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Abstract. The classical method of statistical physics
deduces the macroscopic behaviour of a systemn from the
organization and interactions of its microscopical consti-
tuants. This kind of problem can often be solved using
procedures deduced from the Renormalization Group
Theory, but in some cases, the basic microscopic rules
are unknown and one has to deal only with the intrin-
sic geometry. The wavelet analysis concept appears
to be particularly adapted to this kind of situation,
as 1t highlights details of a set al a given analyzing
scale. As fractures and faults generally define highly
anisotropic fields, we defined a new rencormalization pro-
cedure based on the use of anisotropic wavelets. This
approach consists of finding an optimum filter which
maximizes wavelet coefficients at each poinl of the field.
Its intrinsic definition allows us to compute a rose di-
agram of the main structural directions present in the
field at every scale. Scaling properties are delermined
using a multifractal box-counting analysis improved to
take account of samples with mrregular geometry and fi-
nite size. In addition, we present histograms of fault
length distribution. Our main observation is that differ-
ent geometries and scaling laws hold for different ranges
of scales, separated by boundaries that correlate well
with thicknesses of lithelogical units that constitute the
continental crust. At scales involving the deformation
of the crystalline crust, we find that faulting displays
some singularilies similar to those commonly observed
in Diffusion-Limited Aggregation processes.

1 Introduction

Since the development of modern physics of many-body
systems, a lot of work has heen done to estimate the
macroscopic behaviour of a system from the knowledge
of 1ts microscopic properties and elementary interac-
tions. The main question is to determine how much of
the microscopic details survive and control the macro-
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scopic behaviour. In most cases, a ’rencrmalization’
occurs such that only broad global properties control
the large scale properties and most of the microscop-
ical details are 'washed out’. There are basically two
well-known classes of such renormalization. Here we
want to introduce a third one. The champion of the
first class is the ideal gas: assuming a Boltzmann dis-
tribution of the molecules velocities depending on the
temperature, one can derive the well-known equilibrium
equation relating pressure P, temperature T and vol-
ume V of a gas mole: PV = RT', where R is the Joule
constant (Diu et al, 1989). A more subtle renormal-
ization occurs (the second class) when stmple averaging
or mean-ficld renormalization procedures breaks down.
The typical example is provided by critical phenomena,
which exhibit long-range correlations (Yeomans, 1992;
Chandler, 1987), and can be described by fractal and
multifractal measures. Macroscopic behaviour can then
he deduced using methods belonging to the Renormal-
ization Group (Wilson, 1983; Yeomans, 1992). The suc-
cess of the Renormalization Group is based on e pri-
ori knowledge of the interactions between elementary
objecls constituting the global system. If those micro-
scopical rules were not available, one needs to assume
them. The alm of this paper is lo present a third class
of renormalization procedure, purely founded on geo-
metrical analysis which is ideally suited to problems in
which the basic interaction rules are unknown. We shall
concentrate on a two-dimensional spatial problem (¢.e.
fracturing), but our approach can be extended to other
more general cases. Our new mcethod is based on pass-
hand filtering, using a family of filters called wavelets.
We will first present and use isotropic filters (like many
other workers in pattern recognition and image process-
ng). Simple arguments will then show that the use of
anisotropic wavelets is unavoidable, in spite of the larger
quantity of information to be dealt with. This leads us
to the definition of a new algorithm which gives us a
series of objective representations of a microscopically



known field at increasing scales. Applied to fault maps,
we are able to define renormalized rupture lines, repre-
senting the fraclure field at larger and larger scales. This
method also allows us to compute renormalized rose dia-
grams of the orientations of the main field features, at all
observation scales. A simple application is first carried
on a synthetic model of en échelon faults to demonsirate
the relevance of our analysis. As this method, that we
call Optimum Anisotropic Wavelet Coefficient Method
(OAWCM), is purely geometrical, we will complement
our analysis with a study of the scaling properties of
fault networks, using multifractal box-counting. This
approach 18 inspired by the fact that self-similar prop-
erties of laulting have often been reported in the litter-
ature (Mandelbrot et al, 1984; Scholz and Aviles, 1986;
Herrmann and Roux, 1890; Sornette et al, 1990; Sor-
nette, 1991; Kagan, 1991), suggesting that a single phys-
ical mechanism holds at every scale. This assumption,
if true, would justify the use of some fault properties
over a wide range of scales, thus allowing for instance
the computation of strain and energy of the fault pop-
ulations by extrapolation to uncbservable-size domains
(Scholz and Cowie, 1990). The method we use was con-
ceived to correct measurements from irregular border
sampling or finite size effects. This leads us to obtain
more precise critical exponents of the two-dimensional
organization of fault networks, In particular, we show
that some fractal dimensions may be artefacts resulting
solely from irregular sampling and finite size effects. Fi-
nally, frequency-length histogram estimations for faults
provide insight into the growth process of a fault in a
continental plate.

The area chosen for data collection was the sedimen-
tary cover of the western Arablan plate (Fig. 1), due
to the good exposure of joints and faults and the fairly
well-defined tectonic boundary conditions. The plate
consists of a Proterozoic basement deformed during the
Pan-African orogeny over which liec Phanerozoic sedi-
ments as well as volcanic rocks.

The Pan-African orogeny was marked during its clos-
ing stages by the development of a broad zone of strike-
slip faults, the Najd Fault System (Husseini, 1989).
These faults strongly influenced the fracture pattern af-
fecting the sedimentary cover. The WNW-ESE (aults
in Fig. 2 are due to this influence. The plate is sur-
rounded by varied tectonic conditions: collision to the
N-NE (Taurus-Zagros area), spreading centers of Gulf of
Aden and Red Sea to the 5-5F, and Dead Sea transform
to the W. Displacement of the plate along the sinistral
Dead Sea transform was estimated to be 105 km since
the Miocene (Freund et al, 1970). During the Quater-
nary, the plate was submitted to an approximately NS
compressive principal stress (Giannérini et al, 1988).
The focus of our study is loecated in the thick Paleo-
zoic platform, where accurate field mapping was car-
ried out in the Tayma area. This area is characterized

159

30" 32 34" 36° 38" 407 42° 44° 467 48" 50" 52° 547 56" 58" 60°

aw ~f ag"
ag" . fi 36°
as’ s
- i
30" 8 9%
28 N
26 wikid
24 24
i ..
20 20°
1w | 18"
1% 16
" R, wnse |
2 D M"‘G'M - -3

Legend
L] Neightrring plaes
RN R —
o fi. ::lg‘: Sedimentary cover
- Cenozoie volcanism

Fig. 1: Geological setting of the area under study. The Tayma
area is located within the frame north of the outcroping protero-
zoic basement. It coincides with the dashed framc on Map VI (see
Fig. 2).

by the outcropping Cambrian-Ordovician Saq sandstone
formation. Moreover, Interpretation and digitization of
photographs taken from helicopter, classical aerial pho-
tographs as well as satellite images allow us to create a
series of [racture network maps spanning a wide range
of scales (from 1:1 to 1:1,000,000). Fig. 2 presents our
dataset (each map being redunced after digitization to al-
low publication on a single page). Note that data were
acquired following a zoom strategy. Space filling and
anisotropy properties of each network were then stud-
ied with different methods, to define structural features
that control fault network growth in a continental plate.
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Fig. 2: Fracturc networks used for this study. Dashed frames and artows show the zoom process used during data acquisition. For
instance, Map V is a zoom of the area within the dashed frame in Map V1. Similarly, Map 11 is a zoom of Map III at the location of the
full circle. Legend under figures indicates the largest size of the image and the original scale at which fracture patterns were mapped.



2 The two-dimensional wavelet analysis

The wavelet transformn was introduced in its present for-
malism for the first time in the middle of the eighties
(Grossmann and Morlet, 1984). Large sections about
the potential applications of this method can be found
in the book of Meyer (1992). Most of the theoretical de-
velopments we shall present can be found there. Briefly,
the aim of the wavelet transform is to decompose a sig-
nal into details of various scales, using a battery of filters
called wavelets, derived from a single mother function 0.
This mother wavelet must always be chosen so as to be
well localized both in space and frequency. A wavelet
cocfficient is then defined at each point & of the signal
under study:

T—1b

]

Cr(b,a,6) = LS /II'(R;l( Ni(&dz (1)
Ky

where Ry is the counterclockwise rotation operator of
angle & with respect to the Oz axis, which allows to ro-
tate the analyzing wavelet. The positive real parameter
@ is the central parameter. It allows us to dilate (high «)
or to contract (low a) the wavelet, to analyze the signal
with either a fine or a coarse resolulion. The K¢ factor
is defined as [ollows (admissibility condition):

Ky :/|\1;*(11-’);2|J;?;-2d?£ (2)

where ¥* is the Fourier transform of ¥. Kg must
remain finite, which implies that the wavelel has a zero-
mcan. So, it has the property of deleting constant
level portions of the analyzed signal. A frequently used
wavelet is the so-called Mezican Hat, which is the sec-
ond derivative of the Gaussian function. Its analytical
expression is (see also Fig. 3a):

T(z,y) = (2~ (2 + y?))e” 1"+ (3)

'This wavelet is of course isotropic.

Anisotropy can be introduced through the aspect ra-
tio o of the wavelel. We can then define the following
mother filter (see Fig. 3b):

z* LN
Ulxe,y) =(2— (F +y2))e (5 +y7) (4)

By setting ¢ to unity, we recover the Mexican Hat
filter.

Using equations (2) and (4), it can be shown (Quil-
lon, 1995) that the associated normalizing factor Kg de-
pends linearly on . For a given resolution a. a simple
frequency analysis reveals that the anisotropic Mexican
Hat gives the strongest contrast to structures of width
2.2a and of length 2.2¢¢ (Ouillon, 1995).

The numerical implementation of the wavelet trans-
form is simple. Once the analyzing wavelet has been
chosen, we choose the scale a of analysis and compute
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Fig. 3a: Isotropic Mexican hat wavelet discretized in a 64 by 64
mesh world.

the Fast Fourier Transform (FFT) of the wavelet and of
the signal. The product of both specira is computed,
and the inverse FFT gives us the desired convelution
map. Of course, edge effects do occur. The main one
is due to the periodic nature of both the signal and the
wavelet, implied by the Fourier transform method. To
avoid it, we pre-process the original image as follows
(Arnéodo, personal communication): first, it is sampled
in a 256 by 256 matrix form. Then, this matrix is placed
at the center of an empty 512 by 512 matrix. The filter
is sampled in a 512 by 512 matrix form. The procedure
starts with these lwo inputs. Edge effects are not com-
pletely climinated, because the spatlial domain of the
wavelet does not always fit with the signal’s domain. In
practice, edge effects could be controlled with the use of
cornpact wavelets, but those filters suffer from poor lo-
calization in the wavevector space. On the other hand,
the use of wavelets highly localized in frequency implies
that the wavelets are of infinite extent (this is the case
for the Mexican Hat filter, for instance). No systemalic
rules exist, it and the user must judge when results are
spurious.

3 Isotropic wavelet analysis of synthetic en
fchelons fractures

We shall first concentrate on the use of isotropic
wavelets. Stnce much work and many examples can be
found in the literature, we shall focus here on a sim-
ple case which consists of a synthetic well-known ge-
ological situation: en échelons fractures (see Fig. 4).
This example is characterized by a scale dependent ge-
ometrical behaviour. At the 'microscopic’ scale, we can
detect small segments striking North/South, their cen-
ters being aligned in the N45E azimuth. At the *macro-
scopic’ scale, the only feature we perceive is a simple
line, striking N45E. We presently show how to deduce
this macroscopic behaviour from the known microscopic
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Fig 3b.: Anisotropic Mexican hat waveclet diseretized in a 64 by
64 mesh world. The long to small axis ratio is 4,

geometry and see that the wavelet transform is a natural
tool to process such a transformation. Fig. 5 presents
the wavelet analysis of I'ig. 4 at different resolutions:
2,4, 8 16 and 32 pixels. The wavelet we used is the
isotropic Mexican Hat (equation (3)). Each segment is
16 pixels long. The spacing between segments is 8 pix-
els. At high resolutions (2 and 4 pixels), we still detect
the microscopic constitution. The 8 pixels analysis lies
at the transition to the macroscopic behaviour, where
the large scale structure becomes apparent. This re-
sult is satisfactory, but it seems more natural that an
anisotropic object has to be filtered with an anisotropic
filter. The next part of this paper will discuss this idea.

4 The anisotropic wavelet analysis

We now show the influence of the azimut (# angle) in an
anisotropic analysis. Consider Fig. 6, with 2 segments
of equal length, striking in directions defining a right
angle. Each segment is 32 pixels long. 'The analyzing
wavelet is now the anisotropic Mexican Ilat (equation
(4)), with @ = 4 and ¢ = 2. Fig. 7a and 7h show the re-
sults of two different analyses: one with 8 = 0 (the long
axis of the wavelet horizontal), the other with # = 7/2
(the long axis vertical). An inspection of the result leads
us to the conclusion that in each case the segment cor-
responding to the wavelet azimut is highlighted, relative
to the other. For a similar analysis, see also the work
of Antoine (1992). We have also checked the behaviour
of the wavelet coeflicient at the center of a segment as a
function of & (the azimut of the wavelet is kept equal to
that of the segment}. The wavelet coefficient reaches its
maximum when wavelet’s size corresponds to the length
of the segment (sec also Section 2). This encourages
us to think that, in a nonstationary signal, cach point
must be associated with a specific filter that gives an
optimal response. In our problem, this filter has size
and orientation specifications that can vary from point

Fig. 4: Synthetic en échelon fractures.

to point. These specifications correspond in fact to the
size and orientation of the structures surrounding each
point of the signal. Moreover, simple arithmetics lead
us to a dramatic material situation: imagine we fix the
small axis scale (that we will now call the resolulion
scale). We want to perform wavelet analysis for ten dif-
ferent long axis scales (now called infegration scale) and
twenty different azimuts. This leads us to the setting up
of 200 maps that we wili have to compare, correlate, syn-
thetize ... ete ... This huge quantity of data that needs
to be processed is the main reason why the anisotropic
wavelet transform is rarely used. Now, with the argu-
ments developed at the end of Seclion 3 in mind, we pro-
pose a method to express all the information produced
by an anisotropic analysis. The next section deals with
a new algorithm based on filter optimization concepts:
the Optimum Anisotropic Wavelet Coefficient Method.

5 The Optimum Anisotropic Wavelet Coeffi-
cient Method

The ideas and concepts described above lead us directly
to our main topic, the definition of a new procedure of
optimized local filtering. This procedure is the follow-
ing:

(1} we choose the resolution scale (i.e. a);

(2) we impose the bounds of the possible integration
scales (i.e. oa) to be used. These bounds generally
correspond to the sampling scale and to the size of the
signal;

(3) we make the integration scale vary by steps equal
to the resolution scale, while the azimuth # is varicd from
0 to 7 in steps of g5 (the azimut is the angle between
the long axis of the wavelet and the Oz axis). A wavelet
coefficient map is computed for each combination (#,0);

(4) we select for each point of the signal the great-
est wavelet coefficient obtained in the computed maps:
the Optimum Anisciropic Wavelet Coefficient. This
gives us a kind of maximum contrast map. Moreover,
each OAWC is assoctated with an optimum computa-
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Fig. 5: Isotropic wavelet analysis of Fig. 4 (reproduced in 5a). Scales of analysis are respectivelely a = 2(b),4(c), 8(d), 16(e) and 32(f)
pixels. Wavelet coefficients have been rescaled between 0 (white) and 1 (darkest grey).
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Fig. 6: Segments defining normal directions that are used for
wavelet analysis presented in Fig. 7a and 7b. Each segment is
100 pixels long.

tion wavelet, whose azimuth is known. This azimmuth
corresponds to the orientation of the detected structure
around the computation point, at the given resolution;

(5) we threshold our OAWC map in order to keep
only the most significant features. We draw the crest
lines of the remaining parts of the map, which we as-
sume to correspond with the axis of the main detected
structures. In the case of fault arrays, these lines could
correspond to the faults we would see on a map, at a
coarser resolution. We will call them Virtual Rupture
Lines.

{6) the last step allows us to bring one of the most
original contribution of this method to the description
of the multiscale behaviour of signals. Indeed, we are
now able to compute an histogram of the azimuths of
the optimal wavelets associated to the points belonging
to the VRL’s. This is what geologists call rose diagrams
when they deal with fractures. These rose diagrams
then give us a general view of the anisotropy of our
fields, and the variation of this anisotropy with scale.
To avoid ambiguity, we specify that if a selected point

Fig. Ta: Anisotropic wavelet analysis of Fig. 6, with ¢« = 4 and
o = 2. The azimuth of the wavelet is 0 such that the long axis
is horizontal. Wavelet coefficients arc rescaled to fit the interval
between 0 (white} and 1 (darkest grey).

is assoclated to an isotropic wavelet, no orientation is
assigned.

Thus, we can see that this method builds an optimized
summary of the signal at any given analyzing scale. The
idea is that il a ’renormalized’ rose diagram undergoes a
sharp modification around a given scale, then this scale
contains important information about the growth pro-
cess of the fault pattern. When such a scale is detecled,
we perform new analyses, following a dichotomy prin-
ciple, to determine its value with better accuracy. In
principle, the method defined above can be applied to
any kind of signal and the dimensionnality of the prob-
lern can also be extended (to 3D or more). However, the
computation time could become a limiting factor.

6 Multifractal analysis

The concept of multifractality allows the statistical de-
scription of self-similar measures (Halsey et al, 1986),
that are measures displaying scale-invariance. Consider
a measure u(z,y) distributed on a domain of linear di-
mension L. We cover this domain by a regular grid of
mesh size € and define the weight p; of the box ¢ as:

pile) = S Joor i 1l y)dady
H f fwhol'e space }U'(.’Jf, y)d;rdy

i varies from 1 to N(¢), where N(e) is the number of
non-cmpty boxes at scale e. We can define the ¢'P-order
moments of the distribution p;. These are:

(5)

N(2)

My(c) =Y pi(e)? (6)
k=1

where ¢ is an arbitrary real number. Then, we can
define a set of generulized fractal dimensions D; as:

1 Log(My(e))
Log(e)

(7)

qulimq_l

Fig. 7b: Anisotropic wavelet analysis of Fig. 6, with ¢ = 4 and
¢ = 2. The azimuth of the wavelet is 7/2 such that the long
axis is vertical. Wavelet coefficients are rescaled to fit the interval
between 0 (white)} and 1 (darkest grey).



One can check that for ¢ = 0, one recovers the cepac-
ity dimension of the measure, that characterizes only the
geometry of the support of the measure, When ¢ = 1,
one obtains the information dimension, thal expresses
the rate of information we lose on the measurc as we
inspect 1t with higher resolutions. The case ¢ = 2 de-
fines the corrclation dimension. Onc can show that 13,
1s a decreasing function of g, except when the measure
is homogeneously distributed over its fractal support:
Dy, is then a single-valued function, equal to the fractal
dimension of the support. Varying ¢ allows one to de-
scribe the heterogeneity of the measure. For cxample, a
farge positive value of ¢ will give information about the
densest boxes. On the other hand, a high modulus hut
negative value of ¢ will give information about the less
dense hoxes.

The next step is to define the multifractal spectrum of
a measure. Returning to equation (5), a homogeneous
fractal set is a set where the quantity p;(e) varies as
e~P0 where [ is the fractal dimension. A multifractal
set 1s a set such that p;(e) varies as ¢*, where alpha is
a local quantity, r.e. is allowed to vary from box to box
and is called the singularity strength. A simple Legendre
transform can be used to derive « and f(«) {that will
be defined below) from the (g, D;) pairs:

alg) = -j—q[(q ~1)D,] (8a)

Fflalg)) = qolq) — (g — 1D, (8b)

where f(a) is the capacity dimension of the set of
polnts of singularity strength «. In lact, f(a(q)) is the
capacity dimension of the set of boxes that give the high-
est contribution to M,(¢). The mullifractal spectrum
possesses several geometrical propertics that can be de-
duced from the Legendre transform (Mandelbrot, 198%).
First, the line of slope ¢ that is tangent to the spec-
trum touches it at the point (a(g), f(x{g))). For g = 0,
one obtains f(a) = Dg. As the slope of the spectrum
vanishes and changes of sign at ¢ = 0, the spectram
reaches its maximum at («(0), Dg). The spectrum is
thus concave. The intercept with the ordinate axis of
the tangent of slope g is (1 — ¢)1,, and Dy is cqual to
the coordinates of the intersection point between this
tangent and the line of equation f(a) = o. This yields
fle{1)) = (1) = D;." The spectrum is sufficient. to
deseribe a multifractal measure.

A classical multifractal analysis consists in estimating
the sums (6), that will yleld the 12,’s through equation
(7). Then, using the Legendre transform (8a and 8b),
one is able to compute the whole multifractal spectrum.
However, as the sums (6) are estimated only for a lim-
ited number of discrete values of ¢, the Legendre trans-
form necessitates the function Dy, to be inlerpolated as a
function of ¢ between the computed points. The deriva-
tion of a(gq), hence of f(a(g)), will then depend on the
procedure adopted for such an interpolation. This is

165

why we will use a method, originally proposed by Roux
and Hansen (1990), that allows a direct estimation of «,
without using the Legendre transform (8a). Consider
the ¢** order moment as defined in equation (6):

N{e) ‘
My(e) = D p} ~ =100 (9)
i=]

Let L,(¢) be defined by:

Nie)

Ly(e) = %qu =5 ) Logp())  (10)

i=1

We have also, by definition:

L&) ~ Myl = DDJLogte) (1)
that is:
Ly(6) ~ My (c)ar(g) Log(e) (12)

which yields:

~ L Ly(e)
Log(e) M, (e)

a(g) (13)

Thus, through simple linear regression analyses, equa-
tion (7) gives us 1), whereas equation (13) yields «(q)
after computation of sum (10}). Finally, equation (8b)
allows to compute f{a).

We must realize, however, that the above develop-
ment is purely theoretical. Accurate determinalions of
the spectrum can be obtained if the measure does not
suffer lacunarity. Lacunarity is known to induce nu-
merical instabilities lor negative values of ¢ since they
focuse on sparse regions, which are the most suscepti-
ble to noise and poor statistics. Indeed, large negative
¢'s characterize the poorest areas of the measure, that,
in practice, often suffer from undersampling. This also
generates spurions results, and this is the reason why
we will consider only positive values of ¢.

There is another source of spurious results. We tested
the multifractal tool on several synthetic sets of known
multifractal spectrum, deterministic (like the Cantor
dust) or stochastic (Lévy {lights) and found values of
Dy and «(g) within 0.05 to the theoretical values. The
values of f(«r), however, could be very far from the ex-
actly known value. A simple error analysis of equation
(8b) explains this. Using A to denote the error, we get:

Alf(e)) = lglAlal(g)) + g ~1]A(D;)  (14)
Assuming that A(D,) = A{a{y)) = 0.05, one obtains
(for g > 1):

1

Af(ala)) = 22 (15)



166

Fig. 8a: Hypothetical original network.

When ¢ = 2, the error is 0.15, whereas it rcaches 0.65
when ¢ = 7. Thus we can see that great care must be
taken before computing f(«), even if the corresponding
D, and « are known with a high accuracy. Later in this
paper, we will focus only on the values of Dy and a(yg).

A final point concerning multifractal analysis is the
influence of the finite size of the sets we have to study,
as well as the influence of their irregular sampling ge-
ometry. Consider a [aull system such as one of those
presented in Fig. 2. The measure p(x,y) is the Dirac
function on the fault traces, and 0 anywhere else. The
multifractal analysis we described can be applied but
wil] suffer from the fact that the number of faulls on a
map Is limited, mainly by the resolution of the original
document, but also by the size of the field, whose nspec-
tion is time-consuming. As every finite size population
induces biases into the statistical estimators developed
to describe it, the same also holds truc for the multi-
fractal formalism. Some tests on finite-size synthetics
showed that this effect was more pronounced as ¢ in-
creased. The measured values of Iy and o tend to be
lower than the theoretical values. In the same way, if
the sampling arca posscsscs irregular houndaries, the
computation is also biased. Examine Fig. 8a which rep-
resents an hypothetical fault network that is perflectly
exposed. Now, imagine that some sand is deposited
on the area. Fig. 8b represents the fault network that
is now observable. As some faults are now hidden (at
least partly) on the edges and in the center of the field,
a spatial analysis will be biased. The mcthod we pro-
pose, in the spirit of the work of Bauer et al (1993),
s to compare two fault sets. The first one is the real
fault network, affected by edges and finite population
effects (Fig. 8b). We suppose here that we are able to
define the positions and the sizes of the masks that hide
some faults. The second is a random network. This
network is generated as follows: we take each apparent
fault of network 8b and place it at random. However,
the faults conserve their lengths and orientations, but
must avoid the masks {see Fig. 9). Thus, we argue that
this new network is a randoin network that suffers the

Fig. 8b: Same network as in 8a, except that some sand has de-
posited over it, thus creating masks that will bias the multifractal
analysis.

same censorships and finite size effects than the original
one. So, if the D,;’s and «’s we measure on the original
network equal those of the random one, we can conclude
that the original one was random itself. The theoreti-
cal formalism is the lollowing: let M,’s be the ¢** order
moments for the original network. Let M7 be the i
order moments for the random network. We have:

1 é$Log{M,{e))

D, = 16
f 7 g—1  $Logle) (16a)
s Log( M}
D* - l Og( q(€)) (16b)
9 ¢g—1 $&Log(e)

The theoretical values of the generalized fractal di-
mensions of the random network are, by definition:

Dyen =+ (17)

The problem is now to estimate the theoretical gener-
alized dimensions D, ;; of the real network. Let be c.5f
such that:

e o L 81og(M](eess))
TOt T g — 1 dLog(cers)

(18)

Fig. 9: Randomized version of the network presented in 8b.



Note that ¢.;¢ can be a non-trivial function of ¢, €eff
introduces a kind of distorted measure that allows to
suppress edge and finite size effects. So, Dy:p must

verify:
1 8Log(My(eess))
D — 19 g ]9
gt g—1 éLogleasy) (19)
Together, (18) and (19) yield:
Diy 6Log(M](cers))
That is:
éLog(Mq(eE”))
D =2—F il 21
g,th 5M;(€eff) ( )

As now €,55 is a dummy variable, we can replace it
by €

&Log(M,(€))

Dyin=2
¢t TS Log(M (<))

(22)

Thus, a simple representation of Log(M; (¢)) versus
Log{M,(¢)) will yield the unbiased 13, ;5 of the real net-
work. Using equation (22), one can check that if the
real network is itself random, then all Dy 4,’s equal 2, A
similar formulation can be done for the a’s. Recently,
Walsh and Wattcrson (1993) became aware of the prob-
lem of sampling in an irregular domain. They proposed
a method that we will not detail here. Note, however,
that their method does not take account of finite size
effects and that it a priori reduces the range of scales of
the analysis. On the other hand, Eneva (1994) proposes
a technique close to our’s to study earthquakes cata-
logs. However, the correction she applies to the dimen-
sions she determines is additive whereas our correction
is multiplicative and theoretically founded.

Of course, scaling relationships will often be valid only
in a limited range of scales (sec Fig. 10). In our study,
the largest one will always be the size of the studied map
and is not of interest. On the other hand, we argue that
the small one is of primary importance, as it defines a
physical boundary of a certain kind of behaviour. It will
then be considered as a characteristic scale that affects
the growth of our fault patéern. However, one could
argue that this inner scale is simply due to the finite
resolution of sampling. We have therefore checked with
the multifractal analysis as well as the wavelet analysis
for each map, that the detected tramsition scales are
always greater than the reselution of that map.

7 Maultiscale analysis of the data

The aim of this paper is to show thal we are able to de-
tect and characterize transition scales that exist in the
fracturing of a continental plate. This can be done by
couphing the wavelet and multifractal analysis. First, we
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Fig. 10: Typical behaviour of M, (¢} in a Log -~ Log plot. Black
circles represent points that belong to the scaling regime. The
scale limit between white and black circles defines an inner scale
that can be interpreted as a characteristic scale for the physics of
the system under study.

check that this method is relevant by testing it on the
synthetic example of en échelons fractures, as defined
in Section 3. Fig. 11 represents an OAWC analysis of
Fig. 4 at resclutions of 2 and 4 pixels. At scale 2 pixels,
the Virtual Rupture Lines mimic perfectly the original
network, as do the rose diagram. At the 4 pixels scale,
there is only one VRI, left, that strikes N45E, as doces
now the rose diagram. Thus, our wavelet method works,
allowing us to recover macroscopic propertics from mi-
croscopic ones. A multifractal analysis was performed
on the same data set. We present resulls only for g
{Fig. 12). At both large and small scales Dy = 1, but
the existence of a transition scale between both regimes
can be clearly observed. Note that this scale is identi-
cal to the scale at which we observed a rotation with
the OAWC analysis. Thus, while a multifractal analy-
sis allows to detect the existence of a transition scale,
the wavclet analysis allows us to characterize it by the
existence of a possible rotation of the structures. This
example is trivial, but, when applied Lo more complex
networks, the analysis yields useful results. It is possible
that transitions scales will be detected by one method
and not by the other. As a fracture network seems to he
characterized by two main parameters (¢.e local density
and orientation), our method should be able to detect
these main characteristic scales.

We now present our results obtained on real fault
networks in Fig. 2. Map III was not studied in its
entirety (see Fig. 13a). We selected the northeastern
corner, to avold the influence of the sand-filled graben
striking N135E which hides some faults. This is done
because, in contrast to the multifractal analysis, the
wavelet analysis is unable to take account of such a bias.
In the selected domain, at this scale, the probability
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Fig. 11: OAWC analysis of Fig. 4. Case a represents the original signal with its *microscopical’ rose diagram on its right. Cases b and
c stand for analyses at scales of 2 and 4 pixels repectively, Case b reveals no change when compared to case a. On the contrary, case ¢
shows a sharp rotation of the structure, as revealed by the rose diagram. The transition scale detected here is 4x2.2 9 pixels. Virtual
Rupture Lines are drawn in black, whereas wavelet coefficients have been rescaled between 0 (white) and 1 (darkest. grey).
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Fig. 12: Box-counting multifractal analysis of Fig. 4 for ¢ = 0. ¢
is given in pixels, to allow comparisons with Fig. 11. The large-
scale regime (grey circles) gives a slope of -1, Thus Dy = 1. The
small-scaleregime (black circles) also yields Dy = 1, However, one
can note a small ’jump’ between both regimes, at a scale slightly
greater than 8 pixels. This scale corrclates very well with the one
discovered in Fig. 11.

to find a similar graben is quite low. We thus argue
that the northeastern corner is more representative of
the fracture regime of the Arabian Plate at the scale of
1 : 62,500 than is the whole map. In the same way,
Map II was studied only in the square which is shown
in Fig. 13b, located in the middle of Map II. Finally,
Map VI was not analyzed directly but will serve as a
relerence to illustrate the uscfulness and power of our
wavclet analysis on real data. In ovder to avoid to over-
lengthen this paper, all figures concerning multifractal
exponents determination and anisotropy changes were
not, reproduced here but are available in Quillon (1995).

Map I this map is concerned with jointing. Both
wavelet and multifractal analyses gave a transition scale
of about 1 to 1.8m. The multifractal analysis also
showed that above this scale, IJ,'s as well as a’s are
equal lo 2, ¢.e. fracturing is a spatially homogeneous
process. Below this scale, and down to lem, the struc-
ture seems more complex (see Fig. 2) but cannot he
described by a self-similar hehaviour.

Map IT: here again, we analyse jointing. The tran-
sition scales we obtained are very close Lo the cne ob-
tained in Map I (about 1.6m (multifractal) and 1.8m
(wavelet)). Above this scale, all the critical exponents
equal 2.

Map IIT. the structures we see now are faults. All the
critical exponents are still cqual to 2, down to the char-
acteristic scale of 600m. TFig. [4a shows a comparison
between exponents cbtained with a elassical multifrac-
tal analysis and exponents obtained with our de-biasing
analysis. Asone can see, without "de-biasing’, one would

169

LAY NN
%\ Z\\\‘?\@
\_ AN
N2 aNAS
N \\W
\ \\\ /-A

RPN

s

Fig. 13a: Part of Map [II that was rctained for analysis (see text).
Tt fits with the northeastern corner of Map IIL. Tts linear size is
5, 500m.

Lave wrongly concluded the existence of multifractality.
Note that the wavelet analysis reveals a transition scale
of T00m.

Map TV: here again, we are dealing with faults. T'he
wavelet analysis reveals a scale of 6.5km. The multifrac-
tal analysis yields a scale of 6k, but now the critical
exponents are decreasing functions of q. We thus have
evidence of multifractality, thal is heterogeneity in the
[raclure regime. It is interesting to note that Dy = 2,
whercas D, and «(q) seem to tend Lo 1.75 when q tends
towards large values,

Map V: this map is also concerned with faunlting. Fig.
15 shows the results of the OAWC analysis at resolutions
of 2,4, 8, 16 and 32 pixels. This yields two transition
scales: 2Lkm and 43km. The multifractal analysis yields
a third scale of 12km, Above this scale, we observe
multifractality. We still have I}y = 2, whereas now 1,
and «(g) seem to tend to 1.75 when ¢ gets large. Fig
14b allows tlie comparison between biased and unbiased
determinations of o(q).

Figure 16 presents an interpretation of the area cov-
ered by Map V using a satellite picture at the 1

Fig. 13b: Part of Map I that was used for analysis. 1t fits with
the central part of Map IL Iis linear sizc is 25.8m.
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Fig. 14a: o values as a function of ¢ for Map [1L. Circles are for
exponents corrected for sampling effects, squares for uncorrected
ones. In the uncorrected case, o varies with g, thus suggesting
some multifractality. Clorrection for sampling bias reveals that o
is constant with ¢, thus that the set is homogeneous. The figure,
for the sake of clarity, deals only with a limited range of 4.

1,000,000 scale (that is the zone located in the dashed
frame in Map VI). As Map V was initially at the
1:250,000scale, a 2 pixcls analysis should be equivalent
to the satellite imagery. VRL’s determined at 2 pixels
(see Fig. 15, case b, but also presented on Fig. 16) are
in good agreement with faults of the top of Fig. 16. We
can also note the good agreement between both rose
diagrams. This shows that the OAWC method offers
a reliable and ohjective tool to analyze complex fault
patterns at different scales.

A geological interpretation of this quantitative analy-
sis will be presented in Section 9.

8 Frequency-length analysis of fault traces

A complementary analysis of the data was performed
using a [requency-length analysis of fault traces. It con-
sists simply in estimating histograms relating a fault
tength [ to the number of faults with lengths comprised
bhetween { and [+ d!, denoted N(I)d!. Fig. 17 shows his-
tograms corresponding to maps I to V, in a Log — Log
representation. Map I was not analysed because of cen-
sorship effects (most of the fractures’'cut the edges of the
field) inducing bias. A linear fit was performed on each
data set to estimate the slope of the lines. Note that the
existence of a linear relationship implies the existence of
a power law for N(!), that is scale invariance:

N(Ddl ~ 7ty (23)

e was found equal to 0.9 for Map II, 1.1 for Map III
and 1.1 for Map V. For Map IV, ¢ was found equal to
2.2. However, when inspecting Map IV, we can note that
this map represents a complex fault pattern with numer-
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Fig. 14b: o« values as a function of ¢ for Map V. Circles are for
exponents corrected for sampling effects, squares for uncorrected
ones. Fven after correction, « is not constant with ¢, leading to
the conclusion that the set displays some genuine multifractality.

ous faults thal intersect and offset each other. Thus,
the digitization of the map may have caused more small
faults to be identified than actually exist, hence mecreas-
ing ¢. We can also note that the power law seems to
hold (with a constanl exponent) up to a scale of about
12km, which can be compared with the characteristic
scale discovered in Map V using the multifractal analy-
sis. Above a length of 12km, there 13 a strong deviation
from the initial power law. Due to the lack of data,
it is nol possible Lo determine the nature of this large
scale distribution: is it still a power law (with a c-value
somewhat larger than 1) or another type of behaviour 7
An exponential fit was also performed on the data set of
Map V (considering lengths greater than the resolution
of the map). The ’relaxation’ length that appeared in
the exponential was of the order of 3km. However, we do
not consider that this solution is statistically valid, since
only a few faults have a length lower than 34m on this
map. Note that our small-scale ¢ value (¢ 1) is in good
agreement with the work of other authors (Scholz and
Cowie, 1990; Gudmunsson, 1987; Villemin et Sunwoo,
1987; Sornette et al, 1993; Sornette and Davy, 1991}.

Finally, we would like to mention the implication of a
power-law distribution for our previcusly detected tran-
sition scales. A power-law unplies that the number of
faults should diverge for short lengths (equation (23)).
As can be observed in Fig. 17, for each map, there al-
ways cxists a typical length below which the number of
faults starts to decrease. We believe that 1t is a sampling
cffect: this underlines the resolution scale of the map,
below which all the faults are no longer detected. This
is why we did not consider transition scales that were
found on maps that present a larger detection threshold
(see Sections 6 and 7).
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Fig. 15: OAWC method applied to Map V. The original picture is shown in case a. Wavelet coefficients are rescaled between 0 (white)
and 1 (darkest grey). Black dots represent the VRL’s. Rose diagrams on the right are associated either with the original pattern or the
VRL’s (from b to f). Scales of analysis are respectively 2(b), 4{(c), 8{d), 16(e) and 32 (f} pixels.
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Fig. 15 (continued): A first transition occurs at 2.2¢ = 4.4 pixels, and thus constitutes an upper bound for an undefined scale. A second
transition occurs between 2.2a = 35.2 pixels and 2.20 = 70.4 pixels. A more detailed analysis in this range points the transition at
2.2a = 37.4 pixels, that is 21km.
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Fig. 16: Hand-drawing interpretation {top) of a satellite image
at the I : 1,000,000 scale. This arca is the same as the one
contained within the dashed [rame in Fig. 2, Map VI. It should
be compared to the VRL's map (bottom) of Fig. 15b. Note also
the good agreement between the two rose diagrams.

9 Discussion

The previous analyses have provided the following infor-
mations about the multiscale organization of the frac-
turing process:

(i) small scale fracturing (1m-6km): all critical expo-
nents are equal to 2, thus reflecting a spatial homogene-
ity of the fracturing proccss. Several {ransilion scales
can be found: 1m,600m,6km. The exponent of fault
length distribution is close to 1.0.

(ii) intermediate scale fracturing (8km-12km): frac-
turing is not homogeneous. Multifractality appears with
asymptotic values of [, and « that are close to 1.75,
whereas Dy is still 2.0. There are no intermediate scales,
and the fault length distribution exponent is still close
to 1.0,

(iii) lerge scale fracturing (12km-100km): multifrac-
tality holds with asymplotic exponents close to 1.75.
Transttions occur at scales of 21km and 43km. It is
not possible to fit the fault length distribution with the
same power law as hefore. If a power law still holds at
lengths greater than 12km, then ¢ must be significantly
larger than 1.

These results can be explained by considering struc-
tural data concerning the Arabian Plate crust. Field
evidence shows that the Sag Sandstone beds are only 1
to 2m thick. Drilling in the sedimentary cover showed
the thickness of the total Sag Sandstone formation to
be roughly 600m (Janjou et al, geological map in prepa-
ration; Vaslet ¢t al, 1994). Estimates suggest a total
sedimentary basin thickness of about 5km before erosion
{Janjou et al, geological map in preparation; Vaslet et al,
1994). All those thicknesses correlate well with the tran-
sitionr scales discovered in Section 7. Two other scales
can be understood when considering the thermal lay-
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Fig. 17: Deusity ditribution of fault lengths for Map II to V.
The secale is Jogarithmic for both axes. Horizontal axis is for
fault length (in meters), while vertical axis iz for the number of
[aults, Legend gives the slope of the solid lines obtained with
least-squares data fiting.

ering of a typical continental erust (Carter and I'senn,
1987). We have used Mercicr’s continental geotherm
(Mercier, 1980) to estimate the depth/temperature pro-
file in the Arabian crust, assumning that it is composed
of granite. We checked that Mercier’s geotherm was
compatible with previous heat flow measurements on
the Arabian Plate (Gettings et al, 1986; Pollack et al,
1993). The resull is presented in Fig. 18. Two estimales
are of crucial importance. First, the onset of quartz
plasticity: helow a temperature of 300°C' (Scholz, 1990;
Sibson, 1986; Tullis and Yund, 1977), the mechanical be-
haviour of quartz 1s britile, so it behaves elastically until
it reaches its rupture threshold. Above this tempera-
ture, it iz plastic, i.¢. 1t starts to flow. Second, the on-
set of feldspar plasticity. The brittle/plastic transition
temperature 18 450°C (Scholz, 1990; Sibson, 1986; Tullis
and Yund, 1977). Inspecting Fig. 18, it can be scen that
depths corresponding to both critical temperatures are
respectively 11km and 21km (close to the characteristic
scales of 12 and 21km previously determined in Sections
7 and 8). Finally, seismic experiment interpretations
(Mooney et al, 1885; Prodehl, 1985; Gettings et al, 1986;
Badri, 1¢91; Mechie et al, 1986) as well as setsmologi-
cal obscrvations (Niazi, 1968; Knopoff and Fouda, 1975;
Mokhtar and Al-Saeed, 1994} give a Mchorovicic discon-
tinuity depth (that is the boundary between the crust
and the mantle) between 35 and 45km. However, the
most recent resulls seem to favor a Moho depth slightly
greater than 40km. This fits with our last characteris-
tic scale, Using the same data, the depth of the Conrad
discontinuity {that marks the transition between the up-
per and lower crust) was found lo be 19 — 21km. From
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Fig. 18: Depth/temperature profile (solid line) expected in the
Saudi Arabian crust from Mercier’s geotherm. Full circles show
onsets of plasticity for quartz and feldspar.

a rheological point of view, thc Mohorovicic disconti-
nuity can mark an abrupt change of behaviour. Below
it, materials can be much stronger (Carter and Tsenn,
1987; Ranalli, 1987; Wilks and Carter, 1990; Chen and
Molnar, 1983), due to a change of rock type (the domi-
nant mineral species is olivine). Such a contrast depends
on many parameters, like temperature and strain rate
(Kithby and Kronenberg, 1987; Ord and Hobbs, 1989;
Ranalli, 1987), and so remains uncertain in our case.

Thus, we have shown that fracturing of a continental
plate is not a self-similar process from the centimeter
scale up to the 100 kilometer scale. Several charac-
teristic scales exist, that correlate very well with the
thicknesses of the structural units that constitute the
crust. Such a dependence was known for jointing, where
it has been observed for a long time that spacing be-
tween joints in a sedimentary layer is of the order of
the layer thickness (Pollard and Aydin, 1988; Narr and
Suppe, 1991). Tt seems that our results generalize this
observation to the multiscale rheological constitution of

the continental crust. Note that the tabular structure
of the Arabian Plate is a particularly favorable situation
for providing good data sets that allow the quantitative
analysis presented here.

We have now to provide an explanation to the mul-
tiscale behaviour of the critical exponents D, «(q) or
c.

(i) small scale fracturing: in this range, the mechani-
cal hehaviour of rocks can be considered as brittle. Sev-
eral experiments and models propose a proportionality
relationship between fracture spacing and thickness of
the fractured layer {Grolsman and Kaplan, 1994; Merzer
and Freund, 1976).Thus, as proposed by Banerdt and
Sammis (1992}, a concept of ’stress shadowing’ can be
adopted: Pollard and Segall (1987) have shown that, in
an elastic medium, a crack submitted to a tensile stress
normal to its plane was relaxing stress up to a distance
comparable to the smallest dimension of the crack. This
prevents other cracks from nucleation near the preexist-
ing crack, thus defining a kind of Elementary Volume
that is preserved from further fracturing. As allthe EV’s
have Lhe same characteristic size Il (that is the thickness
of the layer), fractures are equally spaced, thus inducing
the existence of a characteristic scale in the horizontal
plane, in the direction normal to the fracture planes, as
well as a homogeneous pattern with all multifractal ex-
ponents equal to 2. However, in the horizontal plane, in
the direction parallel to the fracture plancs, no charac-
teristic scale is present, tlus providing favorable condi-
tions to the existence of a self-similar behaviour of the
fanlt length distribution, which is a power law, with an
exponent ¢ close to 1 but whose precise value remains
unexplained (see however Sornette and Davy, 1991).

(i) intermediate scale fracturing: our considerations
on the thermal properties of the crust cause us to con-
cliude that the layers involved in this regime are charac-
terized by brittle behaviour. This explains the existence
of a characteristic scale, as well as a ¢ expouent that
does not change, and thus seems universal. The value
Dy = 2 reveals the fact that each EV is hroken. The
fact that multifractality appears implies that fracturing
is heterogencous, that is some EV’s are highly fractured,
whereas others are not, and that their relative spatial lo-
cations are not random. ‘Thus, some EV’s seem to accu-
mulate brittle strain, screening other EV’s at the same
time. The local structure of the most fractured EV's
can be inferred through the asymptotic value of a{g).
Thig value is close to 1.75, which is similar to the frac-
tal dimension of Diffusion-Limited Aggregaiion (DLA)
growth processes (Witten and Sander, 1981; Arnéodo
et al, 1992). This point is discussed later.

(iii) large seale fracturing: two different rheological
behaviours hold: between 12 and 22km, it is semi-britile
(that is quartz is flowing, while feldspar is brittle); be-
tween 12 and 43km, it 1s fully plastic. [t seems that
arguments about elastic stress relaxation around a fault



(see above) still hold, because of the existence of char-
acteristic scales. However, a power law with ¢ close to
1 does not seem to hold anymore. The disappearence
of this power law correlates very well with the change
in rheological behaviour (12km), thus indicating that
¢ = 1 should be valid only in the brittle regime. When
reaching a length of 12km, a fault thus changes its mode
of growth. In fact, as a fault grows in a more ductile
medium, part of the enhanced stress at the [ault tip
can be partly relaxed by plastic flow (mainly accomo-
dated by dislocation glide and climb), thus blunting the
fault tip (Lawn, 1993). This ultimately leads to a re-
duction of the stress concentration at the fault tip, that
tends to inhibate further growth. Thus, fault growth
speed diminishes, resulting in higher values for ¢, if a
power law still governs fault length distribution above
12km. Another explanation would be that a majority
of fault segments stop growing when they reach a crit-
ical size of 12km, because they link with neighbouring
segments. This 13 perhaps the case for the three main
grabens of Map V| striking N135E, that seem to be com-
posed of an agglomeration of smaller segments. Thus,
the 12km scale could reflect the fact that fault growth
mode changes into a linkage mode, in the spirit of perco-
lation processes. Concerning ihe multifractal exponents,
they are almost the same as those in intermediate scale
fracturing. We can then deduce that ¢ does not control
the generalized dimensions of the fault patterns. They
must be controlled by the distribution of fault barycen-
ters (Sornette et al, 1993). The asymptotic value of a{q)
ig about 1.75.

The fracture regime is very different when we consider
either the sedimentary basin or the crystalline basement.
It must be pointed out that this duality seems to concern
fracturing at every scale. Qur study shows that joini-
ing and faulting in the sedimentary basin are spatially
homogeneous processes. It also shows that faulting in
the crystalline basement seems to be a heterogeneous
process. Some data concerning jointing in crystalline
rocks indicate that it is generally heterogencous (Pol-
lard and Aydin, 1988; Martel, 1990; see also Fig. 2 and
3 in Segall and Pollard, 1983), even if this heterogeneity
has still not been {ully quantified. However, one of us
(Ouillon, 1995) finds a fractal dimension Dy of 1.45 for
joints affecting a granitic outerop in Saudi Avabia. The
scaling behaviour scems to be valid from the centimeter
scale (the size of the mineral crystals) up to the scale of
the outerop size (600m)(those results will be presented
with more details elsewhere). Thus, fracturing of the
crystalline material seems to be heterogeneous even at
small scales. A question then naturally arises: why is
fracturing of the crystalline crust heterogeneous whereas
1t is homogeneous in the sedimentary basin 7 We be-
lieve that the answer has to be found into the mechani-
cal coupling conditions within the different units. Some
detachment planes can exist at the base of the scdimen-
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tary basin, and within the basin itself (clay horizons, or
weak interfaces between beds, for instance). Then, the
basin reacts as a pile of elastic beds separated by poten-
tial delachment planes, leading to the development of
a hierarchical fracture network: each unit develops its
own pattern, at every scale we can consider, following
the stress shadowing principle. On the other hand, in
the crystalline crust, the three main layers are bound
together, so that the coupling is strong (note, however,
that the existence of characteristic scales in the crys-
talline crust can also reveal the existence of potential
detachment planes (see below)). Thus, deformation is
a competition between the localizing properties of brit-
tle deformation, and diffusion properties of the plastic
flow process. Note that it has been argued (Sornette
(1990) for instance) that this competition is analogous
to a Diffusion-Limited Aggregation growth process, gen-
erating self-similar structures ( Witten and Sander, 1981;
Aréodo et al, 1992). As quoted before, we should note
that recent developments in the study of the rheology of
the crust lead to the possible existence of more or less
well-defined detachment zones within the erust (Ord and
Hobbs, 1989). The depilhs at which such detachments
occur depend strongly on the composition of the crust,
the geothermal gradient, the tectonic environment as
well as the imposed strain rate. Thus, more detailed
invesligations are needed to evenlually correlate our
crustal characteristic scales with some possible detach-
ment zones. In addition, other recent results suggest
that the fault network organization may be even more
complicated. Numerical simulations of fault growth by
repeated earthquakes (Miltenberger et al, 1993} showed
that 2D fault growth is highly controlled by the preexist-
ing horizontal mechanical heterogeneity. This confirmed
observations of crack propagation in granite {Gentier,
1987) that showed that crack paths are not random but
correlated with the position of rock-constitutive miner-
als, which in turn are not randomly located because of
chemical thermodynamical affinities or incompatibilities
between mineral species. Finally, even in the crystalline
rocks, our study reveals that horizontal layering of the
crust also controls the morphology of the fault pattern.
Thus, complex patterns of faulting could also be, in part,
the result of a competition between horizontal disorder
and vertical structure of the crust.

To end this dicussion, we should point out that sim-
ilar results have heen found by other workers. Hatton
et al (1994) studicd the length-displacement relation-
ship of tensile fractures in the Krafla fissure swarm (NE
Iceland). Their data display about four orders of mag-
nitude in length and five orders in displacement. They
observe that two power-laws hold in different scaling
ranges. They correlate the cutoff scale (3m) with the
spacing of pre-existing cooling joints that shield stress at
a small scale, preventing small crack stress to be trans-
fered to distant mechanical grains (that are about 30em
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in size}. A crustal-scale analysis was conducted by Davy
(1993) on the San Andreas fault system. Davy com-
puted the fault length distribution of the network and
proposed a fit using a gamma law. This law behaves
at small scales as a power-law (ylelding a ¢ exponent
of 1.3). At large scales, the function bchaves as an ex-
penential, with a characteristic length of 24km. This
scale is then correlated with the thickness of the brit-
tle crust in California, inferred from the depth distribu-
tion of earthquakes. Ilowever, we must note that it is
still a matter of debate whether the maximum depth of
earthquakes is controlled by the brittle-ductile mechan-
ical transition (Sibson, 1986; Tullis and Yund, 1977), or
by the transition of slip-weakening to slip-strengthening
friction regimes (Scholz, 1990; Ord and Hobhs, 1989).

10 Conclusions

The aim of this paper was first to introduce a new
method of filtering coined the Optimal Anisolropic
Wavelet. Coeflicient method, as a usetul tool for studying
multiscale hehaviour. We have shown that this method
can give information about the anisotropic properties at
every scale. We used this method, as well as a new mul-
tifractal analysis tailored to correct for edge or finite size
cffects, to study the multiscale behaviour of several frac-
ture networks mapped in Saudi Arabia. The main result
of our work is that fracturing of a continental plate is
not a self-similar process from the centimeter scale up to
the one hundred kilometer scale. Spatial distribution of
joints and faults appears to be controlled by the thick-
nesses of the different rheological beds that constitute
the crust. From the centimeter scale up to the sedimen-
tary basin scale, fracturing 1s a spatially homogeneous
process, although displaying scale invariance in the fault
fength distribution, with an exponent that seems uni-
versal when dealing with brittle deformation processes,
At larger scales, concerned with the granitic basement,
multifractality holds. Even if fractures seem distributed
everywhere {( Dy = 2), laulting displays local singularity
strengths that are close to the one observed in homoge-
neous Diffusion-Limited Aggregation growth processes
(of fractal dimension 1.7). This feature could be the
result of the subtle competition and coupling between
the brittle behaviour of the upper crust, the semi-brittle
behaviour of the intermediate ¢tust, and the plastic be-
haviour of the lower crust. Brittleness tends to localize
deformation whereas ductile flow tends to homogenize
1t. Hawever, more work is needed to explain the values
of the critical exponents.
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