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Abstract. The statisiics of the stick-slip motion is stu-
died in two expcriments, where elasticity is distributed
either on a surface or on a volume. The rough sur-
face is realised by embedding steel spheres in an clastic
substrate whereas the volumc is constitued by several la-
vers of rubber spheres. Both systems produce a complex
dynamics characterized by power law with non-trivial
cxponents in the distribution of the amplitude of the
slipping events and in the power spectra of the friction
force time evolution. The dependence of the results on
the system size 15 also studied.

1 Introduction

solid friction has been widely considered as an impor-
tant mechanism to understand the physics of carthgu-
akes (Scholz 1990, Ticcotte 1992). Many of the mathe-
matical models , where this problem has heen studicd
can be derived by the original one of Burridge and Kna-
poft (1967), which is based on the stick slip dynamics
of blocks connected by springs, and sliding on a surface
with a given friction law ( for a recent review see Carl-
son at al. 1994). This kind of stick-slip motion has been
also studied using cellular automata ( Bak et al. 1988,
Nakanishi 1990, Crisanti et al. 1992, Olami et al. 1992,
Feder and Feder 19913, All of these models arc characte-
rized by a loading period where the system accumulates
energy and a slip period, ”the earthquake”, where part
of this energy is released. The study of these rmodels
1s uscful to understand whether it is possible to repro-
duee the Gutenberg-Richier law (G.R.) for the number
of oceurrence N of earthquakes with a given moment
E, specifically N(E) =x E~B~1. We recall that for recal
earthquakes the average value of B is around 1 . There
are only a few numerical simulations where the G-R law
1s satisflied till the maximum energy{Sousa Vieira 1992,
Knopoff at al. 1992, Olami at al. 1992). Tn gencral
the N(%), obtained from the modcls, presents an anc-
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malous peak for large E' (Carlson ct al. 1994), thal is
to say the scaling s self-similar only for small earthqu-
akes. These models are also important o investigate
the relationship of self organized criticality (SOC) with
carthquakes (Bak et ai. 1988, Sornetie and Sorneile
1989, Sornctte 1992),

In spite of the large amount of numerical data on the
above mentioned models, there are only a few labora-
tory experiments {Feder and Feder 1991, Valetle and
{(zollub 1993, Johansen et al. 1994} where the stick slip
dynamics has been tested from the point of view of its
statistical properties. In a very rccent paper ( Ciliberto
and Laroche 1994) we have deseribed an experiment on
stick slip dynamics of two rough elastic surfaces. The
underlying geophysical modecl, we had in mind, is the
same of the Burridge Knoppol model for a fault (Bur-
ridge et al. 1967), and our cxperiment has been designed
to analyse in some details the statistics of the slipping
events of an clastic system composed by many different
iteracting part. 'This system produces a dynamics si-
milar to sell organized critical state on a wide range of
conlrol parameters, namecly loading speed and pressure.
This means that both the amplitude of slip cvents , and
the time interval between them have a power law distri-
bution. We have shown that this complex behaviour is
produced by the fact thal the two elastic sliding surfaces
were constructed by many different interacting parts. In
this paper we describe an extension of this experimental
study from two different points of view. The first one
18 related Lo the minimum number of independent aspe-
rities which arc needed in order o produce a complex
behaviour.

The second point, which we want to analyse, is thal
of the inleraction of the two sliding surfaces. Indeed
in real faults, which in a certain sense could be simula-
ted by the stick-slip motion, the friction is mediated hy
the presence of many detritus of previous earthquakes.
As a consequence we have done an experiment where the
interaction of tweo very rough surfaces is mediated by se-
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veral layers of small spheres. In this paper we describe
under what conditions this system has a complex dy-
namics characterized by power law distributions with
non-trivial exponents.

The paper is organized as following. In section 2) we
describe the method used to construct the surfaces and
the geometries used. In seclion 3) we summarize the
statistical propertics of the stick-slip dvnamics of the
different geometries. We also analyse how these proper-
ties change as a lTunction of the number ol inleracling
asperitics.  The reults of the volume experiments are
described in section 4). Finally the results are discussed
in section A).

2 The experimental set up

Several experiments with different geometries and diffe-
renl surfaces have been performed. Here we described
two of them, the linear and the volume ones. Other
exarmples with rigid surfaces can be found in another
paper ( Ciliberto and Laroche 1964).

2.1 The linear experiment

In the first experimental sct up, shown in fig.la}, a linear
geometry has been used. A slide is moved at constant
speed V on a rough surface constructed with steel sphe-
res emerging of 0.5 mm from a wood plate 180 cm long
and 20 em wide. The motion of the slide is kept stra-
ight by two lateral trucks which avoid the lateral motion,
The force F{#) necessary to move the slide at constant
speed is measured by a force transducer. The transdu-
cer signal suitably amplified and filtered i1s converted
by a 18 bits A/D converter. The minimum detectable
variation of the friction force Iy is about 3 1072N.
The normal force I, acling on the surface of the slide
can be changed by modifing the weight of the slide. Se-
veral slide are used in order to study the dependence on
the system size and on the number of asperitics. onc
9.5 x 200¢m?® and the other 8.5 x 5em?. The surface
of the slide was constructed in the following way: I'irst
a reclangular hole of depth 1.5 mm is made on one of
the slide surface. The hole cover almost all the slide
surface excepl for a small frame 0.5¢m wide on the si-
des. We put inside this hole steel spheres of diameters
2 mm 1n such a way that the distance between sphere
centers was about two diameters. Finally the hole was
filled with silican rubber. In this way an artificial surface
wilh controlled rocughness and 'elasticity is constructed.
The maximum roughness is exactly 0.hmm equal to the
sphere diameter minus the depth of the groove, Further-
more each single sphere is rather free Lo move around its
equilibrium position because of the clasticity of the rub-
ber. We will call this surface soft surface to be distingu-
ished from another type of surface which has been used
in order to stndy the dynamics has a function of the

compliance of the matrix of spheres. The compliance
was changed using glues with different elasticity. These
tests have been done 1n a annular geometry ( Ciliberto
and Laroche 1994) and the results will be not discuss
here.

It is important to explain how the steel spheres aclu-
ally move. By looking al fig.1 we see that the spheres arc
touching the bottom of the plate. Thus, when a sphere
is pushed against an asperity of the opposite surface,
it cannot pass over this asperity but it can only move
transversely to the direction of the loading velocity in
order to go around the obstacle. This has been verificd
by making a transparent slide and looking from above,
with a video-camera, the motion of several spheres. "This
is useful also Lo estimate the maximum displacement of
a sphere that is about 0.2mm.

2.2 Physical properties of the surfaces and typical time
scales

The stick-slip dynamics produced by the system deseri-
bed in the previous section has been studied as a fun-
ction of the loading speed V' and of the normal forces.
The valucs of the applicd parameters must be compared
with those obtained using the physical properties of the
experiment. The mass M, of the spheres is 4- 107" Kg
and the total number of spheres N, is in between 150
and 600. The total mass My involved i1s in the range

.40y to 2Kg. With the total mass we indicate the sum

of sphere masses plus that of the slide. The Young mo-
dulus % of the rubber where spheres arc cmbedded is
5-10% N/m?. Therefore, using as a typical length scale
the sphere diameter d = 2. 107%m, the elastic constant
k= FE-dis 10°N/m, Two typical time scales can be
defined, one hased on the acceleration of M, and the
other of My: Tp = (Mp/EV?2 and T, = (M, /k)'/2
We find that 73, =~ 2- 10" %se¢ whereas Ty ~ 3 - 10~ “see.
As it will be discussed in section 3, this value of Tp
is very closed to the sliding time for the smallest events
measured on the friction force, meaning that the motion
is dominated by the total inertia. The damping time of
the oscillation of MM, and My are of the same order of
T, and Tr respectively. This means that the system 1s
over damped and oscillations are not allowed.

Another important time scale is Ty = d/V which cor-
responds to the time needed io move the plate of a cha-
racteristic length; we will see that this time corresponds
to the loading time between two very large cvents.

The measured average {riction coefficient of the arti-
ficial surface is g = (0.3 and it increascs as a function of

V.
2.3  The volume experiment
We have donc another cxperiment in order o study dif-

ferent interactions. The cross section of the experiment
is shown in fig.1b. It is constructed by two annular ro-
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Fig, 1. Experimental apparatus. a) Cross section of the linear geometry experiment; the slide is moved at constant speed V' and the
friction dependent force F is measured by a force transducer. The wood table is 180 cm long. b) Cross section of the volume experiment.
The battom, disk is moved at constant angular speed and the torgque nccessary to keep the top disk fixed Is measured.
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ugh surfaces which were preparcd similarly to the sur-
face of the slide of the lincar cxperiment described in
section 2-a. The difference is that glass spheres {4 mum
of diameter) are glued with a "stycast glue ” which once
is dryed becomes very rigid, as a consequence the sphe-
res are fixed rigidly on the disk surlaces. The bottom
disk is moved at constant angular speed © whereas the
top disk is kept fixed. The main difference with respect
to the annular experiment ( Ciliberto and Laroche 1994)
is that here, the bottom and top rough surfaces do not
touch but a gap of a few millimiters is left between them.
The two surfaces may interact by means of scveral layers
of spheres ( diameter 2Zrnm ) which fill the gap between
the two surfaces. As can be seen in fig.1b there are an
external and an internal cylindrical walls around the two
annular rough surfaces in order to confine the layers of
spheres. A strain gauge measures the lorque neccssary
to keep the top disk fixed, Furthermore a micrometric
device allows us to change the pressure with which the
two disks arc pushed one against the other.

Two different experiments were performed one with
the volume filled with steel spheres and the other with
the volume filled with rubber spheres and the results arc
discussed 1n section 3.

3  The statistical properties of stick slip

We summarize in Sect.3.1 and 3.2 the statistical pro-
perties of the stick slip dynamics in linear experiment
( more details can be found in Ciliberto and Laroche
1994). In section 3.3 we analysc instead the dependence
of results on the system size.

To analyse the stabistics of the system we first re-
cord the force £'(¢) and an example for the lincar casc
is shown in fig.2. We clearly distinguish loading cycles
where the two surfaces are stuck and F{t) increases (il
time t; where it reaches a relative maximum. At that
point the slip period begins and lasts 1l time ¢, where
F(t) reaches a relative minimum and then it begins to
increase again. We define the amplitude of the slip cvent
as ,‘W('ti) — F(Iz) - F(f(.)

We can estimate the lateral displacements of sphe-
res corresponding to the minimum My, and maximum
M pae value of M (#). We fixed Mpin at the minimum
detectable variation of the F(t), that is 3 - 107%N in
our apparatus (see Sect.2.1). Assuming thal minimum
events are produccd by only one sphere we find that
Umin = Mmin/k =3 107 %*mm which is very reasonable
value because is about 1/7 of the maximum displace-

ment we have measured with a video-camera (see Sect.2.1).

Displacements of the spheres smaller than wpin arc of
course possible but are not detected by our expermen-
tal sct up. In conlrast Mg,y = 6N, as one can sce in
fig.2. Thus Umar = Mmar /k = G, which 1s about 30
times the maximum displacement of the spheres, which
we have observed with the camera (see Sect.2.1). There-
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Fig. 2. Friction force versus time for different loading speeds.a)
V = 0.04mm/sec; b) V = 0.lmm/sec; ¢) V = t.25mm/sec.

fare one deduces that the largest events are produced by
an ensemble of at least 30 spheres, which are displaced
of about 0.2mm. This is of course rather unrcasonable
because it is more nalural to think thal many spheres,
about 100 or more, arc displaced of less than 0.2mm.
'his estimation of ty,ye and tmen, although rather qu-
alitative, is useful in order to show that small events
implies a small number of spheres whereas large events



imply a large number of asperilies. Notice that Uenin, /T
identify a characteristic sliding velocity V. ~ lmim/sec.
Indeed we will sce in the next section thal all interesting
statistical features disappear when V > V. that is when
loading spced become comparable Lo sliding speed. This
behaviour is clearly visible in fig.2c where the loading
periods lats almost the same of the sliding periods

3.1 Probability distribution of slipping event ampli-
tude

We measure the probabilily distribution function P(M)
of M finding a transition to a power law distribution for
small velocities V. At least 10* evenls have been recor-
ded to construct P(M) which is shown in Fig.3a. We
see that at high velocities P(M} presents just a large
plateau with an cxponential cut-off whereas al small ve-
locitics a power law appear with an exponcnt v which
15 increasing for decreasing V7 and il reaches the value
of about 2 for V¥ — 0. This is seen in fig.3b where the
exponents v of the power laws are reported as a fun-
ctionr of V. (the poluts corresponding to the annular
geometry deseribed in Ciliberto and Laroche 1994 are
also shown).

3.2 Power spectra

In fig.1 the power spectra of #'(¢) for two different V' arc
shown. They have been obtained as an average of 100
spectra of the I7(1) signal. We clearly see an important
differcnce in the two spectra. At high V the spectrum
is broadencd with a sharp cut off. In contrast at slow
V' the spectrum decays in f~° for at least one order of
magnitude. This means that the derivative of F'(¢) de-
cays in f~!, Indeed by looking at the shape of the signal
i fig.2a) we understand thal Lhe largest contribution to
the derivative of F'(t) is coming from the fast decrcasing
parts (the slip phase) whose amplitude M has a power
law distribution as we have seen in fig.4. We found that
for slow speeds also the probability distribution P(7) of
the time 7 between to successive events of any amplitude
15 a power law (see fig.5). Specifically for V = 0.01lem/s
P{r) = 1/7. In contrast al V = 1.25mm/sec P(7} is
simply broadened with no specific feature. Thus ane
conclude that at small V' not only P(M) has a power
taw dependence but also the power spectra and P(r).

3.3 Dependence on the system size

We have shown ({ Ciliberto and Laroche 1994) that the
cut-oft of P{M), Le. the amplitude of largest events,
depends on the normal force, and on the system size.
Furthermore we demenstrated that the statistical beha-
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b} Exponent of the power laws of #(M) as a function of the loading
speed for different normal forces and different experimental set
up (see also Ciliberto, Laroche 19941). o and A correspand to
the interaction in the disks and lincar cxperiment respectively. =
correspond to the soft-rigid case on the disk experiment.

viour is also determined by the compliance of the sphere
array, that is when the system becomes too rigid the po-
wer law distributions are destroyed.
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In this section we describe the results of some new
experiments which have been done in order to understand
how many asperitics ( steel spheres in the Jinear expe-
riment) are needed to have power law distributions. In
other words we want to know the number of degrees of
freedom in the systems which produce a complex beha-
viour. To do this we have used slides of different size and
we constructed the elastic surfaces always with the same
silicon glue keeping the same average surface density of
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spheres in all of the slides. Indeed a relevant parameter,
which controls the dynamics, is the normal force acting
an each sphere which is about F, /S, if the number of
spheres per unit area is constant (here S is the total sur-
face where the spheres are glued). 'This is the casc also in
nurmerical simulations( Carlson et al. 1994, Huang and
Turcotte 1990, de Sousa Viecira 1992, Knopoff et al 1992,
Schmitbuhl et al 1993) where the normal force acting
on each biock is onc of control parameters. In fig.6 we
compare the results at V' = 0.08cm/s obtained from two
slides of diffcrent size one contains 600 spheres and the
other 150. We have applied several normal forces. We
clearly see thal F' = Fo /N has the effect of reducing
the amplitude of the higgest events. We also notice that
for the smallest slide when F is low all power laws di-
sappear indicating that the degrees of freedom are not
so large in order to construct power laws. Furthermore
the large system produce power laws cven for F smal-
ler than the maximum used in the small slide. Thus ene
deduces that the smallest is F,, the largest should be the
number of spheres in order 1o get the complex behavieur
thal we have discusscd scctions 3a,3b. We want alsc to
stress that the limit of 150 spheres and F, = 04N is al-
most the experimental limit because below this valie of
I, the slide is just jumping over the asperities without
producing the stick slip motion.

Finally we have checked that the dependence on the
system gize, and on F of the maximum evenis M an
1s roughly: M. o N, F. This cquation has been
obtained by defining M., as the value of M where

log P(Mmaz}] = —4.

4  The volume interaction

The idea was lo check whether the stick slip dynamics
could produce a complex behaviour, also when the in-
teractions between the two sliding surfaces is done by
means of a deforming volume. This experiment is cer-
tainly more close (o the reality of the faults because the
coupling laycrs can be scen has the detritus formed by
the previuos slips. Furthermore elastic waves can pro-
pagate also in the interaction volume, which is not the
case when the coupling between the two sliding surfaces
is direct. Using the experimental configuration descri-
bed in Sect. 2.2 we have performed two experiments one
with the gap between the two surfaces filled with steel
spheres the other with rubher spheres, that is to say
with a small and with a large compliance. In both cases
four layers of spheres has been inserted.

4.1  Rubbecr sphere coupling

The Young modulus E of the rubber spheres was about
7 10°N/m?. Thercfore using as a typical length scale
de spheres diameter d = dvnrn, we get for the elastic
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constant k = E d = 28 103N /m. "The typical time scales
involved the total mass of the spheres and those of the
disk, that is about 2K g. For the relaxation lime we get
Tr = (Mg /E)Y2. that is 75 = 8 10735 which is about
four times smaller than these for the linear experiment.
However the sliping time where determincd mainly by
the eclastic joint inslalled on the axis of the fixed disk.
This joint had an clastic constant &' = 103N/m. Thus
the sliding time was very close to that computed for the
lincar experiment, and to those experimentally found in
this volume experiment.

We do not show any piot for this experiment, because
the dynamics of I7({) is very close to that described in
Sect.3 for the lincar cxperiment. Indeed we observe that
not only P(M) is a power law but for slow loading spe-
eds, but also the spectrum of F(¢) has a power law f~3.

1.2 Steel sphere coupling

In this casc the more elastic point of all the system is
the elastic joint on the axis of the fixed disk. Thus the
system has the same 77 . However duc to the very small
compliance of the coupling system, the dynamics of F(¢)
is very different in this case. Indeed for very slow lo-
ading speed (M) has a power law but the shape of the
curve 1s different as it can be scen in fig.7. This power
law distribution disappears if the velocity is increasced.
Furthermore the spectra of F(¢) has a trivial behaviour
because it decays in f~2. Spectra taken at two different
speeds in the volume experiments are reportled in fig. 8.
We clearly see that the spectrum a) has a behaviour as
£

One of the possible rcasons of different behaviours
of the systemn filled with steel spheres and the one fil-
led with rubber sphere is in the different arrangement
of the spheres after many revolution of the disk. In-
deed the steet spheres pile up forming regular array. In
contrast rubber spheres, as they can deform, keep a ran-
dom <istribution during the dynamies.

The conclusion of these checks in the volume 1s that
a complex dynamics is produced in a systemns where the
elasticity is distributed among many degrees of freedom.

5 Discussion and conclusions

In this paper we have extended the experimental results,
described in a previous paper (Ciliberto and Laroche
1994), on the stick slip dynamics, produced by the fri-
ction of elastic surfaces which have an artificial and well
defined roughness made of stecl spheres. When one of
these surfaces is moved on a similar one ( where sphe-
res can be embedded in a soft or rigid gluce), the sphe-
res produce local mteractions which are elastically co-
upled among them. Specifically, when the loading speed
tends to zero the dynamics presents, for a wide range of
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the control parameters, a complex dynamics. Indeed
the event size distributions has a power law dependence
with a cut-oflf which is a function of the system sise.
The frequency power spectra of the friction force decay
algebraically with a non trivial exponent showing that
the time cvolution of the force is just the integral of a
1/f noise. These features are similar to those presen-
ted by a sclf organived similar state, however it is dif-
ficult to conclude if this system can be included within
those presenting SOC. Indeced we have seen that in our
system as in many numerical ones, which present SOC,
two control parameters must be changed in order to pro-
duce the complex behaviour. Specifically in Sect.3.1,3.2
, we have seen thal these two paramectors are the number
of asperitics and the normal force. The latter is parti-
cularly important in our experiment, because it chan-
ges the interaction between the different asperities, thus
producing large displacements of the spheres. In any
case if one uses the general conditions for a system to
evolve into SOC (R. Cafiero el al. 1995), one can state
that the dynamics here described is cerlainly close to
SOC, if the syslems is composed by many different in-
teracting parts.

In this paper we have also analysed a casc where the
two sliding surfaces arc coupled by mean of several layers
of spheres. If the coupling is done with rubber spheres
the above mentioned complex behaviour s reproduce.
In contrast when the layers are made of steel spheres
the powers spectra have decay in f~2.

The rclevance of these kind of experiments in the
study of earthquake statistics is doubtful, because fri-
ction is just an aspect of earthquakes{ Scholz 1990, Sor-
nette 1492). In contrast these experimenis and the as-
soclaled models can be more useful for understanding
friction laws. In any case we have noticed in section 3
that the value of B obtained by the exponent v of the
power law in P(M) is 0.5 < B < 1 as for earthquakes.
A more precise relationship between B and v can he
found by measuring the local displacement of the steel
spheres, this will be also very important to study the
mechanisms of friction laws.

As a conclusion, the most important result of this pa-
per is that a very complex dynamics with many teatu-
res of sclf organized criticality can be produced by the
stick-slip dynamics provided that the system, either 3
or 2 dimensional, is composed by many different intera-
cting parts and that the Ioading period is much smaller
than the characteristic times of the system defined in
terms of clastic constants. There were a fow numerical
examples in ene and two dimensions ( de Sousa Vie-
ira 1992, Knopofl et al. 1992, Olami et al. 1992) where
this has been shown but no clear experimental evidences
that this could be ohtained on a laboratory scale.
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