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Abstract. A stochastic Duffing-type oscillator model, i.e
noise-driven motion with inertia in a potential landscape,
is considered for glacial millennial-scale climate transitions.
The potential and noise parameters are estimated from a
Greenland ice-core record using a nonlinear Kalman filter.
For the period from 60 to 20 ky before present, a bistable
potential with a deep well corresponding to a cold stadial
state and a shallow well corresponding to a warm intersta-
dial state is found. The system is in the strongly dissipative
regime and can be very well approximated by an effective
one-dimensional Langevin equation.

1 Introduction

Past and future abrupt climate changes have been extensively
discussed in recent years (e.g.Alley et al., 2003). A par-
ticular subject of investigation are the abrupt climate transi-
tions between cold stadials and warm interstadials during the
last glacial period, the so-called Dansgaard-Oeschger (DO)
events (Dansgaard et al., 1993). Their origin and dynami-
cal mechanism is still controversial; it is not obvious which
part of the Earth’s climate system is responsible for abrupt
changes. DO events may be attributed to a temporary col-
lapse and resumption of the Atlantic meridional overturn-
ing circulation (Ganopolski and Rahmstorf, 2002). Other hy-
potheses refer to internal oscillations in the climate system
(Sakai and Peltier, 1997; Schulz et al., 2002; Timmermann
et al., 2003) or external forcing mechanisms (Ganopolski and
Rahmstorf, 2001; Braun et al., 2005).

Besides studies with complex numerical models, other
have tried to reduce the system to low-order, box and con-
ceptual models both in a deterministic and stochastic setting.

Different types of low-order models have been proposed to
explain the dynamics of DO events. A bistable nonlinear sys-
tem has been assumed in which shifts between the two dis-
tinctly different states are triggered randomly by stochastic
forcing (Ditlevsen, 1999; Ditlevsen et al., 2005; Kwasniok
and Lohmann, 2009; Livina et al., 2010). Stochastic reso-
nance (Benzi et al., 1982; Alley et al., 2001; Ganopolski and
Rahmstorf, 2002) may or may not play a role in such a model.
Recently, the mechanism of ghost stochastic resonance has
been proposed (Braun et al., 2009) as a noise-induced phe-
nomenon beyond classical stochastic resonance. Moreover, a
system of nonlinearly coupled relaxation oscillators has been
postulated (Schulz et al., 2002). Each of the oscillators rep-
resents a fundamental climate mode with a characteristic fre-
quency in the centennial-to-millennial band; nonlinear inter-
action between the oscillators may lead to phase synchro-
nisation and the development of a new climate mode with
a joint frequency. Furthermore, a nonlinear thermal oscilla-
tor has been proposed (Rial, 2004) where the timing of the
deterministic external forcing is crucial for generating DO-
like oscillations. In a conceptual model approach,Dima and
Lohmann(2009) propose that millennial-scale variability can
originate from rectification of an external forcing, and sug-
gest that the thermohaline circulation, through a threshold
response, could be the rectifier. The latter hypothesis is a
combination of the externally driven and internal oscillation
hypotheses.

In the present paper, a noise-driven nonlinear oscillator of
the Duffing type is formulated as a model for DO events
and its parameters estimated from ice-core data. The study
extends recent work based on a one-dimensional potential
model (Kwasniok and Lohmann, 2009; Livina et al., 2010)
to a two-dimensional model. We will examine the question
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of if the DO events can be characterised by a stochastic non-
linear Duffing-type oscillator model.

2 Dynamical model

Abrupt palaeoclimatic changes are often assumed to be re-
lated to a shift between two different stable states in a noise-
driven nonlinear system (e.g.Alley et al., 2001; Ganopolski
and Rahmstorf, 2002). A very simple conceptual model is
stochastically driven motion in a one-dimensional potential
landscape (e.g.Ditlevsen, 1999; Kwasniok and Lohmann,
2009). The governing equation is

ż = −U ′(z) + τη (1)

whereU(z) is a potential function,η is a white Gaussian
noise with zero mean and unit variance andτ is the standard
deviation of the stochastic forcing. The stationary probability
density of the system is

p(z) ∼ exp

[
−

2U(z)

τ2

]
. (2)

We here extend the dynamical framework and adopt a two-
dimensional model given by

ż = v + σ1η1 (3)

v̇ = −γ v − V ′(z) + σ2η2 (4)

whereV (z) is a potential function andγ is a dissipation con-
stant.η1 andη2 are two independent Gaussian white noises
with zero mean and unit variance;σ1 andσ2 are the stan-
dard deviations of the noise forcings. The variablez corre-
sponds to a palaeotemperature proxy as given by an ice-core
record; the variablev is a velocity-like quantity (e.g. temper-
ature change) which is here not explicitly specified further.

In the caseσ1 = 0, the system of Eqs. (3) and (4) is the
well-known Kramers model for Brownian motion with iner-
tia in a potential (Kramers, 1940; Gardiner, 2010) with sta-
tionary probability density:

p(z,v) ∼ exp

(
−

2γ

σ 2
2

[
V (z) +

1

2
v2
])

. (5)

It is then equivalent to the second-order equation

z̈ + γ ż + V ′(z) = σ2η. (6)

This is actually a nonlinear stochastic oscillator; for the
particular choiceV (z) =

1
4αz4

+
1
2βz2 with α > 0, it is the

(noise-driven) Duffing oscillator which forβ < 0 exhibits
bistability.

The stochastic terms are meant to account for model un-
certainty and structural discrepancy between the model and
the real system. Adding a noise term also in the equation
for z (Eq. 3), which is uncommon, considerably enhances

the dynamical richness and realism of the model beyond the
Kramers model. The system of Eqs. (3) and (4) forσ1 6= 0
breaks the condition of detailed balance and therefore the
time-reversal symmetry of the stationary joint probability
density:p(z,v, t;z′,v′, t ′) 6= p(z′,−v′, t;z,−v, t ′). It is ca-
pable of producing temporally asymmetric time series; in
fact, the characteristic saw-tooth shape is an important non-
linear feature of DO events (Dansgaard et al., 1993). The sta-
tionary probability densityp(z,v) is not straightforward any
more, andz andv are no longer statistically independent. The
one-dimensional potential model of Eq. (1) and the Kramers
model are in detailed balance and are therefore not able to
break the time-reversal symmetry.

In the limit of strong dissipation (Smoluchowski regime),
v can be adiabatically eliminated from Eqs. (3) and (4) and
the dynamics ofz well approximated by an effective one-
dimensional Langevin equation given by Eq. (1) with

U(z) = V (z)/γ (7)

and

τ2
= σ 2

1 + σ 2
2 /γ 2. (8)

This can be shown by slightly extending standard results
(Gardiner, 2010, Chap. 8.2).

The potentialV (z) is here assumed to be a general fourth-
order polynomial (Kwasniok and Lohmann, 2009):

V (z) = a4z
4
+ a3z

3
+ a2z

2
+ a1z (9)

with free parameters{ai}
4
i=1 to be determined from data.

3 Model estimation

3.1 Unscented Kalman filter

The unscented Kalman filter (UKF) (Julier et al., 2000; Sitz
et al., 2002; Julier and Uhlmann, 2004) is used for parame-
ter estimation in the oscillator model. It allows for recursive
estimation of unobserved states and parameters in stochastic
nonlinear systems from incomplete, indirect and noisy obser-
vations. The UKF keeps the full nonlinear system dynamics
rather than linearising it but truncates the filter probability
density to a Gaussian in each iteration by only propagating
first and second moments.

We use the framework of a continuous-discrete nonlin-
ear state space model. The evolution of the state vectorz =

(z,v)T of dimensionn = 2 is governed by the continuous-
time, nonlinear stochastic dynamical system:

ż = f (z;λ) + ξ , (10)

which is given by Eqs. (3) and (4).λ = (a4,a3,a2,a1,γ )T

is the vector of system parameters of dimensionp = 5 and
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ξ is a vector of Gaussian white noises with zero mean and
covariance matrix:

Q =

(
σ 2

1 0
0 σ 2

2

)
. (11)

An augmented state vectorx of dimensionna = n+p = 7
is formed by merging the state vector and the parameters.
Equation (10), together with a constant dynamics for the pa-
rameters

λ̇ = 0, (12)

form the dynamical or state equation of the state space
model:

ẋ = f a(x) + ξa. (13)

ξa is the augmented noise process vector with corresponding
covariance matrixQa. At discrete timestk, observationsyk of
dimensionm = 1 are available which are linked to the state
by the observation equation:

yk = Hxk + εk. (14)

We here observe only the variablez; thus the observation op-
erator isH = (1,0,0,0,0,0,0). εk is white Gaussian obser-
vational noise with mean zero and varianceR.

The UKF provides estimates of the system states and pa-
rameters given a time series of noisy observations{yk}

N
k=0.

Let x̂k−1|k−1 be the mean estimate of the augmented state
vector andPk−1|k−1 its covariance matrix at time stepk − 1
having processed all data up to time stepk − 1. The fil-
ter density is represented by a small number of so-called
sigma points that are propagated through the full nonlinear
dynamical equations. The interval[tk−1, tk] is divided into
L equal subintervals of sizeh = (tk − tk−1)/L, and a se-
quence of estimates{x̂l,Pl}

L
l=0 is generated. Having arrived

at x̂l−1 and Pl−1, we use 2na sigma points,{xi
l−1|l−1}

2na

i=1
,

each in augmented state space of dimensionna, given as

{x̂l−1 − w
j

l−1, x̂l−1 + w
j

l−1}
na

j=1
. The vectors{wj

l−1}
na

j=1
are

the columns ofA where A can be any matrix satisfying
AAT

= naPl−1. Here, we calculateA using the Cholesky de-
composition ofPl−1. The sigma points are transformed as

xi
l|l−1 = xi

l−1|l−1 + hf a(xi
l−1|l−1), (15)

and new mean and covariance estimates are given by

x̂l =
1

2na

2na∑
i=1

xi
l|l−1 (16)

and

Pl =
1

2na

2na∑
i=1

(xi
l|l−1 − x̂l)(x

i
l|l−1 − x̂l)

T
+ hQa. (17)

The sequence is initialised witĥx0 = x̂k−1|k−1 andP0 =

Pk−1|k−1. We setx̂k|k−1 = x̂L andPk|k−1 = PL. Then the es-
timates of the states and the parameters as well as their un-
certainties are updated using the new observation according
to the Kalman update equations:

x̂k|k = x̂k|k−1 + K kζk; (18)

Pk|k = (I − K kH)Pk|k−1. (19)

Here

ζk = yk − Hx̂k|k−1 (20)

is the innovation or residual,

K k = Pk|k−1HTS−1
k (21)

is the Kalman gain matrix and

Sk = HPk|k−1HT
+ R (22)

is the predicted residual covariance matrix.

3.2 Estimation of noise parameters

For estimation of the noise levelsσ1 andσ2, we follow the
likelihood approach recently proposed byKwasniok(2012).
At time stepk, the predictive probability density of the UKF
for the residualζk is a Gaussian with zero mean and variance
Sk. Thus the log-likelihood function of the data set is

l(σ1,σ2) = −
N

2
log2π −

1

2

N∑
k=1

(
logSk +

ζ 2
k

Sk

)
. (23)

The UKF is run for different noise parameters and the like-
lihood maximised. It is sufficient to just calculate the likeli-
hood on a fine enough mesh in noise parameter space and
find the maximum. The method for estimating the noise lev-
els is based on internal consistency; for the correct noise
parameters, the uncertainty propagated by the Kalman filter
matches the true predictive uncertainty reflected in the data.

4 Simulated data

We first use simulated data to test the ability of the method
to reliably identify system parameters and noise levels. A
symmetric double-well potential is chosen given byV (z) =

10z4
− 20z2. The damping constant isγ = 10; the noise lev-

els areσ1 = 1 andσ2 = 10. The system is integrated using
the Euler-Maruyama scheme with a step size of 10−5. Only
the variablez is observed. No observational noise is added.
Figure 1 displays a sample trajectory of the variablez in the
system. The time scale of transitions between the two stable
states is of the same order as in the ice-core record consid-
ered later (Fig. 4) when interpreting the system units as ky.

The system is quite dissipative but not in the limit that it
could be described by a one-dimensional Langevin equation.

www.nonlin-processes-geophys.net/19/595/2012/ Nonlin. Processes Geophys., 19, 595–603, 2012



598 F. Kwasniok and G. Lohmann: Oscillator model for glacial millennial-scale climate transitions

6 F. Kwasniok and G. Lohmann: Oscillator model for glacial millennial-scale climate transitions

lation origin for the 1,500-year cycle, Climate Dynamics, 32,
301–311, 2009.

Ditlevsen, P. D.: Observation ofα-stable noise induced millennial
climate changes from an ice-core record, Geophys. Res. Lett.,445

26, 1441–1444, 1999.
Ditlevsen, P. D., Kristensen, M. S., and Andersen, K. K.: There-

currence time of Dansgaard-Oeschger events and limits on the
possible periodic component, J. Climate, 18, 2594-2603, 2005.

Ganopolski, A. and Rahmstorf, S.: Rapid changes of glacial cli-450

mate simulated in a coupled climate model, Nature, 409, 153–
158, 2001.

Ganopolski, A. and Rahmstorf, S.: Abrupt glacial climate changes
due to stochastic resonance, Phys. Rev. Lett., 88, 038501, 2002.

Gardiner, C.: Stochastic Methods, 4th ed., Springer, 2010.455

Julier, S. J. and Uhlmann, J. K.: Unscented filtering and nonlinear
estimation, Proceedings of the IEEE, 92, 401–422, 2004.

Julier, S., Uhlmann, J., and Durrant-Whyte, H. F.: A new method
for the nonlinear transformation of means and covariances in fil-
ters and estimators, IEEE Transactions on Automatic Control,460

45, 477–482, 2000.
Kramers, H.: Brownian motion in a field of force and the diffusion

model of chemical reactions, Physica, 7, 284, 1940.
Kwasniok, F.: Estimation of noise parameters in dynamical sys-

tem identification with Kalman filters, Phys. Rev. E, 86, 036214,465

2012.
Kwasniok, F. and Lohmann, G.: Deriving dynamical models from

paleoclimatic records: Application to glacial millennial-scale cli-
mate variability, Phys. Rev. E, 80, 066104, 2009.

Livina, V. N., Kwasniok, F., and Lenton, T. M.: Potential analysis470

reveals changing number of climate states during the last 60kyr,
Clim. Past, 6, 77–82, 2010.

Rial, J. A.: Abrupt climate change: chaos and order at orbital
and millennial scales, Global and Planetary Change, 41, 95–109,
2004.475

Sakai, K. and Peltier, W. R.: Dansgaard-Oeschger oscillations in a
coupled atmosphere-ocean climate model, J. Climate, 10, 949–
970, 1997.

Schulz, M., Paul, A., and Timmermann, A.: Relaxation oscilla-
tors in concert: A framework for climate change at millennial480

timescales during the late Pleistocene, Geophys. Res. Lett., 29,
2193, 2002.

Silverman, B. W.: Density estimation for statistics and data analy-
sis, Chapman & Hall, 1986.

Sitz, A., Schwarz, U., Kurths, J., and Voss, H. U.: Estimation of485

parameters and unobserved components for nonlinear systems
from noisy time series, Phys. Rev. E, 66, 016210, 2002.

Timmermann, A., Gildor, H., Schulz, M., and Tziperman, E.: Co-
herent resonant millennial-scale climate oscillations triggered by
massive meltwater pulses, J. Climate, 16, 2569–2585, 2003.490

-2

-1

 0

 1

 2

 0  10  20  30  40

z

time
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Fig. 1. Sample trajectory ofz in the oscillator with symmetric
double-well potential.

Let z∗ = 0 be the maximum of the potential. Introducing the
frequencyω∗ by ω2

∗ = |V ′′(z∗)| we haveγ /ω∗ ≈ 1.6 which
is neither small nor large compared to 1, corresponding to
an intermediate regime ofγ . One may also look at the be-
haviour of the system in the vicinity of the minimaz0 = ±1.
We introduce the deviation from the equilibriumx = z − z0
and the frequencyω0 by ω2

0 = V ′′(z0). For small|x|, the de-
terministic part of the system is then given by the damped
harmonic oscillator equation:

ẍ + γ ẋ + ω2
0x = 0. (24)

The solution type is characterised by the damping ratioρ =
γ

2ω0
. The valuesρ = 0, 0< ρ < 1, ρ = 1 andρ > 1 corre-

spond to the undamped, underdamped (oscillatory), critically
damped and overdamped regimes, respectively. We here have
ρ ≈ 0.56. The system exhibits damped oscillations with pe-
riod 0.85 ande-folding time 0.2.

In order to have a comparison with the relatively short
ice-core record, we use simulated time series of lengthN =

800 with sampling intervalδt = 0.05, spanning a time pe-
riod of 40 time units, and then perform multiple experi-
ments. The UKF is initialised with the parameter setting
(a4,a3,a2,a1,γ ) = (5,5,−10,5,5). The initial state esti-
mate is given by the initial observation; the initial velocity
estimate is set to zero. The initial variances are all set to
100 except for the state where it is zero as there is no ob-
servational noise. The step size in the UKF ish = δt/100=

0.0005; we setR = 10−12. The data set spanning a period
of 40 time units with 800 data points is too small to obtain
well-converged estimates for the parameters. Therefore, the
data are processed 10 times to improve the estimates. Each
new sweep is started with the final estimates for the parame-
ters and uncertainties from the preceding sweep but the off-
diagonal elements of the covariance matrix set to zero (Sitz
et al., 2002).

Figure 2 shows the log-likelihood as a function of the noise
levelsσ1 andσ2 for a particular realisation taken over the last
sweep through the data. Using a grid of size 0.01 forσ1 and
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0.5 forσ2, the maximum of the likelihood is atσ1 = 0.99 and
σ2 = 11.5. Due to the shortness of the time series, estimation
of the noise levels is quite ill-conditioned as the likelihood
function is relatively flat.

Figure 3 displays the parameter estimates together with the
error standard deviations as the algorithm proceeds through
the time series. Taking averages over the last sweep of
800 data points and the final error estimates, the values of
the parameters area4 = 10.10± 0.59, a3 = −0.30± 0.48,
a2 = −18.33±1.38,a1 = −0.49±1.26 andγ = 9.83±0.66.
The uncertainties in the estimates are considerable as one ex-
pects given the shortness of the time series. For all parame-
ters, the true values are consistent with the mean and error
estimates of the Kalman filter. The potential corresponding
to the mean parameter estimates is plotted in Fig. 3f.

An ensemble of 100 realisations of time series of length
N = 800 spanning a time interval of 40 time units was per-
formed. The means and standard deviations calculated from
this ensemble area4 = 10.55±1.79,a3 = −0.04±1.33,a2 =

−20.74± 3.37, a1 = 0.09± 3.78, γ = 10.21± 2.26, σ1 =

1.00± 0.03 andσ2 = 10.26± 2.47. The corresponding po-
tential is very close to the true one (Fig. 3f); the errors in
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a4 anda2 almost cancel over thez-range where the data are.
The noise levelσ2 is slightly overestimated as is the damping
coefficientγ . The standard deviation ofσ2 is quite large as
v is not observed; this is somewhat mitigated by the existing
positive correlation between the uncertainties inσ2 andγ .

We also processed the data with the extended Kalman fil-
ter, a simpler and more common nonlinear Kalman filter
algorithm. The mean estimates and standard deviations ob-
tained from the same ensemble of 100 realisations used be-
fore area4 = 10.50±1.90,a3 = 0.01±1.28,a2 = −19.05±

3.56,a1 = −0.08±3.73,γ = 10.38±2.46,σ1 = 1.00±0.03
andσ2 = 10.22± 2.86. The estimate of the potential is con-
siderably worse than that with the unscented Kalman fil-
ter. The fine structure of the potential is somehow missed;
the wells are too shallow (Fig. 3f). The substantial dynami-
cal noise level gives the system a truly stochastic character.
Therefore the propagated state uncertainties are quite large;
the superior covariance propagation of the unscented Kalman

filter over the extended Kalman filter then has a visible effect.
We conclude that in the present context there is some case for
using the more advanced unscented Kalman filter.

5 Ice-core data

We investigate the record ofδ18O as a proxy for Northern
Hemisphere temperatures from the North Greenland Ice Core
Project (NGRIP) (North Greenland Ice Core Project mem-
bers, 2004). In order to focus on the DO activity, the time
series for the period from 60 ky to 20 ky before present is ac-
tually used for the analysis (Fig. 4). The mean value for that
period is−41.75 ‰; it is removed from the data set prior
to the analysis as the dynamical model is formulated as an
anomaly model. The data are equidistant with a sampling in-
tervalδt = 0.05 ky, resulting inN = 800 data points.
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Fig. 4.Record ofδ18O from the NGRIP ice core for the last glacial
period.

The measurement error of the ice-core record is indicated
to be as small as 0.07 % (North Greenland Ice Core Project
members, 2004). The error due to uncertain dating is hard to
quantify but is probably larger than the measurement error.
Yet dynamical modelling (Kwasniok, 2012) confirms that the
uncertainty is dominated by the large dynamical noise level
and observational noise is negligible. The underlying dynam-
ics of the ice-core data is strongly stochastic and determin-
ism is weak as has been shown using the method of surrogate
data (Kwasniok and Lohmann, 2009). Technically,R is not
set exactly to zero but to a very small value, say 10−12, to
guarantee that the covariance matrices in the Kalman filter
are positive definite for the algorithm not to break down due
to rounding errors.

The ice-core data are processed in the same way as the
simulated data. The step size in the Kalman filter is set to
h = δt/100= 0.0005 ky. Figure 5 displays the log-likelihood
as a function of the noise levelsσ1 andσ2 calculated from
the last sweep through the data. It turns out that approxi-
mately models with the same valueτ2

= σ 2
1 +σ 2

2 /γ 2 have the
same likelihood; the likelihood contours in the(σ1,σ2/γ )-
plane are circles. The maximum of the likelihood is at a ra-
dius of aboutτ = 3.95. Moreover, models on the same like-
lihood contour have the same scaled potentialV (z)/γ . From
Eqs. (7) and (8), this is an indication that the system is in the
limit of strong dissipation and models with the same effec-
tive one-dimensional noise levelτ are equivalent. The exact
value ofγ is ill-determined and depends on its initial esti-
mate and uncertainty, but it is certainly very large (γ ∼ 500–
1000).V (z)/γ andσ2/γ are virtually independent of the pre-
cise value ofγ . We can therefore fixγ to an indicative value,
sayγ = 1000. Given that the partition of the noise amongσ1
andσ2 does not matter here, we restrict our attention in the
following to the caseσ1 = 0, that is, the classical Kramers
problem.

For the ice-core data, the parametera1 turns out to be ill-
determined. This is probably a combined effect of the high
noise level, the almost degenerate shape of the potential and
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the structural model error. The problem is removed by apply-
ing the constraint that the mean state of the model matches
the mean state of the data (cf.Kwasniok and Lohmann,
2009), that is,〈z〉 =

∫
∞

−∞
zp(z)dz = 0, leading to the condi-

tion (cf. Eq. 5)
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Fig. 7. Ice-core data:(a) Estimates fora4/γ and a3/γ with er-
ror standard deviation.(b) Estimates fora2/γ with error stan-
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∞∫
−∞

zexp
[
−2γV (z)/σ 2

2

]
dz = 0. (25)

It is easily seen that, for fixed parametersa4, a3, a2, γ and
noise levelσ2, the mean state〈z〉 tends to+∞ asa1 goes
to −∞, tends to−∞ asa1 goes to+∞, and has a mono-
tonic dependence ona1 in between. Thus Eq. (25) uniquely
determinesa1 for givena4, a3, a2, γ andσ2. The integral is
evaluated numerically; the root is then found by running 15
iterations of the bisection algorithm starting with the interval
[−10,10] for a1/γ . The UKF is modified in that onlya4, a3
anda2 are parameters to be estimated. We then haven = 2,
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Fig. 8. (a) Record ofδ18O from the NGRIP ice core for the last
glacial period with the mean value removed.(b) Sample trajec-
tory of the oscillator model.(c) Sample trajectory of the one-
dimensional potential model.

p = 3 andna = 5. a1 is treated as a constant in the Kalman
filter and updated according to Eq. (25) at each data point af-
ter the Kalman update using the current estimates ofa4, a3
anda2.

Figure 6 shows the log-likelihood as a function ofσ2/γ .
There is a maximum atσ2/γ = 4 using a mesh of size
0.1. This is compared to directly fitting a one-dimensional
Langevin model given by Eq. (1) with a potentialU(z) =∑4

i=1aiz
i and a noise levelτ using the procedure ofKwas-

niok and Lohmann(2009). We then have a maximum of
the likelihood atτ = 3.9. Apart from a small shift in the
noise level, the two likelihood profiles are virtually the
same; in particular the obtained maximum of the likelihood
is the same. It is not clear where the shift in the noise
level comes from; it is somehow in accordance with the

www.nonlin-processes-geophys.net/19/595/2012/ Nonlin. Processes Geophys., 19, 595–603, 2012



602 F. Kwasniok and G. Lohmann: Oscillator model for glacial millennial-scale climate transitions

slight overestimation ofσ2 in the simulated data. Figure 7
shows the parameter estimates and the derived potential.
Averaging over the last sweep, the parameters area4/γ =

0.16±0.01,a3/γ = −0.22±0.02,a2/γ = −0.87±0.07 and
a1/γ = 1.39. The potential is bistable and asymmetric; it has
a deep well corresponding to the cold stadial state and a shal-
low well corresponding to the warm interstadial state. The
curvature of the potential givesγ /ω∗ ∼ 20� 1, confirming
that the system is clearly in the limit of strong dissipation.
Also, when linearising the oscillator equation about the two
equilibria of the potential, we get a damping ratio ofρ ∼ 5
for the cold state andρ ∼ 10 for the warm state, both far into
the overdamped regime. The potential obtained by directly
fitting a one-dimensional potential model is also given; it is
virtually identical. The parameters then area4 = 0.17±0.01,
a3 = −0.25± 0.02, a2 = −0.91± 0.07 anda1 = 1.50. Fig-
ure 7c also displays the stationary probability densities of
the data and the two models; they are inflated by a factor
of 25 to increase the readability of the plot. The probabil-
ity densities were estimated using a Gaussian kernel estima-
tor with the standard choice for the bandwidth (Silverman,
1986). Figure 8 gives sample trajectories of the oscillator
model and the one-dimensional Langevin model contrasted
with the anomaly ice-core record. As expected, the oscilla-
tor model is statistically indistinguishable from the potential
model.

6 Conclusions

We conclude that a Duffing-type oscillator model can be de-
termined from the ice-core data, but it is in the regime of
strong dissipation and can be very well approximated by a
one-dimensional effective Langevin equation. The additional
dynamics offered by Eqs. (3) and (4) over Eq. (1) is not actu-
ally used by the system. The simpler one-dimensional model
yields virtually the same likelihood as well as an equiva-
lent potential and noise level. As already shown inKwasniok
and Lohmann(2009), such a model is able to capture some
basic features of the ice-core record: the two modes of the
probability density with approximately the correct popula-
tion (Fig. 7c) as well as the amplitude and time scale of the
switches between the stadial and interstadial state (Fig. 8).
It cannot capture the pronounced temporal asymmetry of the
DO events. A van der Pol-type relaxation oscillator might
be more adequate here. But this is outside the scope of the
present study and may be pursued elsewhere.
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