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Abstract. Using a stochastic model, we simulate the
process of dieleetric breakdown in the atmesphere and
calculate the fractal dimension of 3-ditmensional light-
ning patterns. Finite-size effects have been studied.
The projections of our paftterns on vertical planes fit
the experimental fractal dimension obtained from pho-
tographic analysis. This work is inspired by a previous
work by A.A. Tsonis.

1 Introduction

In this paper we apply the stochastic dielectric break-
down {DB) model (Niemeyer et al., 1984) to describe
the geometric structure of lightning discharge in the at-
mosphere. As is known, the branched structure of light-
ning is due to the zig-zag progress of the stepped leader
searching for the most favourable (weakest) path from
a cloud to the ground (or vice versa). This branched
ionized channel is strongly illuminated almost immedi-
ately during the return stroke, allowing a plot of the
luminous image to be obtained. For delails the reader
is referred to, for example, Uman {1969, and 1987) or to
Houghton (19885). In a first paper on this subject, Tso-
nis and Elsner (1987) and Tsonis (1991} analyzed a set
of lightning photographs (Salanave, 1980) and deduced
that the average fractal dimension of the lightning im-
ages is Dp ~ 1.34 £0.05.(Note that we use the subscript
p to emphasize that it refers to a projected image)}. With
this observation, flashes of lightning entered into the al-
ready wide subject of applications of [ractals to natural
phenomena, (Maudelbrot,1983). Then, Tsonis {1991)
built a simple DB model in 2 dimensions in order to re-
produce the guantitative fractal behaviour cbserved in
the photographs.

As mentioned above, the stochastic DB model, its re-
lation to the physics of dielectric breakdown in gases
{Meek and Graggs, 1978), and its relation to the Diffu-
ston Limited Aggregation schemes has been developed
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by Niemeyer et al. (1984). See also the references con-
tained in Pietronero and Tosatti {Eds.) (1988). In the
DB model one plays with a parameter, 7, which fixes
the dependence of the growth probability on the local
electric field. For a discussion on this parameter see
Pietronero and Wiesmann (1988). As a lightning dis-
charge is actually a 3-dimensional (3D thereafter) phe-
nomenon, here we apply a DB model, a {a Tsonis, but
building 3D simulations of lightning patterns. We con-
clide that the value D, ~ 1.34 observed in photos of
lightning irmnplies a much bigger value for n, than that
deduced in the previous 2D calculations.

The structure of this paper is as follows. In Section 2
we give the details of how to simulate the lightning pat-
terns. Section 3 is devoted to the presentation and dis-
cussion of the results obtained lor the average 3D fractal
dimension, 1}, as well as the average fractal dimension
of the vertical projection, f?p. All these results are ob-
tained as a function of n. The importance of finite-size
effccts is also tested. Finally in Section 4 we state our
conclusions, and make a short critical discussion.

2 3-Dimensional Dielectric Breakdown Model

As mentioned, the method followed here to build the
spatial structure of a lightning discharge is based on
the stochastic fractal model proposed by Niemeyer et
al. (1984) to simulate the dielcctric breakdown in gases,
We build lightning patterns confined in a parallelepi-
pedic box, Fig. 1, with electrostatic potential ¢ = 0
in the upper face (which simulates the cloud base) and
¢ = 1 in the lower face (which simulates the ground).
With regards to the lateral faces of the box we assume,
with Tsonis (1991}, that ¢ verifies there periodic bound-
ary conditions. The volume contained within the box is
discretized into a 60x 100x100 cubic lattice. Only the
central site of the top face (Al in Fig. 1), is assumed to
be able ta initiate the discharge. With the mentioned
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Fig. 1. 3D model used to simulate lightning discharge. The point
A1 marks the start of the electric breakdown, which extends to
the black circle A2; the broken site is linked by a thick solid line.
The open circles indicate the possible subsequent growth sites.

boundary conditions, the electric potential at any point
of the lattice fulfils Laplace’s equation V3¢ = 0. On a
3D lattice, this condition is enforced by iterating until
we obtain convergent results in the equation:

160+ 1,,8) + 60 = 1,4,) +
P, j+ L E)+ (i, -1, k) +

$li, 5, k) =

Once the value of ¢ is known everywhere in the box
(that is, in all the sites of the lattice), all the nearest
neighbours to the point Al are then considered as pos-
sible candidates to continue the discharge and one of
them will eventually be added to the growing lightning
pattern. Tn Fig. 1, the candidates are indicated by open
circles and the existing pattern by black lines joining
black circles. In step 1 there is only 1 candidate, Thus,
point A2 is directly added to the pattern, and hence A2
forms part of the ¢ = 0 equipotential region. In step
2 one again solves Laplace’s equation on the lattice us-
ing the new pattern as a new boundary condition. The
number of possible candidate sites in step 2 is five and
each of them is assumed to have the probability of being
added to the growing cluster’indicated by the equation

n
P, = &

i
E?:l qé:]

where n is the number of candidate sites in each step; in
this case n = 5. [According to Bq. 2, n parametrizes the
relation existing between the local electric field and the
probability of dielectric breaking in that site]. In this
form, at each step of the growing process a probabil-
ity distribution is defined for the set of candidate sites.
'Then, one point is randomly selected and added to the

(i=1,..n), @)

pattern. This procedure is repeated until the lightning
pattern descends to the ground plane.

From the technical point of view, the iteration un-
til convergence of Eq. 1 is the most demanding part of
the whole process. If one uses standard relaxation tech-
nigues, a more convenient form for Eq. 1 is the following
(Carnahan et al., 1977}

¢(i,5,k) = ¢(ij,k)+

%[¢(i+ 1,4, k) + (i — 1,5,k)+
Bep(4, 4, k)], (3)

where w plays the role of a convergence parameter. For
w = 1, we recover Eq. 1. We have numerically checked
that w ~ 1.6 increases considerably the speed of conver-
gence of the whole process, and about 15 iterations are
enough, on an average, to reduce the relative error to
less than 0.001. In contrast, with w = 1 the nurber of
necessary iterations doubles or even triples. We should
add in this respect that the use of the w parameter not
only speeds up the process of convergence but also re-
duces the final global error. As said before, when a new
point is added to the growing pattern, Laplace’s equa-
tion has to be solved with the new boundary condition.
To speed up this process even more, we have used a sec-
ond computational trick consisting in solving first Eq. 3
for the sites of a 6x6x6 cube centred in the new added
point. Once the 0.1% convergence criterion is reached
for this subsystem (this takes, say, 15 iterations), we
proceed to solve the total system. The convergence now
typically demands b steps for n = 2 and 10 steps for 7 =
9. The obvious reason for using this additional trick is
that the changes in ¢, after the addition of a new point
to the pattern, are particularly strong in the surround-
ing of the new added point, whilst the effect declines
quickly with distance.

Fq. 2 also deserves a comment. When one performs
the sum in the denominator to normalize the respective
probabilities, one should be careful to avoid rounding
errors. This can be avoided by summing up the various
terms in ascending order. If this is not taken into ac-
count, the introduced errors are large even in the case
of small #’s.

To give an impression of the CPU times involved in
these simulations, we will mention that each simula-
tion, for n = 2, of patterns involving from about 900
to 1600 points takes between 5.5 and 10 hours of CPU
on a CONVEX C210 computer. Whereas patterns of
120 points, forp = ¢, take about 1 hour of CPU time.

There are several standard ways of estimating the
Haussdorf dimension of a fractal pattern. Here we have
chosen the radius of gyration, R,;, method by computing
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Fig. 2. Examples of simulated lightning patterns and their plane projections. (a} 1= 2, (b)n=3,(c)n=4,(d)n=6,(e) n=9. To
clarify the figure the black lines that link the open circles have been suppressed.
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Table 1. Hausdorff dimensions of simulated lightning patterns for different

7 values.

a 60X 100x 100 lattice

=2 7n=3 n=4 =26 n=9
D 217+ 0.04 1.90 4 .03 1.734 0.03 1.51 £0.02 1.34 £ 0.02
N 1193+ 48 5114 21 3364 22 184+ 6 117+ 2
N, 21 22 26 a0 30
b 30x50x50 lattice
D 2204004 1.89 4+ 0.04 1.77 £ 0.04 1.49 4 0.03 1.30 &+ 0.02
N 325+12 1424+ 9 105+ 4 64+ 2 46 £ 1
N 22 23 28 30 31

Table 2. Hausdorfl dimensions of lightning projections onto the (1, j} or (4, k)

planes.

a 60X 100x 100 lattice

=12 n=23 =4 n=286 n=29
Dp 1.88 4+ 0.02 1.69 £ 0.02 1.54 4+ 0.02 1.34 £ 0.01 1.21 £ 0.01
]\_fp 5004+ 12 26318 186 44 123+ 2 8941
b 30x50x50 lattice
D 1.854+0.02 1.63 4 0.02 1.54 £ 0.03 1.29+0.01 1.17+£0.01
N 15443 87+ 2 6742 4741 B+

the slope of a linear fit to a plot of In B, vs In N{r), dur-
ing the growth process of the pattern. Ry = [37,,;(ri —
r;)?]*? is a measure of the size of the growing cluster.
r; 15 the position vector of each point in the pattern,
and N(r) is the number of points belonging to the pat-
tern, contained within a sphere of radius r, with origin
at the centre of mass. For a fractal cluster, the radius
of gyration fulfils

R, = N*. (4)

The exponent 3 is related to the Haussdorf dimension,
D, by the relation D = 1/3 . The [ractal dimension
has been estimated by a straight line fit of the radius of
gyration-curve {a In-ln plot), the slope of which provides
the fractal dimension sought.

3 Results

The averaged fractal dimension, D2, for 5 different  val-
ues of our computer-generated patterns is shown in Ta-
ble 1a. In the table we can see the average size of the
patterns, N, and the number of performed simulations,
N,. The unavoidable errors appearing in the measure-
ments are entirely due to the statistical handling of the
data. In this table, onc observes the decrease of D with
n, which is quite natural becanse of the role of n in con-
trolling the probability of growth.

To evaluate the impact that finite-size effects of our
chosen lattice may have on the final results, we have per-
formed a number of simulations in a "small” lattice of
30xH0x50 sites. The results emerging from this smaller

lattice are gathered in Table 1b. By comparing the fig-
ures of the two tables we conclude that the finite size
effects induced in our final results are expected to be
very small.

In Fig. 2 we have plotted several examples of 31 light-
ning patterns built for several values of i, together with
the projections onto the (7,7),(¢,k) and (j, &) planes.
The criterion used to select these specific patterns has
been that these figures have a fractal dimension close
to the mean value, D. The asymmetry between the
vertical-planc projections and the horizontal-plane pro-
jections is as qualitatively expected.

The relevance of the projections on the vertical planes
is based on the fact that the observation of the lightning
structure is through photographs. Therefore, we have
systernatically performed the projections of the 3D light-
ning patterns and calculated the fractal dimension of the
projected figures. At this point we must say that given
a fractal set, its projection to a lower dimension may or
may not be fractal. In this case our caleulation support
that the vertical projections of the 3D lightning pattern
are indeed fractals. The average values of the projected
fractal dimensions, Dy, as a function of 7, appear in Ta-
ble 2a for the 60x100x100 lattice. The average value
of the number of points on each plane, Np, is also in-
cluded. The decrease of 1), with 7 has an explanation
sitnilar to that of the 3D case. To estimate the possible
finite-size effects, we have also studied the value of Dp
emerging from clusters grown in the smaller 30x50x50
lattice. These results are gathered in Table 2b. By com-
paring them with those of Table 2a, one concludes, as in
the 3D case, that these effects are practically negligible.
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Fig. 3. Lo-ln plot of the average radius of gyration, Ry vs. aver-
age size, for patterns generated in a 60x 100X 100 lattice with n =
2, 3, 4, 6, and 9. The straight lines represent the best linear fit to
the results. The cases with n = 0 and n = oo represent the two
Lmitling situations for a 3D lattice.

In Fig. 3, we bave drawn for each 7 the average value
of the radius of gyration of all the simulations and de-
termined the best linear fit to these points. As is clear,
the process of averaging considerably smoothes the be-
haviour of the individual results. Indeed, the average
results do not differ much from the best linear fit.

The experimental {observational) value of 13, accord-
ing to Tsonis (1991) is D, ~ 1.34 . In Fig. 4, we have
plotted the f)p values obtained in this study as a fune-
lion of . D), ~ 1.34 is obtained precisely for = 6; this
corresponds to a 3D fractal dimension of D ~ 1.51.

4 Discussion and Conclusions

In this paper we have simulaled the structure of light-
ning discharges using the 5 (or DB) model. We have car-
ried out a 3D analysis in volumes comprising 6 x 10° lat-
tice sites, and projecting the resulting 3D patterns onto
vertical planes in order to make a proper comparison
with photographs of real lightning. The agreement be-
tween our model and the photos occurs for a value of p >~
6 which is significantly different from the value obtained
by Tsonis (1991) in his 2D calculations. The finite-size
effects have been tested by comparing these results with
the patterns calculated, with the same working rules,
in volumes of 30x50x50 lattice sites. This comparison
indicates that finite-size effects are actually negligible.
Our results for the fractal dimension of lightning in-
dicates that a 3D pattern with D ~ 1.51 has a plane
projection of 1), ~ 1.34 which is the value ohserved in
the photos. Our finding of 5 > 6 as the phenomenologi-
cal correct value of this parameter implies that lightning

structure is considerably more deterministic than what.

the n = 2 value implied. In our opinion, to find a quan-
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Fig. 4. TFractal dimension of the average lightning projections,
Dp, for the 7 values quoted in the text. The black dot,(s), rep-
resents what would be the Euclidean dimension. The dashed line
corresponds to the value observed by Tsonis (1991) in lightning
pholos whereas the continuous line, obtained by polynomic inter-
polation, allows us to obtain graphically the fractal dimension for
non-integer n values.

titative argument of why the 2D simulations by Tsonis
(1991) with # = 2 have the same fractal dimension as
the projections of our 3D patterns with n = 6 is not an
casy task because that would require an analytic rela-
tion between 5 and D, which is not known. However, it
is rather intuitive to foresee an increase in # just think-
ing in the additional horizontal direction available for
the lightning pattern to grow.

As mentioned in the introductory paragraphs, the
mieroscopic physical foundations of the stochastic DB
model, when applied to gas discharges, has been dis-
cussed by Pietronero and Wiesmann (1988) and refer-
ences therein. Certainly, the theory of all the processes
occurring in real lightnings discharges is understood in
a general way but many details remain yet uncertain,
and even controversial. In spite of their unquestion-
able similarities, a lightning discharge is by far a much
more complex phenomenon than any spark provoked in
the lab. It is believed that the stepped leader starts
at the dielectric breakdown of water drops elongated by
particularly high electric fields in certain regions of the
clouds. Once initiated, the discharge propagates in a
process of an electron avalanche fed by successive ion-
izations. In its progress downwards, the leader finds a
number of inhomogeneities related to air and ion densi-
ties, water content, etc. The leader propagation velocity
is of the order of 1.5 x 10°ms™!, the length of a leader
step 1s about 50 m, and the time interval between steps
is about B0 ps.

Thus, the DB model used in this paper which has no
more inputs than a simplified electrostatics and a con-
stant rule to relate local electric field to growth prob-
ability, is obviously a very schematic representation of
reality. For example no reference to electrodynamics is
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made, no finite critical fields have been taken into ac-
count (Wiesmann,1989), and the calculations have been
performed without worrying about what would be the
actual length of the lattice step used in the model, or
the potential-drop evolution in the process. In light-
ning there are many obvious sources of stochasticity in
the propagation of stepped leaders, but it is not easy to
make an accurate identification betwecn them and the
value of the p parameter here found. Qur result, 5 =~
6, might however be a useful guideline for future more
detailed models.
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