[cbu(u",ak) Cbl(uk,lk)}{é.uk“}

ﬁg io A;Lk+l
I o)

| As—al(ut —ag )= Ao (A -4, )|

This linear system of equations can be solved by direct or
iterative methods. In the problem of this paper, a direct
solver is used since the Jacobian matrix @ (u /'L") is ill-
conditioned due to the small value of the Ekman number;
the solver is based on LU decomposition (Numerical
Algorithms Group, 1990). .

We monitor dctLCI) (uk kk)] and A along a branch to
determine simple (transcritical or pitchfork) bifurcation
points and turning points. Once a change in sign is found
in one of these quantities between two points along a
branch, say s, and s,, a secant process is started to locate
the zero exactly. Let either function be indicated by g(s);
then a zero of g(s) is determined by

(A4)

5y — 5p_
SH-I =Sf“q(sﬁ)m’

Sy =84, S| =5p.

(A.52)
(A.5b,c)

The stopping criterion for the iteration is
|Su-1 —s!.r|/sa <&, where £=1072. In some cases, a larger
£ must be taken because the matrix @, becomes too
singular. We check a posteriori that the value of g(s) is
substantially smaller than the values at both s, and s,,.

A.2. Eigenproblem Solver

If det[cI) (u' Af )] changes sign but A does not, a simple
bifurcation point 1s detected and a branch switch process is
started. Let CI) =0, (u,,4. ) be the Jacobian matrix at the
bifurcation point (u,,,,l ) just after the secant iteration has
converged. Further let the tangent anng the already known
branch at s=s5, be indicated by al,A,] . First we
calculate the nullvector ¢ pf (IJ by inverse 1terat101} and
construct a vector (', A orthogonal to (uo,k by
solving

®, &, [ _[0
al A, Al o]
where 1 is easily expressed in terms of ¢. To determine a

point on the new branch, the Newton process is started
with the Euler predictor

(A.6a)

u'=u, tAst, A=A, AL (A.6b)
The + indicates that points can be found on either side of
the known branch. When a point on a new branch has been
located, the pseudo-arclength procedure is used to compute
further points.

There is no simple indicator for Hopf bifurcations. The
linear stability problem of steady states along the branch
has to be solved to detect these bifurcations. When this
problem is discretized, a generalized eigenvalue problem of
the form

Ax = nBr (A7)
appears, with A =®_ (u,A) and B a singular diagonal
matrix. A complex mapping of the form

N=b+as (A8)

K+1

is applied, with b real and a positive; it transforms the
eigenvalue problem into

Fx = @_ICX = KX (A°9)

where C =4 +(a—b)B and D=-A+ (a+b)B. By the
mapping (A.8), the most dangerous modes of the original
problem (A.7), i.e., those closest to the imaginary axis, are



mapped onto the dominant modes of the problem (A.9),
Le., those with largest norm. Writing n—5b = x+iy and
K = Ky + ik, gives the relations

2 2 2
a —x" -y 2ay
G e T =— (A.10)
" a—a 4yt (x-a)

The simultaneous iteration procedure (SIT) is applied to
the problem (A.9). We start with m initial vectors Ui ;

j=1,..., m and use the notation
U =g Uy | (A.11a)

During the filtering stage of the SIT, we compute for
n=1,..., N the product

" =i (A.11b)
by solving the linear systems
DI =0U", (A.11c)

Let A denote the diagonal matrix with eigenvalues ordered
according to their norm and Q the corresponding
eigenvectors, i.e.

kK, 0 0

A=l0 .. 0| Q=g ....qq] (A.12)
0 0 xy

with Eq; = t,q;. The idea is to decompose

U': ((10 2QaCa +chb (A.IBa)

so that the (d#m) matrix Q, contain the first m columns
of Qand @ the remainder of the columns of Q, After one
step (A.11c) we obtain

V=U"=E(Q,C, + 0,C,) = O,A,C, + O,A,C, (A.13b)

where A, is the (d*m) matrix of the first # columns of
A. Hence, after each filtering step, the components of the
starting vectors in the direction of the dominant
eigenvectors increase most in amplitude.

After a certain number of filtering steps N, usually 5 to
10, a reorientation step is performed to obtain a better
approximation to the eigensolution of (A.9). First, we
compute the m * m matrices

F=UTU, G=U"V (A.14)
and solve for the matrix H =G F from
FH =G. (A.14b)

The eigenvalues of the matrix H are an approximation of
the eigenvalues of E, since
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PH = UTUH = UT(QCo+Q,C,)H =G

=UY =UT(QAC, +QuA,C). (A.15)

Because ‘UTQ,, is nonsingular, we obtain — by omitting
the part associated with Ay from (A.15) —
CH =hC,. (A.16a)

In the actual numerical code, we solve the eigenvalue
problem

HE =Pk, (A.16b)
to yield P =C;" and compute
W=1P=Q,A,+Q,A,C,C;". (A.16c)

The next approximation to the eigenvectors is then found
from the first # columns of the matrix W.

The accuracy of the approximation of the eigensolution
after the p-th reorientation is determined by
backsubstituting the eigenvalues and eigenvectors into the
original eigenvalue problem (A.9), computing the residue
and dividing it by the Ly-norm of the corresponding
eigenvector. The stopping criterion is that this residue is
smaller than some prescribed quantity, usually 10-3, In
most cases, this process converges within P reorientations.
When converged, the eigenvalues of the original problem
are computed by the complex mapping (A.8).

A.3. Summary of the Complete Algorithm

The complete algorithm that combines the continuation

method with the eigenproblem solver can now be

summarized as follows. Suppose a point (ug, 4,) on a

given branch of stationary solutions, the tangent (1,,4,)

to the branch at that point and m eigenvectors (and

eigenvalues 1;,..., T,) of the linearization of (3.1) about
that point have been computed.

1. Compute the next Euler-forward guess: u = u, + Astu,,
A=A, +Asd,.

2. Compute the Jacobian @, and solve the system (3.1,
3.3) by Newton iteration with the initial guess given by
step 1, until convergence to within the present € in K
steps, say. This requires the solution of 2K systems of
linear equations.

3. Compute the matrix D in (A.9) and start the SIT with
the m starting (eigen)vectors. With filtering index
1 <n <N and P reorientations until convergence,
this requires the solution of m N P linear systems.

4. Compute a desired number of test functions, for
example det(®,), and initiate computation of a new
solution branch, if called for by the result of a test.

The linear systems are all solved by direct LU
decomposition, taking into account of the banded structure

of the Jacobian (Numerical Algorithms Group 1990).



266

Acknowledgments. Tt is a pleasure to thank Shi Jiang for many useful
discussions and numerous colleagues for data, preprints and comments;
discussions with Kayo Ide were particularly fruitful. The authors are
indebted to the anonymous referees for helpful comments and
suggestions, This work was supported by a NOAA Climate and Global
Change Post-Doctoral Fellowship (SS), and by an NSF Special Creativity
Award (MG). HD thanks J. David Neelin for support (NSF grant ATM-
9158294) of a visit to UCLA during which the collaboration leading to
this paper was initiated. MG also thanks the Ecole Normale Supérieure
for the Condorcet Visiting Chair, whose support helped complete the
revision of the paper. The computing resources were provided by the
Centre de Calcul pour la Recherche of the Université Pierre et Marie
Curie, Paris, and by NCAR's Scientific Computing Division,

References

Auer, S. J., Five-year climatological survey of the Gulf Stream system
and ils associated rings. J. Geophys. Res., 92, 11726-11790, 1987.

Boland, F. M. and Church, J. A., The East Australian Current 1978. Deep-
Sea Res., 284, 937-957, 1981.

Broomhead, D. S. and King, G. P., Extracting qualitative dynamics from
experimental data. Physica, 20D, 217-236,1986.

Brown, O. B. and Evans, R. H., Satellite infrared remote sensing. In Study
of Physical Processes on the U.S. Mid-Atlantic Slope and Rise.
Casagrande (ed.), Science Applications International, Raileigh, NC, IV,
67- 97,1987,

Bryan, F., High-latitude salinity effects and interhemispheric
thermohaline circulation. Nature, 363, 301-304, 1986.

Bryan, K., A numerical investigation of a non-linear model of a wind-
driven ocean. J. Armos. Sci., 20, 549-606, 1963.

Cessi, P. and lerley, G. R., Symmetry-breaking multiple equilibria in
quasi-geostrophic, wind-driven flows. J. Phys. Oceanogr., 25, 1196-
1205, 1995.

Cessi, P. and Thompson, L., Geometrical control of inertial recirculation.
J. Phys. Oceanogr., 20, 1867-1875, 1990.

Cessi, P., lerley,G., and Young, W., A model of the inertial recirculation
driven by potential vorticity anomalies. J. Phys. Oceanogr., 17, 1640-
1652,1987.

Charney, J. G. and DeVore, I. G., Multiple flow equilibria in the
atmosphere and blocking. J. Atmos. Sci., 36, 1205-1216, 1979.

Christodoulou, K. N. and Scriven, L. E., Finding leading modes of a
viscous free surface flow: An asymmetric generalized eigenproblem. J.
Sci. Compur., 3, 355-406, 1988.

Colebrook, J. M., Continuous plankton records: zooplankton and
environment, Northeast Atlantic and North Sea, 1948-1975, Oceanol.
Acta, 1, 9-23, 1978,

Constantin, P., Foias, C., Nicolaenko, B., and Témam,R. , Integral
Manifolds and Inertial Manifolds for Dissipative Partial Differential
Equations, Springer-Verlag, New York, 122 pp., 1989.

Dijkstra, H. A., On the structure of cellular solutions in Rayleigh-Bénard-
Marangoni flows in small-aspect-ratio containers, J. Fluid Mech., 243,
73-102, 1992,

Dijkstra, H. A. and Neelin, J. D., On the attractors of an intermediate
coupled ocean-atmosphere model. Dyn. Atntos. Oceans, 22,19-48, 1995,

Fedorov, K. N,, Ginsburg, A. I, and Kostianoy, A, G., Modelling of

“mushroom-like” currents (vortex dipoles) in a laboratory tank with
rotating homogeneous and stratified fluids. In: Mesoscale/Synoptic
Coherent Structures in Geophysical Turbulence. J. C. J. Nihoul (ed.),
Elsevier, 840 pp., 1989.

Flierl, G. R., Larichev, V. D., McWilliams, J. C., and Reznik, G. M., The
dynamics of baroclinic and barotropic solitary eddies. Dyn, Atmos.
Oceans, 5, 1-41, 1980,

Flierl, G. R., Stern, M. E., and Whitehead, J. A., The physical significance
of modons: Laboratory experiments and general integral constraints.
Dyn. Atmos. Oceans, 7, 233-263, 1983.

Fraedrich, K., Estimating the dimensions of weather and climate
attractors, J. Atmos. Sci., 43,419-432, 1986,

Fu, L.-L., Christensen, E. J., Yamarone, C. A., Lefebvre, M., Ménard, Y.,
Dorrer, M., and Escudier, P,, TOPEX/POSEIDON mission overview. J.
Geophys. Res., 99, 24369-24382, 1994,

Ghil, M. and Childress, 8., Topics in Geophysical Fluid Dynamics:
Atmospheric Dynamics, Dynamoe Theory and Climate Dynamics,
Springer-Verlag, New York, 485 pp, 1987,

Ghil, M. and Tavantzis, J., Global Hopf bifurcation in a simple climate
model. SIAM J. Appl. Math., 43, 1019-1041, 1983,

Ghil, M. and Vautard, R., Interdecadal oscillations and the warming trend
in the global temperature series. Nature, 350, 324-327, 1991.

Golub, G. H. and Van Loan, C. F., Matrix Computations (2nd ed.), The
Johns Hopkins University Press, Baltimore and London, 642 pp, 1989,

Golubitsky, M. and Schaeffer, D. G., Singularities and Groups in
Bifurcation Theory, Springer-Verlag, New York, 463 pp.

Guckenheimer J., and P. Holmes, 1983: Nonlinear Oscillations,
Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag,
459 pp, 1984,

Haidvogel, D. B., McWilliams, J. C., and Gent, P. R., Boundary current
separation in a quasigeostrophic, eddy-resolving ocean circulation
model. J. Phys. Oceanogr., 22, 882-902, 1992.

Hanson, H. P., Climatological perspectives, oceanographic and
meteorological, on variability in the subtropical convergence zone in the
Northwestern Atlantic. J. Geophys. Res., 96, 8517-8529, 1991.

Holland, W. R., The role of mesoscales eddies in the general circulation
of the ocean-numerical experiments using a wind-driven quasi-
geostrophic model, J, Phys. Oceanogr., 8, 363-392, 1978,

Holland, W. R. and Lin, L. B, On the generation of mesoscale eddies and
their contribution to the oceanic general circulation. I. A preliminary
numerical experiment. J. Phys. Oceanogr., 5, 642-656, 1975.
lerley, G. R., Boundary layers in the general ocean circulation. Annu.
Rev. Fluid Mech., 22, 111-142, 1990.

Ierley, G. and Young, W., Inertial recirculation in a §-plane corner. J.
Phys, Oceanogr., 18, 683-689, 1988.

Jang, S., Data Assimilation for a Nenlinear, Wind-Driven, Shallow-Water
Model in a Rectangular Midlatitude Basin. Ph.D, thesis, University of
California, Los Angeles, 247 pp, 1994.
liang, S., Jin, F.-F., and Ghil, M., Multiple equilibria, periodic and
aperiodic solutions in a wind-driven, double-gyre, shallow-water model.
J. Phys. Oceanogr., 25, 764-786, 1995a.

Jiang, N., Neelin, J. D., and Ghil, M., Quasi-quadriennial and quasi-
biennial variabilily in equatorial Pacific sea surface temperatures and
winds. Clim. Dyn., accepted, 1995b.



Jin, F.-F. and Ghil, M., Intraseasonal oscillations in the extratropics: Hopf
bifurcation and topographic instabilities. J. Atmos. Sci., 47, 3007-3022,
1990.

Jin, F.-F., Neelin, J. D., and Ghil, M., El Nifio on the Devil's Staircase:
Annual subharmonic steps to chaos. Science, 264, 70-72, 1994,

Keller, H. B., Numerical solution of bifurcation and nonlinear eigenvalue
problems. In Applications of Bifurcation Theory (ed. P. H. Rabinowitz),
Academic Press, 1977.

Keppenne, C. L., Bifurcations, Strange Attractors and Low-Frequency
Dynamics. Ph.D. thesis, Université Catholique de Louvain, Louvain-la-
Neuve, Belgium, 159 pp, 1989.

Keppenne, C. L. and Ghil, M., Adaptive filtering and prediction of the
Southern Oscillation Index. J. Geophys. Res., 97, 20449-20454, 1992.

Kimoto, M. and Ghil, M., Multiple flow regimes in the Northern
Hemisphere winter. Part I: Methodology and hemispheric regimes. J.
Atmos. Sci., 50, 2625-2644, 1992a.

Kimoto, M. and Ghil, M., Multiple flow regimes in the Northern
Hemisphere winter. Part IT: Sectorial regimes and preferred transitions,
J. Atmos. Sci., 50, 2645-2673, 1992b.

Legras, B., Eddies in geophysical flows. In: Geophysical Fluid Dynamics,
Summer School, Roscoff, France. INSU - CNRS - METEO-France -
IFREMER - CNES, 228 pp, 1992,

Legras, B. and Ghil, M., Persistent anomalies, blocking, and variations in
atmospheric predictability. J. Atmos. Sci., 42, 433-471, 1985.

Le Provost, C, and Verron, J., Wind-driven ocean circulation transition to
barotropic instability. Dyn. Atmos. Oceans, 11, 175-201, 1987.

Levitus, S., Interpentadal variability of steric sea level and geopotential
thickness of the North Atlantic ocean, 1970-1974 versus 1955-1959. J,
Geophys. Res., 95, 5233-5238, 1990.

Lorenz, E. N., Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130-
141, 1963.

Lorenz, E. N., Can chaos and intransitivity lead to interannual variability?
Tellus, 424, 378-389, 1990.

MecCalpin, J. and Haidvogel, D. B., Phenomenology of the low-frequency
variability in a reduced-gravity, quasigeostrophic double-gyre model. J.
Phys. Oceanogr., submitted, 1995.

McWilliams, J.C., N.J. Norton, P.R. Gent, and D.B. Haidvogel, A linear
balance model of wind-driven, mid-latitude ocean circulation. J. Plys.
Oceanogr., 20, 1349-1378, 1990.

Moro, B., On the non-linear Munk model. II: Stability. Dyn. Atmos.
Oceans, 14, 203-227, 1990.

Neelin, D. 1., Latif, M., Allaart, M. A. F., Cane, M. A., Cubash, U., Gates,
W. L., Gent, P. R., Ghil, M., Gordon, C., Lau, N. C., Mechoso, C. R.,
Meehl, G. A., Oberhuber, J. M., Philander, S. G. H., Schopf, P. 8.,
Sperber, K. R., Tokioka, T., Tribbia, J., and Zebiak, S., Tropical air-sea
interaction in general circulation models. Clini. Dyn., 7, 73-104, 1992.

Nguyen Duc, J.-M. and Sommeria, J., Experimental characterization of
steady two-dimensional vortex couples. J. Fluid Mech., 192, 175-192,
1988.

North, G. R., Cahalan, R. F., and Coakley, Jr., J. A., Energy balance
climate models. Rev. Geophys. Space Phys., 19, 91-121, 1981.

Numerical Algorithms Group, NAG Fortran Library Manual, MARK 14,
Numerical Algorithms Group, Inc., Oxford, UK, 1990.

Olson, D. B., Podesta, G. P., Evans, R, H., and Brown, O. B., Temporal
variations in the separation of Brazil and Malvinas Currents. Deep-Sea
Res., 35, 1971-1990, 1988.

267

Pedlosky, J.. Geophysical Fluid Dynamics (2nd ed.), Springer-Verlag,
New York/Heidelberg/Berlin, 710 pp., 1987.

Philander, S. G. H.. El Nifio, la Nifia, and the Southern Oscillation,
Academic Press, San Diego, 293 pp., 1990.

Plaut, G., Ghil, M., and Vautard, R., Interannual and interdecadal
variability in 335 years of Central England temperature. Science, 268,
710-713, 1995.

Qiu, B. and Joyce, T. M., Interannual variability in the mid- and low-
latitude western North Pacific. J. Phys. Oceanogr., 22, 1062-1079, 1992,

Quon, C. and Ghil, M., Multiple equilibria in thermosolutal convection due
to salt-flux boundary conditions. J. Fluid Mech., 245, 449-483, 1992.

Quon, C. and Ghil, M., Multiple equilibria and stable oscillations in
thermosolutal convection at small aspect ratio. J. Fluid Mech., 291, 33-
56, 1995,

Rasmusson, E. M., Wang, X.. and Ropelewski, C. F., The biennial
compenent of ENSO variability. J. Mar. Systems, I, 71-96, 1990,

Robinson, A. R. (ed.), Eddies in Marine Science. Springer-Verlag, 609
pp.. 1983,

Seydel, R., From Equilibrium to Chaos. Practical Bifurcation and Stability
Analysis. Elsevier, 367 pp., 1988.

Speich, S. and Ghil, M., Interannual variability of the mid-latitude oceans:
A new source of climate variability? Sistema Terra, 3, 33-35, 1994,

Speich, S., Ghil, M., and Dijkstra, H., Low-frequency variability of
western boundary currents: Numerical experiments and observational
evidence. In: Proceedings of the First Institute on Global Climate
Change, NOAA-UCAR, Boulder, CO. In press, 1995a.

Speich, S., Madec, G., and Crépon, M., A process study of a strait outflow
circulation: The case of the Alboran Sea. J. Phys. Oceanogr., in press,
1995b.

Steward, W. I. and Jennings, A., A simultaneous iteration algorithm for
real matrices. ACM Trans. Math, Software, 7, 184-198, 1981,

Stommel, H., Thermohaline convection with two stable regimes of flow.
Tellus, 13,224-228, 1961,

Strong, C., Jin, F.-F., and Ghil, M., Intraseasonal oscillations in a
barotropic model with annual cycle, and their predictability. J. Atmos.
Sci., in press, 1995.

Témam, R., Infinite-Dimensional Dynamical Systems in Mechanics and
Physics, Springer-Verlag, New York, 500 pp., 1988.

Thual, O. and McWilliams, J. C., The catastrophe structure of
thermohaline convection in a two-dimensional fluid model and a
comparison with low-order box model. Geophys. Astrophys. Fluid Dyn.,
64, 67-95, 1992.

Van Heijst, G. J. F. and Flor, J. B., Laboratory experiments on dipole
structures in a stratified fluid. In; Mesoscale/Synoptic Coherent
Structures in Geophysical Turbulence, 1. C. J. Nihoul (ed.), Elsevier, 841
pp., 1989.

Vautard, R. and Ghil, M., Singular spectrum analysis in nonlinear
dynamics, with applications to paleoclimatic time series. Physica, D35,
395-424, 1989.

Vautard, R., Yiou, P., and Ghil, M., Singular Spectrum Analysis: A toolkil
for short, noisy, chaotic signals. Physica , D38, 95-126, 1992.

Veronis, G., Wind-driven ocean circulation. Part I: Linear theory and
perturbation analysis. Deep-Sea Res., 13, 17-29, 1966a.

Veronis, G., Wind-driven ocean circulation. Part II: Numerical solutions
of the nonlinear problem. Deep-Sea Res., 13, 31-55, 1966b.



268

Verron, J. and Blayo, E., The no-slip condition and the Gulf Stream
separation problem. J. Phys. Oceanogr., submitted, 1995.

Verron, J. and Jo, J.-H., On the stability of wind-driven barotropic ocean
circulations. Fluid Dyn. Res., 14, 7-27, 1994.

Verron, J. and Le Provost, C., Response of eddy-resolved general
circulation models to asymmetrical wind forcing. Dyn. Atmos. Oceans,
15,79-93, 1991.

Weaver, A. I, Sarachik, E. S., and Marotzke, J., Freshwater flux forcing
of decadal and interdecadal oceanic variability. Nature, 353, 836-838,
1991.

Woodruff, S. D., Slutz, R. J., Jenne, R. L., and Steurer, P. M., A
comprehensive ocean-atmosphere data set, Bull. Amer. Met. Soc., 68,
521-527, 1987.



