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Abstract. A goal of geophysical inversion is to identify all
models which give an acceptable misfit between predicted
and observed data. However, because of the complexity of
Earth structure, the non-linearity of physical processes in
the Earth, and the insufficiency of geophysical data, many
geophysical inverse problems may have a large number of
distinct, acceptable solutions. These problems may be
characterized by a complicated surface for the misfit func-
tion in the solution parameter space. For exploring such a
surface, direct inversion and simple random search methods
are often inadequate. However, directed search methods
such as the genetic algorithm can be configured to balance
convergent and random processes to find large sets of
solutions that span the acceptable regions of complicated
misfit surfaces.

1 Introduction

A goal of geophysical inversion is to find all earth models
which, when operated upon by some forward method,
preduce synthetic data that gives an acceptable agreement
with a set of observed data (Keilis-Borok and Yanovskaya,
1967; Press, 1968; Aki and Richards, 198(); Tarantola,
1987). In terms of the misfit function, a measure of the
difference between observed and synthetic data that varies
as a function of solution parameters, this goal of inversion
is to identify all regions of the misfit surface with values
below an acceptable level. This acceptance level is
determined by considering variance in the data set and the
loss of generality due to all simplifications and assumptions
in formulating the inversion.

However, because of the complexity of Earth structure,
the non-linearity of many physical processes in the Earth,
and often insufficient and noisy geophysical data, many
geophysical inverse problems have a large number of
acceptable solutions. For such problems, the misfit
function may be a complicated, irregular surface of peaks,
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Fig. 1. Complicatcd mistit-surface in a 2-parameter solution-space. This
surface representing the topography around the Alps has features (hat may
be typical of the higher-dimensionzl misfit surfaces frem geophysical
inverse problems.  Such features include: a broad, curving, elongated
shape for the minimal region (related to poor constraint and trade-off
between model parameters and uncertainty in the data), and multiple-
minima and a fractal character (related to non-Hnearity).

valleys, ridges and local minima (Fig. 1; ¢.f Scales er al.,
1992). In general, little may be known about the continu-
ity, differentiability and number of minima of a compli-
cated misfit surface. In addition, the shape of the misfit
surface itself is not absolute, it will shift and deform in
response to changes to the data set, a priori constraints,
model parameterization, inversion procedure, approxima-



tions in the physical theory of the forward problem and
many other aspects of the inversion (c.f. Tarantola and
Valette, 1982; Tarantola, 1987). This means, in particular,
that the location of global and local minima of the misfit
surface are dependent on the data set and formulation of
problem as well as the properties of the "real” Earth.
These considerations imply that a comprehensive and
meaningful sofution to many inverse problems requires
estimates of the acceptable regions of the misfit surface
and of how the shape of the misfit surface depends on ali
assumptions in the problem. In this paper we discuss the
tirst of these goals. We show how guided random-search
techniques such as a genetic algorithm can be configured
1o identify the regions of a complex misfit surface that lie
below a significance level. We call the solutions that lie
within these regions acceptable solutions. We apply the
genetic algorith to a many-parameter geophysical inver-
sion problem and show how the set of acceptuble solutions
indicates uncertainty and trade-offs in the results.

2 Existing Inversion Methods and Genetic Algorithm

Many geophysical problems are addressed through the use
of direct, calculus based inversions. These methods require
knowledge of an adequate starting solution, and that
perturbations of the model are linearly related to changes
in the data (Aki and Richards, 1980). They operate
through a single or an iterative perturbation of the solution
using locally determined gradients of the misfit surface; this
requires a smooth and differentiable misfit function. Also,
only a single final solution is identified, and, in general,
this solution will be in the neighbourhood of and strongly
dependent on the location of the starting solution (Fig. 2).
Thus these methods are inherently unable to define the
topography of a complicated misfit surface over a large
solution-space.

Random, trail-and-error and enumerative or grid-scarch
technigues are applicable to problems with complex misfit
surfaces because these methods work directly with non-
linear forward calculations and require no gradient informa-
tion. Also they allow a large solution-space to be explored
and produce mulitiple solutions. However commonly used
techniques such as simple Monte Carlo and hedgehog
(Keilis-Borok and Yanovskaya, 1967) become inefficient or
impractical in very large solution-spaces. More recently
a number of guided search techniques from the field of
"artificial intelligence" have been developed which can
sample efficiently a large solution-space. The genetic
algorithm (GA) method (Goldberg, 1989; Davis, 1991, Hol-
land, 1992) is one such technique that has been applied to
geophysical problems (e.g. Stoffa and Sen, 1991; Sen and
Stoffa, 1992; Sambridge and Drijkoningen, 1992;
Sambridge and Gallagher, 1993; Jin and Madariaga, 1993;
King, 1993; Nolte and Frazer, 1994; Lomax and Snieder,
1994).

The GA method is an iterative, guided search, which

Tig. 2. Direct inversion on the complex mistit surface from Fig. [. A
region of acceptable misfit is shaded in grey. A single-stcp direct
inversion (8, -> S} makes a perturbation 1o the starting solution §, that
depends on the local gradient of the misfit surface at location 5, A
multiple-step ditect inversion (M, -> M) makes successive perturbations
to the sclution that depend on the local gradient of the misfit surface at
euach yolution location. For some starting solutions near to the acceptable
region the final solutions S or M may be ¢losc to or within the acceptable
region. But for most starting solutions, the complexity of the misfit
surface and the distance of the starting solution from the acceptable region
will prevent a solution within the acceptable region from being found (X,
-> X). Even with starting solutions close to the acceptable region, the
inversion may diverge (Y, -> Y).

applies stochastic operations to populations of trial sol-
utions to find new solutions with smaller misfit. Beginning
with a random population of solutions, succeeding popula-
tions are created by 1) selection - saving solutions with
smaller misfits, 2) crossover - combining parts of two sol-
utions to form new trial solutions, and 3) mutation - chang-
ing the values of some of the parameters of a solution.
New populations are created for a set number of iterations
or until some criteria for misfit reduction has been achieve-
d. The GA search produces a large set of solutions which
sample the solution-space globally but which can rapidly
converge-to a local or global minimum. As with other
Monte Carlo methods, a primary limitation of the GA
method is the speed of the forward calculation which
typically must be done many thousands of times. Also, the
construction and tuning of the selection, crossover and
mulation operations are done in a primarily ad-hoc manner.

3 Genetic Algorithm Inversion for Acceptable Solutions

Unfortunately, with a complicated misfit-surface, a GA
may define only one or two local minima (Fig. 3a), and
different local minima may be found depending on the
paramcters controlling the GA search {(e.g. Goldberg and
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Fig. 3. 1) A "typical” GA miay find solutions located near only one of the
minima, 1, 2 or 3 in the misfit surface. But a goal of geophysical
inversion s o find all solutions with misfit below some acceptance level
(c.g. data variance ). all such solstions may give useful information about
the problem. b} The identification of a representative sample of all
acceptable solutions is a practical way to achieve the goal of geophysical
inversion. A GA with a misfit cutoff value at or below the acceptable
level can aid in identifying a wide range of acceptable solutions and
avoiding deep local minima.

Richardson, 1987; Stoffa and Sen, 1991; Nolte and Frazer
(1994). This behaviour occurs when a GA is configured
for rapid minimization of the misfit; the results are strongly
influenced by the best exisling solutions in the population
{Fig. 4, top). Such convergence to a local minimum not
only prevents the identification of all acceptable solutions,
but also may produce a localized, poorly distributed set of
solutions that is not appropriate for later statistical analyses
or for use to cstimate the a posteriori probability density
function for the inversion (Tarantola and Valette, 1987; Sen
and Stofta, 1992; Nolte and Frazer, 1994).

Here, we configure the GA to attempt to find scts of
acceptable solutions - solutions representing all regions of
the solution-space that give a misfit with the data below
some acceptance level. We begin with a GA similar to
that described by Sambridge and Drijkoningen (1992), but
the rate of crossover is set lower rclative to the rate of
mutation, and the best solution of each generation is never
explicitly carried over to the next generation {(no elitism,
see Goldberg, 1989). In addition, we define a minimum
misfit "cutoff" value and reset lower misfits to this value;
this helps to prevent the stalling of the GA in deep minima
that are much lower than the acceptable level (Fig. 3b).
This cutoft makes the method more of a stochastic search
and less of an eptimizarion method for regions of the
solution space with misfit below the cutoff valve. The
resulting GA configured to find acceptable solutions is
referred to as GAL.

Figure 4 shows a comparison of a "typical” GA, the GAl
and a random scarch in imaging an acceptable misfit region
of the sample misfit surface in Fig. 1. A "typical” GA
(Fig. 4, top row) converges rapidly towards a local minima,
testing many solutions in the neighbourhood of this
minima; it finds a large number of acceptable selutions, but

they are highly clustered and do not form a good sample of
the acceptable misfit region. With different starting
populations {different columns in Fig. 4), different minima
are be identified. The GA (Fig. 4, middle row) converges
towards the acceptable misfit region, but tests many
soluttons throughout the solution-space; it finds fewer
acceptable solutions that the "typical" GA, but these
solutions are less clustered and give a better image of the
acceptable misfit region. With different starting popula-
tions the GAL shows more stability in the results than the
GA. A random search or crude Monte Carlo (Fig 4,
bottom row) tests solutions that are well distributed
throughout the solution-space; but finds very few accept-
able solutions and does not image the acceptable mistit
region as well as the GA1l,

A measure of the relative efficiency of the three methods
is given by the number of acceptable solutions identified
{about 330/90/20 for GA, GA1 and random search, respect-
ively); but, as indicated above, this measure does not
indicate the quality of the distribution of the acceptable
solutions.  Also, if the dimension of the parameter space
were increased, the relative efficiency of the random search
would decrease rapidly.

The results in Fig. 4 show that the GAl gives a better
image of the acceptable region of the misfit surface than a
"typical" GA, while maintaining the high efficiency of the
GA relative to a random search. However, the GA1 still
shows some tendency to produce clustered solutions in the
acceptable misfit region, and the sampling of the remainder
of the parameter space is not as well distributed as the
random search. There are other modifications and parame-
ter adjustments fo the GA that may help to achieve the goal
of finding a representative set of all acceptable models (e.g.
Goldberg and Richardson, 1987), and much work remains
to be done on this problem,

4 Application to a Geophysical Problem

We illustrate the use of the GA1 1o find sets of acceptable
solutions in a seismological inverse problem, summarizing
some of the results of Lomax and Snieder (1994). We
invert synthetic group-velocity estimates to determine
layered S velocity models. The data consists of fundamen-
tal Rayleigh group-velocity dispersion estimates from 10 to
350 sec period for the layered earth model iasp91 (Kennett
and Engdahl, 1991) with noise added by incorporating the
scatter from real data (see Lomax and Snieder, 1994). This
gives a noisy group velocity data set with a mean at each
period that corresponds to the dispersion for the iasp91
model. The models are defined by 4 crustal and {4 mantle
velocity-depth nodes and a Moho discontinuity at a depth
between 15 and 70 km. The parameterization gives about
10* possible models, though the number of significantly
different models is the order of 10 to 10™. We invert the
noisy synthetic data using this modet parameterization and
the GA| procedure described above, with the expectation
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Fig. 4. Comparison of a "typical” GA tuned for rapid convergence {top Tow), a GA configured to find acceptable solutions (GAL, middle row) and a
random search (bottom row) in imaging an acceptable misfit region (grey lone) of the misfit surface of Fig. 1. Each row shows three runs with different
starting populations for a single method; all runs have about the same number of tested solutions and require about the same computation time.

that the iasp91 S velocity distribution will be contained
within the scatter of acceptable models. Noie that this test
does not use exact parameterization - the input iasp9l
mode] cannot be represented exactly by the nodal models
used for inversion.

Figure 5 shows the acceptable models and their £1a and
+20 spread in velocity at each depth from three GAl runs
with the noisy synthetic data. Here, acceptable models are
defined as those models giving a synthetic dispersion curve

with an r.m.s misfit with the data (E,) less than (.85 times
the r.m.s scatter of the data values (Ey); this insures that the
predicted data from acceptable solutions will fall within the
scatter of the real data. The distribution of acceptable
models is an estimate of the shape of the better-fitting
region of the misfit surface in the solution space. Allowing
lor differences in parameterization in the crust and at the
"400" km discontinuity between the iasp9! model and the
maodels used for inversion, and the noise added to the data,
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Fig. 5. Combined results from three runs of the GAL for the synthetic iasp91 data. The left panel shows all acceptable models (misfit E, 2 0.85E,) and
the search limits (dashed lines), The right panel shows the xlo spread (closely spaced solid lines) and the *2¢ spread (outer solid lines) in S velocity
at cach depeh for the acceptable models and the +2¢ spread of the search (dashed lines). The iasp91 model used to generate the synthetic data is indicated
in both panels {thick dotted line). The search limits and the 226 spread of the search are estimated using 1000 randomly generated models with the same
tnodel parameterization employed in the inversion, The results from three Tuns are combincd because of the tendency of the GAIT to exhibit some
clustering of solutions. Note that the characteristics of the sampling by the GA of the parameter space are such that the ¢ spreads shown here do not

give formal uncertainty estimates,

the 1o spread of acceptable models in Fig. 5 shows
excellent recovery of the original iasp91 model.

The scatter of acceptable models indicates the constraint
and trade-offs of model parameters; this is analogous to the
information given by the curving, elongated shape of the
sample misfit surface in Fig. 1. The large scatter of
acceptable solutions at the top of the crust, the top of the
mantle, and below about 350 km in the mantle indicate
regions of model space that are not well constrained by the
inversion (Fig. 5). This lack of constraint has several
causes. First, the lack of group velocity data at periods less
than 10 seconds and greater that 350 seconds leads to the
fanning of solutions at the top and bottom of the model;
below about 550 km the scatter and 20 spread of accept-
able solutions is nearly as broad as for the search limits
which indicates that the data imposes almost no constraint
in this region. Secondly, the physics of the forward
problem smooths and obscures information about the
model. This process results in the scatter in models
around the Moho, which reflects the physical limitations in
resolving a first order discontinuity with fundamental mode
dispersion data alone. A third cause of scatter in the
models is the scatter in the data. This effect is present at
all depths in the model and at all periods in the data and
overlaps with the other causes of scatter mentioned above,

The diversity in acceptable models near the Moho shows
that, in general, as the depth of the Moho discontinuity

increases, the velocities in the lower crust and uppermost
mantle also increase (Fig. 6). In consequence, most of the
models with a shallower Moho do not have a high-velocity
mantle lid. Also, the models with relatively low crustal
velocities near the Moho tend to have relatively high
velocity in the uppermost mantle. These correlations and
trade-offs indicate the inability of the dispersion data to
uniquely define the structure of the lowermost crust, the
Moho and the uppermost mantle. However, the liberal
parameterization and large number of solutions produced
with the GA1 inversion gives an illustration of possible
structures near the Moho and their trade-oftfs. Tn contrast,
a method such as direct inversion may require, for
example, a fixed crustal structure and Moho depth and will
define only one solution for the deeper structure; a feature
of this structure, such as a strong mantle lid, may be given
a stronger emphasis in interpretation than if the correlations
and trade-offs between such features in many acceptable
models were known. :

5 Discussion

In geophysical inversion the identification of all classes of
acceptable solutions is important for a comprehensive and
meaningful interpretation of the results. Achieving this
goal requires information about the topography of the misfit
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Fig. 6. Upper 85 km of the GA|l results for the synthetic iasp91 data
from Fig. 5 showing a subset of acceptable medels (misfit E, < 0.85E)
and the scarch limits (dashed lincs).

surface, which may be rough and irregular for many
interesting problems. We have presented a genetic
algorithm tuned to find the regions of acceptable misfit on
complicated misfit surfaces and have shown that this
method performs better that a genetic algorithm tuned for
rapid convergence or a random search for a complicated,
2-parameter misfit surface. We apply this algorithm to
obtain many acceptable solutions in a multi-parameter
geophysical inversion problem and show how this set of
solutions indicates uncertainty and trade-off in the results.

The genetic algorithm is a powerful tool for problems
for which there exists a single, clear, "optimum” solution
(e.g. many geophysical problems after the use of many
assumptions and physical approximations), or for problems
where the identification of any one acceptable solution is
adequate (e.g. process optimization in a factory), and, with
careful tuning, it can identify multiple minima in compli-
cated misfit surfaces. But methods based on the genetic
algorithm may not be the most efficient for the goal of
obtaining a representative set of acceptable solutions on
complicated misfit surfaces. In addition, the genetic
algorithm does not sample from the a posteriori probability
density function (Nolte and Frazer, 1994) and so the
solutions obtained cannot be formally incorporated in a
general non-linear inverse theory (e.g. Tarantola and
Valette, 1982). Other techniques from the field of "artifi-
cial intelligence"” (e.g. simulated annealing (Kirkpatrick et
al., 1983; Tarantola, 1987; Koren et al., 1991), or perhaps
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new algorithms developed with these goals on mind, may
prove superior. A careful balancing of random global
searching, convergent local searching, and the retention of
multiple acceptable solutions may be necessary in any
successtul approach,
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