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Abstract. Dynamical downscaling of Global Climate Mod-
els (GCMs) through regional climate models (RCMs) poten-
tially improves the usability of the output for hydrological
impact studies. However, a further downscaling or interpo-
lation of precipitation from RCMs is often needed to match
the precipitation characteristics at the local scale. This study
analysed three Model Output Statistics (MOS) techniques to
adjust RCM precipitation; (1) a simple direct method (DM),
(2) quantile-quantile mapping (QM) and (3) a distribution-
based scaling (DBS) approach. The modelled precipitation
was daily means from 16 RCMs driven by ERA40 reanal-
ysis data over the 1961–2000 provided by the ENSEM-
BLES (ENSEMBLE-based Predictions of Climate Changes
and their Impacts) project over a small catchment located in
the Midlands, UK. All methods were conditioned on the en-
tire time series, separate months and using an objective clas-
sification of Lamb’s weather types. The performance of the
MOS techniques were assessed regarding temporal and spa-
tial characteristics of the precipitation fields, as well as mod-
elled runoff using the HBV rainfall-runoff model. The results
indicate that the DBS conditioned on classification patterns
performed better than the other methods, however an ensem-
ble approach in terms of both climate models and downscal-
ing methods is recommended to account for uncertainties in
the MOS methods.

1 Introduction

Global climate models (GCMs) are currently the best tools
to model changes in the global climate caused by an in-
crease in radiatively active gases (IPCC, 2007). However,
despite constant improvements in model resolution and the
description of the physical processes, modelling of precipita-
tion in the current model versions is still inadequate for use
in most, if not all, local impact studies (Leith and Chandler,
2010; Beven, 2011). There are many reasons for this, ranging
from the difference in resolution between the GCM and the
local hydrological scale, numerical implementation and the
parameterisation of physical processes on the sub-grid scale
(Schmidli et al., 2006).

Common approaches used in order to overcome this prob-
lem is the application of downscaling techniques, which are
typically either dynamical or statistical (empirical). Statisti-
cal downscaling methods usually establish a statistical rela-
tionship between a local variable (predictand) and a larger-
scale variable modelled by the global or regional model
(predictor). There are a vast number of statistical down-
scaling techniques used in impact studies, and for recent
overviews we refer to Fowler et al. (2007) and Maraun et
al. (2010). Dynamical downscaling, where a regional cli-
mate model (RCM) is forced with boundary conditions from
a GCM, includes many feedback processes which are im-
portant for the energy, radiation and water balances. These
models are however very expensive to run both in terms of
time and resources, and the ability to investigate the full
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model uncertainty is problematic. Projects like PRUDENCE
(Christensen and Christensen, 2007) and ENSEMBLES (van
der Linden and Mitchell, 2009) have enabled ensemble out-
put from RCMs to be easily available to the larger research
community. However, even after dynamical downscaling, the
RCM output is not directly suited for use in studies of cli-
mate impact on hydrology, ecology, and agriculture. This is
especially the case for precipitation, and amongst the reasons
for this is that the resolution in RCMs is currently too coarse
to correctly resolve sub-grid processes on the scales that are
hydrologically relevant and that relates to convective meteo-
rological processes as well as orographic induced precipita-
tion. In smaller catchments, on the scale of a few RCM grid
points and with quick response times, this can potentially
lead to an underestimation of high flow situations, regard-
less of whether the RCM has a wet or dry mean bias over the
catchment. Other reasons are smoothing between grid points
and inadequate representation of the physical processes in the
model code (Cloke et al., 2012). Therefore at present, impact
studies that rely on a correct representation of precipitation,
such as those dealing with flood risk, cannot usefully use di-
rect RCM output.

A solution to the problem of RCM misrepresentation of
precipitation is to pre-process the RCM output through “bias
correction” also known as a form of Model Output Statis-
tics (MOS). MOS is the preferred term, becausebiasin statis-
tics usually refers to a deviation in the expected value of the
estimator from the true mean of the population (von Storch
and Zwiers, 1999), whereas the deviations in the estimator
are also found in the higher moments, such as the variance
and skewness. The use of MOS can be seen as an additional
downscaling step from the RCM, so the term downscaling
will be used for this approach as well. MOS can also be ap-
plied directly to GCM output (e.g. Widmann et al., 2003;
Eden et al., 2012). An example of a MOS technique is to use
transfer functions to adjust the distribution of RCM precip-
itation to match the observed precipitation distribution (e.g.
Déqúe, 2007; Piani et al., 2009; Yang et al., 2010). However,
the RCM may perform differently depending on season or
governing atmospheric circulation. A typically wet weather
regime (e.g. pattern or season) can have a different precipita-
tion distribution in time and space than a dry regime.

Classification of weather patterns has been widely used
in the statistical downscaling community to analyse and
model the predictor-predictand relationship (e.g. Stehlik and
Bardossy, 2002; Wetterhall et al., 2007). Recently a COST
(European Cooperation in Science and Technology) ac-
tion compiled a large collection of objective and subjective
weather type classifications for Europe that are freely avail-
able (COST733, Philipp et al., 2011). Conditioning the MOS
on months or on classified weather patterns rather than on the
full distribution could potentially lead to better estimates of
the parameters of the transfer function and therefore a more
effective model error correction. However, there is a trade-
off in terms of using less available information in the error

Fig. 1. The Montford catchment and its location in the UK. Large
black dots the RCM data and the grid denotes the 5× 5 km gridded
dataset from the UK MetOffice.

correction, thereby suboptimising the estimation of the pa-
rameters.

This paper investigates a number of MOS techniques on
RCM precipitation from 16 RCM simulations from the EN-
SEMBLES project over a small catchment (∼2000 km2) in
England. Further, it conditions the DBS and QM method on
months and weather patterns to assess the potential added
value. Section 2 describes the study area and data used in the
study and a description of the methodology, the results and
discussions are presented in Sect. 3 and the conclusions and
future outlook in Sect. 4.

2 Material and methods

2.1 Study area and data

The study area was the upper part of the River Severn in the
Midlands region of England, which flows through the Welsh
mountains, passes the town of Shrewsbury and then contin-
ues southwards towards the Bristol Channel (Fig. 1). Flow
levels are generally high in autumn and winter and low in
summer. The area is prone to flooding and has recently been
a study area for hydrological ensemble forecasting (He et al.,
2009; Wetterhall et al., 2011; Cloke et al., 2012).

The observed precipitation and temperature data series
used in this study consisted of daily 5× 5 km grids interpo-
lated from station data covering the period 1 January 1960–
31 December 2006 provided by the UK Met Office. The in-
terpolation of the temperature and precipitation was done
using inverse-distance weighted interpolation (Perry et al.,
2008). The observed discharge data at Montford were pro-
vided by the Environment Agency of England and Wales
(EA) Midlands region and covered the period 1986–2006.

The RCM precipitation data were provided by the EN-
SEMBLES project (van der Linden and Mitchell, 2009). The
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RCM models used in this study were all driven by the ERA40
reanalysis over the time period 1 January 1961–31 Decem-
ber 2000 (Uppala et al., 2005). In total, 16 RCMs were avail-
able for this study, and one model was run with three different
climate sensitivities, yielding 18 model projections available
in total. The data is available publicly as daily values on a
0.22 degree grid (Fig. 1). The RCM precipitation was evalu-
ated as an ensemble, equal weights are applied to all mem-
bers since the aim of the study was to see how well the MOS
worked regardless of the bias in the raw RCM. Furthermore,
using equal weights enables the evaluation of the effects of
MOS rather than ranking the performance of individual mod-
els.

2.2 Model output statistics

There are quite a few suggested methods of MOS in the lit-
erature (for an overview see Maraun et al., 2010). The type
of MOS method most suited for a specific impact study will
ultimately depend on the application objective/s and in this
case, high river flow events were of most interest to quan-
tify potential flood inducing events. Therefore, two meth-
ods that downscale the precipitation distribution were se-
lected, (1) a quantile-quantile mapping (QM) correction as
described by Bóe et al. (2007) and (2) a distribution-based
scaling (DBS) of the modelled and observed precipitation
(Yang et al., 2010), but also a simpler factor change method,
(3) the direct method (DM; Lenderink et al., 2007), was in-
cluded as a benchmark. The rationale for choosing the first
2 methods are that they are sensitive to changes in the tails
of the distribution and are therefore potentially more useful
in hydrological impact studies. The direct method is merely
correcting for the mean bias, and does not transfer any infor-
mation on any modelled shift in the precipitation distribution
from the RCM.

All methods were applied to the individual grid points
(5×5 km) in the catchment. Since the RCM output resolution
was approximately 25×25 km, the RCM modelled precipita-
tion was first interpolated onto the same grid as the observed
(5× 5 km) using a simple nearest neighbour interpolation.
9 grid points from the RCM output covered the catchment
area (Fig. 1).

All the identified MOS techniques were applied over the
period where RCM data was available (1961–2000) through
a split-sample validation on dry and wet conditions. The dry
(wet) sample was constructed by selecting the driest (wettest)
months over the training period. The MOS techniques were
calibrated over each sample, and then validated over the
other, respectively. By using this approach, the entire series
can be used in the validation.

2.2.1 The direct method

The direct method (DM) scales the modelled precipita-
tion by multiplying it with the ratio of the observed and

RCM-modelled precipitation:

ẑ mod (t,n) = z mod (t,n)
Z̄obs(n)

Z̄ mod (n)
(1)

where ẑ mod is the adjusted RCM-modelled precipitation
z mod at timet for point n in space,Z̄ denotes the mean ob-
served (obs) and modelled (mod) precipitation over calibra-
tion period. In this study a split-sample approach was used
(see below). The direct method removes biases in the mean
but not the coefficient of variance of the modelled precipita-
tion (Lenderink et al., 2007). The direct method is sometimes
referred to as the delta method in the scientific literature,
since the method was originally developed for temperature,
where the difference between modelled future and control
scenarios was added to the observed temperature (Maraun et
al., 2010).

2.2.2 Quantile-quantile mapping

Quantile-quantile mapping (QM) utilises the empirical cu-
mulative distributions of the observed and modelled precip-
itation for the downscaling. Therefore, unlike the DMthis
method improves any systematic biases throughout the sta-
tistical distribution of precipitation differences and hence im-
proves the adjustments of extremes. The method modifies
each RCM precipitation event by first calculating the prob-
ability of the event. The downscaled precipitation amount is
then modelled as the observed precipitation with the same
probability (Bóe et al., 2007; following the denotation by
Themeßl et al., 2010):

ẑ(t,n) = F
obs,cal-1
t,n

(
F

sim,cal
t,n

(
zsim,val(t,n)

))
(2)

whereF
obs,cal-1
t,n denotes the inverse of the empirical cumu-

lative distribution function (ecdf)F obs,cal
t,n , F

sim,cal
t,n is the in-

verse ecdf of the observed and simulated precipitation over
the calibration period, andzsim,val is the simulated precipita-
tion over the validation period. Quantile-quantile mapping is
restricted to adjusting values that are in the observed range.
If the method is to be used in climate impact studies it could
be necessary to infer a change factor to values outside the
observed range to account for changes in the upper tail of
the distribution. However, since only historical records were
used in this study, no extrapolation was made.

2.2.3 Distribution-based scaling

The DBS is similar to the QM as it adjusts the precipitation
amount by comparing the probability density functions of
modelled and observed precipitation. The difference is that
a theoretical density function is fitted for the observed and
simulated series, respectively, and the probability of an event
in the RCM precipitation is used together with the inverse
of the cumulative density function from the observed data
series to estimate new values. The gamma distribution was
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Fig. 2. Mean annual precipitation accumulated at the station in
Montford catchment for the 18 RCMs over the study period 1961–
2000. The 5–95 percentiles are shown in light blue, and the dark
blue denotes the 25–75 percentiles. The solid black line shows the
observed precipitation from the UK MetOffice.

selected for this study since it captures the asymmetrical and
positively skewed distribution of daily precipitation intensi-
ties (Wilks, 1995; Haylock et al., 2006). The probability den-
sity function of a gamma-distributed variablex is defined as

f (x) =
(x/β)α−1exp(−x/β)

β0(α)
x,α,β ≺ 0 (3)

whereα is the shape parameter,β is the scale parameter and
0(x) is the inverse gamma function. The distribution param-
eters were estimated using maximum likelihood estimation
(MLE).

The method was applied in two steps. Firstly, the number
of rainy days in the modelled and observed precipitation was
compared, and a threshold value was defined in the RCM
output to match the number of rainy days in both time se-
ries. This procedure is necessary since zero values are not
defined by the gamma distribution. All days that had less
precipitation than the threshold were considered dry days. In
the second step, gamma distributions were fitted for the non-
zero observed and modelled precipitation time series and the
MOS function was then defined as

ẑ(t,n) =

F−1(
αobs,cal,βobs,cal,F (zsim,val(t,n),αsim,calβsim,cal)

)
(4)

where obs denotes parameters estimated from observations
and sim denotes parameters estimated from the RCM out-
put andF−1 the inverse gamma distribution. MOS using the
gamma distribution can yield values larger than in the records
of observations, so care has to be taken in the upper tail of
the distribution as to not obtain unreasonably large values.
An upper threshold was explicitly implemented defined as
the maximum observed precipitation for each point. Using

Fig. 3. Monthly precipitation for four classified weather pat-
terns; (a) anticyclonic, (b) cyclonic, (c) westerly winds and
(d) easterly/south-easterly winds. The figure shows the raw RCM
precipitation and MOS using DBS and DBS classified on weather
patterns.

a threshold is a rather crude method to avoid unreasonably
large precipitation amounts but in this case study where we
only were concerned with observed events it was not con-
sidered to have a large impact. However, if the method is
applied to future simulations, the effect of an upper limit has
to be studied in more detail.

The DBS and QM method were applied in three versions:
(1) estimation of the distribution parameters was done using
the entire time series (DBS/QM), (2) conditioned on specific
months (DBS-M/QM-M) and (3) conditioned classified on
circulation patterns (DBS-L/QM-L).

2.2.4 Classification of atmospheric circulation patterns

Since the precipitation pattern over the study area has a clear
seasonality (Fig. 4), MOS conditioned on separate months
implicitly accounts for this. However, this assumption may
not be stationary when applied in future climate impact stud-
ies since the timing of seasons might shift. Classified weather
patterns have been used in meteorological applications for a
long time to distinguish between typical weather situations,
for example the Grosswetterlagen for European mainland
(Baur et al., 1944; Hess and Brezowsky, 1977) and weather
types for the British Isles (Lamb, 1950, 1972). They have
also been extensively used in precipitation modelling (e.g.
Bardossy and Plate, 1992). The conditioning of the distribu-
tion parameters on discrete, classified weather patterns over-
comes the problem of a potential shift of seasons in a future
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Fig. 4. Monthly mean precipitation over the Montford catchment
evaluated over the time period 1961–2000. Boxplots denote the 25
and 50 percentiles where the whiskers are the upper and lower of
the RCM values. The dashed line show the mean of the RCM data
of (a) raw RCM output, and with MOS using(b) QM, (c) QM-M,
(d) QM-L, (e)DM, (f) DBS,(g) DBS-M and(h) DBS-L. The black
solid line shows the observed monthly mean precipitation.

perturbed climate. Any MOS conditioned on months is in-
herently stationary, but if the MOS is conditioned on weather
patterns it instead becomes more sensitive to a possible shift
in the large-scale circulation. Furthermore, weather pattern
might be more reasonable to use in areas where the large-
scale circulation rather than time of year depicts the precipi-
tation pattern, such as the British Isles.

The COST733 action recently provided a catalogue of ob-
jective and subjective classifications of atmospheric circula-
tion patterns over Europe using large-scale parameters such
as mean sea level pressure, atmospheric thickness, vorticity
and winds (Philipp et al., 2010). If the classifications are to be
applied to condition the parameters of DBS-L, it is important
that the classified patterns can discriminate between wet and
dry precipitation patterns, since the distribution of precipi-
tation is very different depending on the large-scale pattern.
The circulation patterns from the COST733 catalogue were
therefore evaluated according to their ability to discriminate
between wet and dry patterns using two indices, one for pre-
cipitation occurrenceI1 and precipitation intensityI2:

I1 =
1

T

T∑
t−1

√
(p(CP (t)) − p̄)2 (5)

I2 =
1

T

T∑
t=1

∣∣∣∣ln(
z(CP (t))

z̄

)∣∣∣∣ (6)

whereT is the total number of classified eventst , p(CP (t))

is the probability andz(CP (t)) is the amount of precipita-
tion for eventt with classificationCP . I1 distinguishes be-
tween wet and dry patterns regarding the frequency of wet

and dry days. A classification that separates rainy days from
dry days yields a high score. As a complement,I2 distin-
guishes between wet and dry patterns in terms of total pre-
cipitation The indices have been used in earlier studies of
downscaling as measures of how well a classification can dis-
tinguish wet and dry conditions, and were used to select the
classification which was mostly suited to downscale precipi-
tation (Wetterhall et al., 2007). To narrow down the possible
options, the classifications with maximum 12 patterns were
selected from the COST733 database. The Lamb objective
classification with 11 patterns centred over the British Isles
had the highest score on bothI1 andI2 and was accordingly
selected for this study.

2.3 Rainfall-runoff modelling with the HBV model

The MOS-adjusted precipitation series were finally used as
input to the hydrological HBV rainfall-runoff model (Lind-
ström et al., 1997). The HBV model was run in a lumped
configuration upstream of Montford river gauging station
(Fig. 1). The HBV model requires daily temperature, precip-
itation and potential evapotranspiration as driving variables.
Potential evapotranspiration (PE) was calculated through a
simple method using radiation and temperature (McGuinness
and Bordne, 1972) modified by Oudin et al. (2005)

PE =
Re

λρ

Ta + K2

K1
. if Ta + K2 > 0

PE = 0 otherwise (7)

whereRe is extra-terrestrial radiation (depending only on lat-
itude and ordinal date),Ta is the mean daily temperature in
C◦, λ is the latent heat flux,ρ is density of water andK1
andK2 are constants in C◦ that can be calibrated. This sim-
ple formulation of evapotranspiration has been found to be
robust when applied in climate impact studies (Oudin et al.,
2005).

2.3.1 Sensitivity analysis of parameter values

The HBV model has a large number of free parameters that
have to be estimated when applied to catchment modelling
(Seibert, 1997). In this study, a simplified version of the
HBV-model was used, with 17 free parameters. Of these pa-
rameters, 6 describe snow and snowmelt, and were not in-
cluded in the sensitivity analysis since snow melt processes
were found to not have a huge influence on the studied catch-
ment. The remaining 12 free parameters were tested using
a base sample set generated using a quasi-random Lp Tau
method, which is an efficient method to generate a quasi-
random sequence for Monte Carlo experiments (Sobol, 1979;
Pappenberger et al., 2006). The base sample was 200 000
simulation runs, this was deemed to be a large enough num-
ber of simulations to explore the parameter space. From
these simulations, all parameter sets that generated a Nash-
Sutcliffe coefficient> 0.85 were selected as behavioural sets.
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This follows the principle of the Generalised Likelihood Un-
certainty Estimation method. (GLUE; Xingguo et al., 2006;
Pappenberger et al., 2008; Cloke et al., 2008). The thresh-
old was subjectively selected to obtain a large enough set
of parameter values to estimate the uncertainty in the HBV
model. The number of behaviour models obtained was 2146,
roughly the top percent of the tested parameter space. The
Nash-Sutcliffe coefficient is defined as (Nash and Sutcliffe,
1970)

R = 1−

T∑
t=1

(qobs(t) − qsim(t))2

T∑
t=1

(qobs (t) − q̄obs)
2

(8)

wheret is the time step,q the observed and simulated dis-
charge at time stept , respectively, and̄q the mean observed
discharge. See Table 1 for an overview of the values of the
free parameters that was retained from the calibration. The
RCM precipitation was evaluated as ensemble input to the
HBV model using observed temperature and potential evap-
otranspiration.

2.4 Validation measures of MOS performance

The MOS methods were validated using precipitation statis-
tics on mean daily precipitation and the mean annual maxi-
mum 5-day accumulation of precipitation (max5day) as well
as a number of performance scores for precipitation and the
modelled runoff, respectively. The max5day was calculated
by filtering the daily precipitation series with a running 5-
day mean filter and taking the mean of the annual maxi-
mum values. This measure identifies precipitation events that
are prone to cause fluvial flooding in the catchment. The
performance regarding precipitation intensities of the differ-
ent methods was further validated through intensity-duration
curves, calculated as the maximum intensity over accumu-
lation times ranging from 1 to 30 days. The maximum val-
ues for different accumulation times shows biases against ob-
servations on time scales that are hydrologically interesting,
both regarding fast-responding floods and longer-duration
wet periods. The objective function for the temporal varia-
tion was selected as the mean rank of the observed intensi-
ties for each accumulation time in comparison to modelled
intensities:

R = 1−
1

T

T∑
t=1

∣∣∣∣2R(t)

N
− 1

∣∣∣∣ (9)

whereN is the number of RCMs,T is the number of accu-
mulation timesT over which the rankR was calculated (1 to
30 days). The rank score is constructed to yield a value of 1
for a perfect score and 0 for no skill to be easily comparable
to the other scores.

The modelled runoff was evaluated against observa-
tions by calculating the annual maximum runoff, and then

calculating a fuzzy membership function over the time period
1987–2000 to allow for a spin-up period of 1 yr. The fuzzy
membership function accounts for uncertainties in observa-
tions and was defined as 1 if the simulated flow is±10 % of
observed flow, and a linear decreasing to 0 if simulated flow
is ±30 % that of the observation (Cloke et al., 2008).

O =
1

T

T∑
t=1


0 q(t) < a,q(t) > d
q(t)−a
b−a

a ≤ q(t) ≤ b

1 b < q(t) < c
d−q(t)
d−c

c 5 (t) ≤ d


a = 0.7qobs(t)

b = 0.9qobs(t)

c = 1.1qobs(t)

d = 1.3qobs(t)

(10)

whereq is the simulated flow at timet and,qobs is the ob-
served flow andT is the total number of time steps. The fuzzy
membership function has a perfect score of 1, and was used
as a measure of performance (O).

A contingency table was also constructed for the annual
maximum runoff values where the threshold for a hit was set
to 300 m3 s−1. This threshold corresponds to a warning level
of intermediate floods in the Montford station. From this con-
tingency table, the Relative Operating Characteristic (ROC)
curve can be plotted as the probability of detection (POD)
against the probability of false alarm rates (FAR), and the
area under this curve is denoted as the ROC score (Demargne
et al., 2010). A ROC score of 1 denotes a perfect forecast and
a value of 0.5 means that the forecast is performing in par
with climatology.

3 Results and discussion

3.1 Precipitation scores

The RCMs generally underestimate the precipitation over the
upper Severn catchment (Fig. 2). The inter-annual variability
was however well captured, indicating that the RCMs overall
perform well when driven by reanalysis data, although the
intense precipitation events were underestimated.

The precipitation statistics for daily means and max5day
show that all MOS techniques can remove the mean bias in
the daily precipitation (Table 2). However, the bias in the
max5day is underestimated using the DM method, whereas
the DBS overestimates the 5-day maximum. This indicates
the difficulty in estimating the parameters of the gamma dis-
tribution for the upper tail. Using weather patterns somewhat
dampens the overestimation.

Figure 3 exemplifies how the conditioning of weather pat-
terns improves the MOS for the DBS method (similar re-
sults were obtained with QM, not shown). For the dry anti-
cyclonic circulation (a) and the wet cyclonic circulation (b),
the influence of weather patterns is negligible; the MOS in
general adjusts precipitation values to better match observa-
tions, especially for the wet cyclonic circulation. However,
for the patterns dominated by westerly (c) and easterly/south-
easterly (d) winds, weather pattern classification substan-
tially improves the MOS.

Nonlin. Processes Geophys., 19, 623–633, 2012 www.nonlin-processes-geophys.net/19/623/2012/
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Table 1.Range of parameter values derived during the calibration of the HBV model. Parameter definitions follow those of Seibert (1997).

Parameter Description Mean Standard Unit
name value deviation

fc Maximum field capacity 296 147 mm
lp Decides the threshold for reduction in ET 0.59 0.28 NA
beta Shape coefficient for the soil moisture 4.2 2.6 NA
perc Maximum ground water percolation from upper to lower storage 249 143 mm d−1

uzl Limit of upper ground water storage 506 287 mm
k0 Recession coefficient 0.50 0.28 d−1

k1 Recession coefficient 0.41 0.23 d−1

k2 Recession coefficient 0.21 0.15 d−1

maxbas Routing parameter 5.56 1.20 d
K1 Evapotranspiration constant 180 74 C◦

K2 Evapotranspiration constant 20 7.8 C◦

Table 2. Precipitation statistics for the MOS techniques calculated
for the area upstream Montford.

MOS Mean Mean annual R O ROC
method precipitation max 5-day

(mm day−1) precipitation (mm)

Observed 3.62± 0.46 87± 17 0.41
Raw output 2.99± 0.37 76± 13 0 0.12 0.5
DM 3.62± 0.45 81± 16 0.23 0.24 0.71
QQ 3.62± 0.49 88± 18 0.27 0.26 0.78
QM-M 3.62± 0.49 87± 18 0.47 0.26 0.78
QM-L 3.60± 0.50 87± 17 0.37 0.26 0.79
DBS 3.62± 0.51 98± 23 0.62 0.25 0.75
DBS-M 3.67± 0.52 98± 22 0.63 0.24 0.8
DBS-L 3.66± 0.51 94± 21 0.76 0.25 0.83

The raw output from the RCMs did not capture the intra-
annual pattern of precipitation, especially for the wetter
months September–January (Fig. 4a). Most floods occur dur-
ing this period, and the deficiencies in modelling that period
means that the RCMs cannot be used directly in impact stud-
ies to simulate winter floods. MOS generally improved the
intra-annual variation (Fig. 4b–f). The DBS-M and QM-M
reduced almost all bias in the RCM, and this was to be ex-
pected as the MOS was done on a monthly scale. The MOS
methods that were not conditioned on months overestimated
the precipitation in May–July, but also this was dampened
when using weather patterns (Fig. 4).

The intensity-duration curves pointed to another issue re-
garding the RCM-modelled precipitation series (Fig. 5a).
Even if the short-intensity precipitation events (1–10 days)
were slightly underestimated, the discrepancy was more ev-
ident on longer time scales (10–30 days). Since the onset
of a flood event is very dependent on the antecedent soil
moisture and ground water conditions this can have the ef-
fect that a model run by the direct output from the RCM
can be too dry, and therefore not be able to reproduce ex-
treme flood events. Also here all MOS methods removed
most of this bias (Fig. 5b–h, Table 2). The DBS methods

Fig. 5. Intensity-duration curves for the RCM precipitation using
(a) raw output and with MOS using(b) DBS,(c) DBS-M, (d) DBS-
L, (e) DM, (f) QM, (g) QM-M and (h) QM-L. The black line is
observed precipitation.

removed most of the error on the long duration scale, but
also shifted the bias for the high intensity events to the pos-
itive side. This was improved using months, and especially
weather patterns to condition the MOS. The ROC from the
precipitation-intensity show that the DBS performs best and
again that using weather patterns improves the downscaling
further, however not for the QM (Table 2).

This study was mainly focussing on how MOS techniques
perform for the RCM ensemble as a whole, but it is also
quite revealing to look at the performance of the individual
RCMs, for example the correlation coefficients of the annual
max5day in Table 3. This measure disregards any improve-
ment in the daily means and focusses on the inter-annual
variation of large events. The numbers in black denote that
the MOS improves the score in comparison with the raw out-
put, and stars mark that using months or weather patterns
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Fig. 6. Annual maximum runoff modelled with the HBV model at
the station Montford with observed precipitation. The lighter blue
areas show the 5th to 95th percentile, the darker blue show the 25th
to 75th percentile of the parameter uncertainty for all models with
NS>0.85. The black line is observed runoff.

improved the performance in comparison with the original
method. MOS do not always improve the RCM output, and
in some cases the results are worse than the raw output. How-
ever, in most cases the results are better. Furthermore, the im-
provement with MOS is not correlated with the performance
of the raw output, meaning that MOS cannot fully compen-
sate for all errors in a bad performing RCM. Finally, the con-
ditioning on weather patterns does improve the MOS, both
for the QM and DBS methods.

3.2 Runoff modelling

The HBV model simulated runoff well over the calibration
period and the best parameter set had a Nash-Sutcliffe ef-
ficiency of R>0.90. The annual maximum runoff was cap-
tured both in terms of magnitude and timing (Fig. 6). The
RCM-driven runoff is not able to capture the pattern of either
the maximum runoff (Fig. 7) or the daily runoff as simulated
by the HBV model (Table 2) but all MOS methods improved
the simulated runoff (Fig. 7). The event of 1994 is over-
predicted by RCMs in comparison to observations, whereas
the floods in 2000 are still very much under-predicted. The
O score, show clearly that the MOS adds skill in comparison
to raw output (Table 2). The more sophisticated methods per-
formed better than the DM, but there is no clear signal as to
which of the MOS techniques performs better.

3.3 Selecting the best MOS method

The overall best performance in this study was achieved with
the DBS-L method, using gamma distribution conditioned on
objective Lamb weather types (Tables 2 and 3). However, the
improvements in comparison to the other techniques are not
statistically significant, therefore the hypothesis that they all
perform equally well cannot be rejected. Although the results
are only strictly valid for this specific catchment, this work
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Fig. 7. Annual maximum runoff modelled by the HBV model at
the station Montford driven by(a) raw output and with MOS using
(b) QM, (c) QM-M, (d) QM-L, (e) DM, (f) DBS, (g) DBS-M and
(h) DBS-L. The lighter blue areas show the 5th to 95th percentile,
the darker blue show the 25th to 75th percentile. The black line is
observed runoff.

indicates the importance of a thorough test of MOS methods
prior to their use in impact studies. In this case the focus
was on flood events, but if the goal was to model the impact
on water resources, a simpler method like the direct method
could prove sufficient.

It has previously been shown that there can be large differ-
ences between downscaling techniques in terms of precipita-
tion patterns and volumes over a certain catchment (Dibike
and Coulibaly, 2005; Cloke et al., 2012). Also, even if the
downscaled precipitation patterns are similar, the catchment
may have a threshold response in which exactly this small
difference may induce severe flooding or not. Beyond this
threshold the difference in the techniques may be irrelevant.
The threshold used in this study was selected to represent a
value where flooding does occur, but the ROC score is sensi-
tive to this threshold, and changing this might lead to slightly
different results.

The selected classification was in this case a readily avail-
able classification, and it was not optimised on precipitation.
An objective pattern classification optimised on precipitation
or runoff events could further improve the DBS-L. Bardossy
and Pegram (2011) applied an objectively derived classifi-
cation to adjust precipitation values using quantile-matching
technique and found that the RCMs were able to reproduce
the patterns of current situations well.

The individual RCMs could be weighted based on their
performance in the control period for use in studies of fu-
ture climate change impact. The issue of weighting RCMs
regarding their performance was recently discussed in Chris-
tensen et al. (2010). Their conclusion was that weighting
schemes were very sensitive to the aggregation process of
the modelled output and the selected metric, and that an extra
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Table 3.Correlation coefficients for the annual maximum 5-day precipitation for the individual RCMs. Bold marks that the method improved
the correlation compared with the raw output. Asterisks (*) denote that the conditioning on month or weather pattern improved results
compared with the unconditional method.

RCM Raw DM QM QMM QML DBS DBSM DBSL

1 0.11 0.12 0.11 0.24* 0.15* 0.10 0.14* 0.16*
2 0.39 0.40 0.44 0.37 0.33 0.38 0.44* 0.39*
3 0.23 0.24 0.19 0.37* 0.23* 0.25 0.34* 0.22
4 0.37 0.40 0.39 0.37 0.27 0.38 0.35 0.38
5 0.42 0.42 0.43 0.47* 0.43 0.42 0.51* 0.40
6 0.45 0.43 0.44 0.45* 0.45* 0.43 0.46* 0.42
7 0.56 0.56 0.56 0.50 0.53 0.57 0.50 0.60*
8 0.04 0.07 0.08 0.04 0.06 0.05 0.02 0.08*
9 0.39 0.39 0.37 0.48* 0.40* 0.37 0.46* 0.39*
10 0.43 0.43 0.44 0.35 0.44 0.44 0.42 0.38
11 0.07 0.08 0.05 −0.03 0.08* 0.07 0.03 0.16*
12 0.12 0.13 0.13 0.25* 0.38* 0.14 0.24* 0.41*
13 0.11 0.11 0.16 0.02 0.20* 0.07 0.05 0.12*
14 0.36 0.40 0.30 0.28 0.31* 0.32 0.33* 0.35*
15 0.15 0.16 0.14 0.09 0.11 0.15 0.10 0.19*
16 0.38 0.38 0.36 0.38* 0.39* 0.38 0.42* 0.47*
17 0.41 0.41 0.41 0.42* 0.40 0.41 0.43* 0.47*
18 0.48 0.48 0.47 0.45 0.40 0.49 0.52* 0.52*

Mean 0.30 0.31 0.30 0.31 0.31 0.30 0.32 0.34
Improvements 9 7 6 (8) 10 (9) 7 10 (10) 11 (13)

uncertainty was added in the procedure. MOS methods com-
pensate for some of the errors in the RCMs, thus in this sense
potentially lead to a reduction of the total uncertainty. How-
ever, their estimation requires extra parameters in the cali-
bration, and therefore adds to the layer of uncertainty. On
the other hand, the inclusion of local processes, especially
a better representation of orography and description of land
surface interactions, could increase the sharpness, for exam-
ple higher resolution in space and time. This might mean that
the total uncertainty in the impact model result could be re-
duced. This is especially true when the large-scale model is
performing well (Diez et al., 2005).

Another issue is that different methods do perform well
for different objective functions (Table 2). The type of MOS
to be used in impact studies should therefore be carefully se-
lected depending on the aim of the study in question. How-
ever, a range of MOS techniques as well as an ensemble of
climate models is advisable in any impact study, since just
using one technique might correct for a certain aspect of the
precipitation bias, for example the number of rainy days or
high-intensities. Using an ensemble of techniques expands
the range of possible outcomes. It is also paramount to per-
form a MOS with utmost transparency to fully show the ben-
efits as well as the possible pitfalls with MOS techniques.

4 Conclusions

This study evaluated three different methods to further down-
scale RCM precipitation for use in impact studies, the direct
method, quantile-quantile mapping and distributions-based
scaling. The QM and DM were employed in three vari-
ants, conditioned on (1) the entire time series, (2) individual
months and (3) on classified weather patterns. The RCMs
in the study were forced with ERA40 data and their perfor-
mance could therefore be evaluated against observations di-
rectly. The main conclusions of this study were

– Using a range of performance measures to look at dif-
ferent aspects of the modelled precipitation shows the
benefits of using more sophisticated MOS techniques in
comparison with simpler schemes.

– Raw RCM output could not capture flood events when
run through a hydrological model. MOS techniques im-
proved the usability of the RCM output.

– Distribution scaling using a fitted gamma distribution
conditioned on objectively classified Lamb weather
types proved to be the better method in comparison with
the direct method and the quantile-quantile mapping,
however the results are not significant.

The development of RCMs moves constantly towards
higher resolution and improvement in the parameterisation
of physical parameters, and it is possible that these improve-
ments will lead to the reduction in model errors. The recently
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launched CORDEX aims to run RCMs with higher resolu-
tion, on the order of 10 km, and over many more regions of
the world than what are presently available. The impact com-
munity will have the ability to perform studies over regions
where to date few studies have been done, for example in arid
and mountainous regions. The challenge in these regions will
not only be to develop models that can describe the necessary
processes, but also to tackle the problem of data availability.
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