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Abstract. Geophysical processes are typically variable over
huge ranges of space-time scales. This has lead to the de-
velopment of many techniques for decomposing series and
fields into fluctuations1v at well-defined scales. Clas-
sically, one defines fluctuations as differences: (1v)diff =

v(x+1x)−v(x) and this is adequate for many applications
(1x is the “lag”). However, if over a range one has scal-
ing 1v ∝1xH , these difference fluctuations are only ade-
quate when 0<H < 1. Hence, there is the need for other
types of fluctuations. In particular, atmospheric processes in
the “macroweather” range≈ 10 days to 10–30 yr generally
have−1<H < 0, so that a definition valid over the range
−1<H < 1 would be very useful for atmospheric applica-
tions.

A general framework for defining fluctuations is wavelets.
However, the generality of wavelets often leads to fairly arbi-
trary choices of “mother wavelet” and the resulting wavelet
coefficients may be difficult to interpret. In this paper we ar-
gue that a good choice is provided by the (historically) first
wavelet, the Haar wavelet (Haar, 1910), which is easy to in-
terpret and – if needed – to generalize, yet has rarely been
used in geophysics. It is also easy to implement numerically:
the Haar fluctuation (1v)Haarat lag1x is simply equal to the
difference of the mean fromx to x+1x/2 and fromx+1x/2
to x+1x. Indeed, we shall see that the interest of the Haar
wavelet is this relation to the integrated process rather than
its wavelet nature per se.

Using numerical multifractal simulations, we show that it
is quite accurate, and we compare and contrast it with an-
other similar technique, detrended fluctuation analysis. We
find that, for estimating scaling exponents, the two methods
are very similar, yet Haar-based methods have the advantage
of being numerically faster, theoretically simpler and physi-
cally easier to interpret.

1 Introduction

In many branches of science – and especially in the geo-
sciences –one commonly decomposes space-time signals
into components with well-defined space-time scales. A
widely used method is Fourier analysis which – when com-
bined with statistics – can be used to quantify the contribu-
tion of structures of a given frequency and/or wavenumber to
the total variance of the process. Often, however, real space
analyses are preferable, not only because they are simpler to
perform, but more importantly – because they are simpler to
interpret. The latter are based on various definitions of fluc-
tuations at a given scale and location, the simplest being the
differences:

(1v(1x))diff ≡ |δ1xv| ;δ1xv (x+1x)− v(x), (1)

where the position isx, and the scale (“lag”)1x andδ is the
difference operator (the parentheses with the “diff” subscript
are only used when it is important to distinguish the differ-
ence fluctuation from others). For simplicity, we consider a
scalar function (v) of a scalar position and/or of time. We
consider processes whose statistics of a given order are trans-
lationally invariant (statistically homogeneous in space, sta-
tionary in time). The resulting fluctuations can then be statis-
tically characterized, the standard method being via the mo-
ments<1vq >. Whenq = 2, these are the classical struc-
ture functions; whenq 6= 2, they are the “generalized” coun-
terparts.

The space-time variability of natural systems can often be
broken up into various “scaling ranges” over which the fluc-
tuations vary in a power law manner with respect to scale.
Over these ranges, the fluctuations follow:
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1v = ϕ1x1x
H , (2)

where1x is a random field (or series, or transects thereof
at resolution1x) and the equality is a statistical one, i.e.
in the sense of probability distributions. Below for simplic-
ity, we consider spatial transects with lag1x, but the results
are identical for temporal lags1t . In fluid systems such as
the atmosphere,ϕ is a turbulent flux. For example, the Kol-
mogorov law corresponds to takingv as a velocity compo-
nent andϕ = ε1/3 with ε as the energy flux. The classical
turbulence laws assumed fairly uniform fluxes, typically that
ϕ is a quasi-Gaussian process.

Taking theq-th power of Eq. (2) and ensemble averaging,
we see that the statistical characterization of the fluctuations
in terms of generalized structure functions is

Sq (1x)=
〈
1v(1x)q

〉
=

〈
ϕ
q
1x

〉
1xqH ≈1xξ(q)〈

ϕ
q
1x

〉
=

(
L

1x

)K(q)
;ξ (q)= qH −K (q) (3)

whereSq(1x) is theq-th order structure function andξ(q)
is the corresponding exponent,K(q) is the moment scaling
function that characterizes the flux andL is that outer scale
of the scaling regime (e.g. of a cascade process). In the clas-
sical quasi-Gaussian case,K(q)= 0 so thatξ(q) is linear.
More generally, if the field is intermittent – for example if
it is the result of a multifractal process – then the exponent
K(q) is generally non linear and convex and characterizes
the intermittency. Since the ensemble mean of the flux spa-
tially averaged at any scale is the same (i.e.< ϕ1x > is con-
stant, independent of1x), we haveK(1)= 0 andξ(1)=H .
The physical significance ofH is thus that it determines the
rate at which mean fluctuations grow (H > 0) or decrease
(H < 0) with scale1x.

There is a simple and useful expression for the exponent
β of the power spectrumE(k)≈ k−β . It is β = 1+ ξ(2)=

1+ 2H −K(2) which is a consequence of the fact that the
spectrum is a second-order moment (the Fourier transform
of the autocorrelation function).K(2) is therefore often re-
garded as the spectral “intermittency correction”. Note how-
ever that, even ifK(2) is not so large (it is often in the range
0.1–0.2 for turbulent fields), the intermittency is neverthe-
less important: firstly, becauseK(q) typically grows rapidly
with q so that the high-order moments (characterizing the ex-
tremes) can be very large; secondly, because it is an exponent
so that even when it is small, whenever the range of scales
over which it acts is large enough, its effect can be large; in
geo-systems, the scale ratio can be 109 or larger.

Over the last 30 years, structure functions based on differ-
ences and with concave rather than linearξ(q) have been suc-
cessfully applied to many geophysical processes; this is espe-
cially true for atmospheric processes at (weather) time scales
shorter than≈ 10 days which usually have 0>H > 1. In

v(x)

x

Fig. 1. This shows samples of the simulations analysed in Sect. 5.
From bottom to top,H = −7/10,−3/10,3/10,7/10. All have
C1 = 0.1,α = 1.8; the sections are each 213 points long. One can
clearly see the change in character of the series whenH changes
sign. At the bottom, fluctuations tend to cancel out, fluctuations are
“stable”. At the top, they tend to reinforce each other, and fluctua-
tions are “unstable”.

addition, in turbulence theory there are many useful theoreti-
cal results for these classical structure functions (e.g. Monin
and Yaglom, 1975). However, it turns out that the use of dif-
ferences to define the fluctuations is overly (and needlessly)
restrictive. The problem becomes evident when we consider
that the mean difference cannot decrease with increasing1x:
for processes withH < 0, the differences simply converge
to a spurious constant depending on the highest frequencies
available in the sample. Similarly, differences cannot grow
faster than1x – they “saturate” at a linear function – whose
slope depends on the lowest frequencies present in the sam-
ple; the process no longer has stationary increments. Hence,
they cannot be used whenH > 1. Overall, wheneverH is
outside the range 0>H > 1, the exponentξ(q) is no longer
correctly estimated. The problem is that we need a definition
of fluctuations such that1v(1x) is dominated by wavenum-
bers in the neighbourhood of1x−1. Appendix A gives more
details about the relation between real and Fourier space and
the ranges ofH relevant for various types of fluctuation, and
Fig. 1 shows the shape of typical sample series asH varies.

The need to define fluctuations more flexibly motivated
the development of wavelets (e.g. Holschneider, 1995; Tor-
rence and Compo, 1998), the classical difference fluctua-
tion being only a special case, the “poor man’s wavelet”.
To change the range ofH over which fluctuations are use-
fully defined, one must change the shape of the defining
wavelet. In the usual wavelet framework, this is done by
modifying the “mother wavelet” directly, various derivatives
of the Gaussian are popular, especially the second derivative
“Mexican hat”. Following this, the fluctuations are calculated
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as convolutions with fast Fourier (or equivalent) numerical
techniques.

A problem with this usual wavelet implementation is that
not only are the convolutions numerically cumbersome, but
the physical interpretation of the fluctuations is largely lost.
In contrast, when 0<H < 1, the difference structure func-
tion gives direct information on the typical difference (q = 1)
and typical variations around this difference (q = 2) and even
typical skewness (q = 3) or typical Kurtosis (q = 4) or – if
the probability tail is algebraic – of the divergence of high-
order moments of differences. Similarly, when−1<H < 0,
one can define the “tendency structure function” (below)
which directly quantifies the fluctuation’s deviation from
zero and whose exponent characterizes the rate at which the
deviations decrease when we average to larger and larger
scales. These poor man’s and tendency fluctuations are also
very easy to directly estimate from series with uniformly
spaced data and – with straightforward modifications – to
irregularly spaced data.

In Lovejoy and Schertzer (2012a, b), it is argued that,
with only a few exceptions for atmospheric processes in the
“weather” regime (1t / 10 days), 0<H < 1 so that fluctu-
ations increase with scale and the classical use of differences
is adequate. However, in the low frequency “macroweather”
regime (10 days/1t / 10–30 yr), on the contrary, quite
generally (in time, but not in space!) we find−1<H < 0 so
that fluctuations decrease with scale (although for larger1t

– the “climate” regime – it is again in the range 0>H > 1).
In order to cover the whole range (for the temperature, even
millions of years), one must thus use a definition of fluctua-
tions that is valid over the range 1>H >−1. This range is
also appropriate for many solid earth applications, includ-
ing topography, rock density, magnetic susceptibility, ge-
ogravity and geomagnetism; for a review, see Lovejoy and
Schertzer (2007). The purpose of this paper is to argue that
the Haar wavelet is particularly convenient, combining ease
of calculation and of interpretation, and – if needed – it can
easily be generalized to accommodate processes withH out-
side this range. We demonstrate this using multifractal sim-
ulations with variousH exponents to systematically com-
pare it to conventional spectral analysis and to another com-
mon – and quite similar – analysis technique, the detrended
fluctuation analysis (DFA) method (Peng et al., 1994), and
its extension, the multifractal detrended fluctuation analysis
(MFDFA) method (Kantelhardt et al., 2001, 2002).

2 Defining fluctuations using wavelets

Our goal is to find a convenient definition of fluctuations
valid at least over the range−1<H < 1, but before do-
ing so, it will be useful to first define tendency fluctuations
(1v (1x))tend. The first step is to remove the overall mean
(v (x)) of the series:v′ (x)= v (x)− v (x) and then take av-
erages over the lag1x. For this purpose, we introduce the
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Fig. 2.The top shows extracts of a multifractal temperature simula-
tion with H = 0.5, at one hour resolution (in the weather regime).
The bottom is the same simulation but at 16-day resolution (in the
low frequency weather regime,H = −0.4). One can clearly see
their differing characters corresponding toH > 0, H < 0 respec-
tively (see also Fig. 1). These simulations are used to illustrate the
two different types of structure function needed whenH > 0 (the
usual, difference) andH < 0, the “tendency” structure function.
Whereas the usual structure function yields typical differences in
T over an interval1t , so that the mean is of no consequence, the
tendency structure function uses the average of the field with the
mean removed. In both cases, theq = 2 moment was chosen be-
cause it is directly related to the spectrum. Taking the square root
is useful since the result is then a direct measure of the “typical”
fluctuations, e.g. for theT = the temperature, in units of K.

operatorT1x defining the tendency fluctuation(1v (1x))tend
as

(1v (1x))tend= T1xv =

∣∣∣∣∣ 1

1x

∑
x≤x′≤x+1x

v′
(
x′

)∣∣∣∣∣ (4)

or, with the help of the summation operatorS (not to be con-
fused with the structure function), equivalently by

(1v (1x))tend=

∣∣∣ 1
1x
δ1xSv′

∣∣∣ ; Sv′
=

∑
x′≤x

v′(x′) (5)

We can also use the suggestive notation(1v (1x))tend=

1v (see the schematic Fig. 2). When−1<H < 0,
(1v (1x))tend has a straightforward interpretation in terms
of the mean tendency of the data to decrease with averaging.
The tendency fluctuation is also easy to implement: simply
remove theoverall mean and then take the mean over inter-
vals1x: this is equivalent to taking the mean of the differ-
ences of the running sum.

www.nonlin-processes-geophys.net/19/513/2012/ Nonlin. Processes Geophys., 19, 513–527, 2012



516 S. Lovejoy and D. Schertzer: Haar wavelets, fluctuations and structure functions

It is now straightforward to define the Haar fluctuation by
taking the second differences of the mean:

(1v (1x))Haar=H1xv =
2

1x
δ2
1x/2Sv

=
2

1x
((s (x)+ s (x+1x))− 2s (x+1x/2))

=
2

1x

 ∑
x+1x/2<x′<x+1x

v
(
x′

)

−

∑
x<x′<x+1x/2

v
(
x′

) ;s (x)= Sv, (6)

whereH1x is the Haar operator (not to be confused with
the exponentH ). Note the use of the shorthand notation
s (x)=Sv.

As discussed in Sect. 3, this is still a valid wavelet (see
Fig. 3). However, it is almost trivial to calculate and it can
be used for−1<H < 1 (Appendix A; note there is an extra
factor of1x−1 with respect to the Haar wavelet coefficient;
see below). The numerical factor (2) is used so that the Haar
fluctuation is close to the usual differences when 0<H < 1,
(below). While this may still look a little complicated, it is
actually quite simple: in words, the Haar fluctuation at lag
1x is simply the difference of the mean fromx to x+1x/2
and fromx+1x/2 to x+1x i.e. it deals with fluctuations
in the integrated process.

From the definitions, it is easy to obtain the relation:

H1x = 2T1x/2δ1x/2 = 2δ1x/2T1x/2. (7)

This is useful for interpreting the Haar fluctuations in
terms of differences and tendencies (Sect. 5.2). Since the dif-
ference operator removes any constants, the tendency opera-
tor can be replaced by an averaging operator and is thus in-
sensitive to the addition of constants; Eq. (7) therefore means
that the Haar fluctuation is simply the difference of the series
that has been degraded in resolution by averaging. Note that,
for a series of lengthL, only a range of scalesL/2 is ac-
cessible; the definition Eq. (6) identifies the largest lag with
scaleL, the smallest with scale 2 (we could equally well have
modified the definition so that this would beL/2 and 1).

If needed, the Haar fluctuations can easily be generalized
to higher-ordern by usingn-th order differences on the sum
s:

H(n)
1x =

(n+ 1)

1x
δn+1
1x/(n+1)S. (8)

We note that then-th order Haar fluctuation is valid over
the range−1<H < n; due to then+1-th order difference,
it is insensitive to polynomials of ordern in the sum and of
ordern− 1 in the original series, although, as we see below,
for analyzing scaling series, this insensitivity has no partic-
ular advantage. Generalizations valid to orderH <−1 are

x( )

x

Fig. 3. This shows the “poor man’s wavelet” by black bars repre-
senting the amplitudes of Diracδ functions, (the basis of the usual
difference structure function, valid for 0<H < 1; this is only sym-
bolic since the trueδ function amplitude is of course infinite), the
Haar wavelet (the basis of the Haar structure function, uniform
blue shading, the second difference of the running sum, valid for
−1<H < 1), and the wavelet used for the “tendency” structure
function (valid for−1<H < 0), stippled shading.

also possible by iterating the sum operator. Note further that
H(1)
1x =H1x andH(0)

1xv
′
= T1xv′; hence, when applied to a

series with zero mean,H(0)
1x = T1x .

Consider for a moment the casen= 2 which defines the
“quadratic Haar fluctuation”:

(1v (1x))Haarquad=
3

1x
(s (x+1x)− 3s (x+1x/3)

+3s (x−1x/3)− s (x−1x)) . (9)

This fluctuation is sensitive to structures of size1x−1 – and
hence useful – over the range−1<H < 2, and it “filters”
out polynomials of order 1 (lines); this is thus essentially
equivalent to the commonly used quadratic(n= 2) MFDFA
(multifractal detrended fluctuation analysis, Sect. 4) tech-
nique that we numerically investigate below.

3 Fluctuations and wavelets

Wavelet analysis defines fluctuations with the help of a basic
“mother wavelet”9(x) and a convolution:

1v(x,1x)=

∫
v
(
x′

)
9

(
x′

− x

1x

)
dx′, (10)

where we have kept the notation1v to indicate “fluctua-
tion”. 1v defined this way is called a “wavelet coefficient”.
The basic “admissibility” condition on9(x) (so that it is
a valid wavelet) is that it has zero mean. If we take the
fluctuation1v as the symmetric (centred) difference1v =

v (x+1x/2)− v (x−1x/2), this is equivalent to using
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9 (x)= δ (x− 1/2)− δ (x+ 1/2) (11)

where “δ” is the Dirac delta function (Eq. 1, see Fig. 3; due to
the statistical translational invariance, the coordinate shift by
1/2 is immaterial). As discussed, this “poor man’s” wavelet
is adequate for many purposes. As the generality of the def-
inition (Eq. 10) suggests, all kinds of special wavelets can
be introduced. For example, orthogonal wavelets can be used
which are convenient if one wishes to reconstruct the origi-
nal function from the fluctuations, or to define power spectra
locally at a pointx rather than globally, (averaged over allx).

The other simple to interpret fluctuation, the “tendency
fluctuation” (Eq. 4), can also be expressed in terms of
wavelets:

9 (x)= I[−1/2,1/2] (x)−
I[−L/2,L/2](x)

L
; L� 1 (12)

whereI is the indicator function:

I[a,b] (x)=
1 a ≤ x ≤ b

0 otherwise
(13)

See Fig. 3 for a schematic. The first term in Eq. (12) repre-
sents the sum, whereas the second removes the mean where
L� 1 is the overall length of the data set. The removal of
the mean in this way is necessary so that the wavelet satis-
fies the admissibility condition that its mean is zero. The only
essential difference between the wavelet defined by Eq. (12)
and the “tendency fluctuation” defined in Eq. (4) (where the
mean is removed beforehand) is the extra normalization by
1x in Eq. (4) which changes the exponent by one.

Figure 3 also shows the wavelet corresponding to the Haar
fluctuation:

9 (x)=

1; 0 ≤ x < 1/2
−1; −1/2 ≤ x < 0

0; otherwise
(14)

To within the division by1x, and a factor of 2, the result
is the equivalent of using the Haar fluctuations (Eq. 6) as in-
dicated in Fig. 3. It can be checked (Appendix A) that the
Fourier transform of this wavelet is∝ k−1sin2 (k/4) so that
compared to the difference and tendency fluctuations, whose
mother wavelet has cutoffs only at high or low wavenum-
bers, it is better localized in Fourier space with both low and
high wavenumber fall-offs (≈ k and≈ k−1 respectively). The
Haar fluctuation is a special case of the Daubechies family of
wavelets (see e.g. Holschneider, 1995 and for some applica-
tions, see Koscielny-Bunde et al., 1998, 2006; Ashok et al.,
2010). It is also worth mentionning the paper by Veneziano
and Furcolo (2003) who pointed out that Haar wavelets can
profitably be used in theoretical calculations on multifractal
cascades.

If we are interested in fluctuations valid up untilH = 2, we
need merely to take derivatives (or differences). For example,

ψ(x)

x

Fig. 4. The popular Mexican hat wavelet (the second derivative of
the Gaussian red, valid for−1<H < 2) compared with the (nega-
tive) of the second finite difference wavelet (black bars representing
the relative weights ofδ functions, valid for 0<H < 2), and the
second-order “quadratic” Haar wavelet (blue) Eq. (9).

the second finite difference wavelet is

9 (x)=
1

2

(
δ

(
x+

1

2

)
+ δ

(
x−

1

2

))
− δ (x) (15)

(corresponding to1v = (v(x+1x)+v(x−1x/2))/2−v(x)

using centred differences, Fig. 4). Alternatively, we can com-
pare this with the quadratic Haar wavelet, Eq. (9):

−1/3; −1< x <−1/3
ψ (x)= 2/3; −1/3< x < 1/3

1/3;

0;

1/3< x < 1
otherwise

(16)

which is very close to the Mexican hat wavelet (see Fig. 4)
but is numerically much easier to implement. As with the
Mexican hat, it is valid, for−1<H < 2. It turns out that for
analyzing multifractals, even over their common range of va-
lidity (0 <H < 1), the Haar structure function is somewhat
better than the poor man’s wavelet-based structure function
(i.e. the usual structure function). This is demonstrated on nu-
merical examples in Sect. 5. Just as one can use higher and
higher- order finite differences to extend the range ofH val-
ues, one can simply use higher and higher-order derivatives
of the Mexican hat.

Wavelet mathematics are seductive – and there certainly
exist areas such as speech recognition – where both fre-
quency/wavenumber and temporal or spatial localization of
statistics are necessary. However, the use of wavelets in geo-
physics is often justified by the existence of strong local-
ized structures that are cited as evidence that the underly-
ing process is statistically nonstationary/statistically inho-
mogeneous (i.e. in time or in space respectively). However,
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multifractal cascades produce exactly such structures – the
“singularities” – but their statistics are strictly translationally
invariant. In this case, the structures are simply the result of
the strong singularities. Nevertheless, the local statistics are
usually uninteresting, and we usually average over them in
order to improve statistical estimates.

Before continuing to discuss other related methods for
defining fluctuations, we should mention that there have been
strong claims that wavelets are indispensable for analyzing
multifractals (e.g. Arneodo et al.,1999). In as much as the
classical definition of fluctuations as first differences is al-
ready a wavelet, this is true (see however the DFA discussion
below). Nevertheless, for most applications, one does not
need the full arsenal of wavelet techniques. At a more funda-
mental level, however, the claim is at least debatable since,
mathematically, wavelet analysis is a species of functional
analysis; i.e. its objects are mathematical functions defined at
mathematical points. On the contrary, the generic multifrac-
tal processes – cascades – are singular measures, they are
“delocalized”, see Schertzer and Lovejoy (1992), Schertzer
et al. (2002, 2010), so that strictly speaking, they are outside
the scope of wavelet analysis. Wavelets may therefore not al-
ways be appropriate. A particular example where wavelets
may be misleading is the popular “modulus maximum” tech-
nique where one attempts to localize the singularities (Bacry
et al., 1989; Mallat and Hwang, 1992). If the method is ap-
plied to a cascade process, then, as one increases the resolu-
tion (“zooming in”), the singularity localization never con-
verges implying that the significance of the method is not
as obvious as is claimed. Similar comments apply to the
more recent “wavelet leader” technique (Serrano and Figli-
ola, 2009).

4 Fluctuations as deviations from polynomial
regressions: the DFA, MFDFA techniques

We now discuss a variant method that defines the fluctuations
in a different way, but still quantifies the statistics in the man-
ner of the generalized structure function by assuming that the
fluctuations are stationary: multifractal detrended fluctuation
analysis. The MFDFA technique (Kantelhardt et al., 2001,
2002) is a straightforward generalization of the original de-
trended fluctuation analysis (DFA, Peng et al., 1994). The
method works for 1-D sections, so consider the transectv(x)

of series on a regular grid with resolution= 1 unit,L units
long. The MFDFA starts by replacing the original series by
the running sum:

s (x)= Sv′
=

∑
x′≤x

v′
(
x′

)
(17)

(cf. Eq. 5). As discussed above, a sum is a finite differ-
ence of order−1, so that analysings rather thanv allows
the treatment of transects withH down to−1 (we will dis-
cuss the upper bound shortly). We now divide the range

into L1x = int(L/1x) disjoint intervals, each indexed by
i = 1,2, ...,L1x (“int” means “integer part”). For each inter-
val starting atx = i1x, one defines the “n-th order” fluctua-
tion by the standard deviationσs of the difference ofs with
respect to a polynomialFn(x,1x)= σs in the running sum
of v as follows:

Fn (x,1x)= σs

=

[
1

1x

1x∑
j=1

(
s ((i− 1)1x+ j)−pn,i (j)

)2

]1/2

;

(1v (1x))MFDFA =
Fn

1x
=
σs

1x
. (18)

x = i1x andpn,i(x) is then-th order polynomial regression
of s(x) over thei-th interval of length1x; it is the poly-
nomial that “detrends” the running sums; the fluctuation
σs is the root-mean-square deviation from the regression.F

is the standard DFA notation for the “fluctuation function”;
as indicated, it is in fact a fluctuation in the integrated se-
ries quantified by the standard deviationσs. Using F , we
haveFn = σs =1x(1v)MFDFA. So in terms of the usually
cited DFA fluctuation exponentα (not the Levyα!), we have
Fn ≈1xα andα = 1+H so that the (second-order) spec-
tral exponentβ = 2α−1−K(2), hence the oft-cited relation
β = 2α− 1 ignores the intermittency correctionK(2). The
fluctuation (1v)MFDFA is very close to then-th order finite
difference ofv. It is also close to a wavelet-based fluctua-
tion where the wavelet is ofn-th order, although this is not
completely rigorous (see however Kantelhardt et al., 2001;
Taqqu et al., 1995). As a practical matter, in the above sum,
we start with intervals of length1x = n+1 and normalize by
the number of degrees of freedom of the regression, i.e. by
1x− n not by1x; Eq. (18) is the approximation for large
1x.

In the usual presentation of the MFDFA, one considers
only a single realization of the process and averages powers
of the fluctuations over all the disjoint intervalsi. However,
more generally, we can consider a statistical ensemble and
average over all the intervals and realizations. If in addition,
we consider moments other thanq = 2, then we obtain the
multifractal DFA (MFDFA) with the following statistics:〈
|Fn (1x)|

q
〉1/q

=
〈
|σs(1x)|

q
〉1/q

=
〈
|1x (1v (1x))MFDFA|

q
〉1/q

=1xh(q), (19)

where we have used the exponenth(q) as defined in Davis
et al. (1996) and Kantelhardt et al. (2002). In what follows,
we will refer to the method as the MFDFA technique, even
though the only difference with respect to the DFA is the
consideration of theq 6= 2 statistics.

From our analysis above, we see that then-th order
MFDFA exponenth(q) is related to the usual exponents by

h(q)= 1+ ξ (q)/q = (1+H)−K (q)/q; −1<H < n, (20)
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where we have used the relation
〈
(1v)

q
MFDFA

〉
≈1xξ(q).

Note that, in Eq. (20), the 1 appears because of the initial
integration of order 1 (the sum) in the MFDFA recipe. The
method works up toH = n, because the fluctuations are de-
fined as the residues with respect ton-th order polynomials of
the sumscorresponding ton+1-th order differences ins and
hencen-th order differences inv. The justification for defin-
ing the MFDFA exponenth(q) in this way is that in the ab-
sence of intermittency (i.e. ifK(q)= constant=K(0)= 0),
one obtainsh(q)=H = constant. Unfortunately – contrary
to what is often claimed – the nonconstancy ofh(q) nei-
ther implies that that the process is multifractal nor does
its constancy imply a monofractal process. To see this, it
suffices to consider the (possibly fractionally integrated, or-
derH) monofractalβ model which hasK(q)= C1(q − 1).
Therefore,h(q)= 1+H−C1+C1/q, which is not only non-
constant but even diverges asq approaches zero (indeed the
sameq = 0 divergence occurs for any universal multifractal
with α < 1; see Eq. (21) below: lim

q→0
h(q)→ ∞).

During the last ten years, the MFDFA technique has been
applied frequently to atmospheric data; of special note is the
work by A. Bunde and co-workers (e.g. Koscielny-Bunde et
al., 1998; Kantelhardt et al., 2001; Bunde et al., 2002, 2005;
Lennartz and Bunde, 2009) who effectively took advantage
of its ability to handle theH < 0, needed for macroweather
processes. In addition, several numerical studies have com-
pared the MFDFA performance to various wavelet tech-
niques. For example, for estimating exponents, Oswiecimka
et al. (2006) find it slightly superior to the wavelet transform
modulus maximum method, and Huang et al. (2011) find
it somewhat advantageous when compared to the wavelet
leader method. However, the exact status of the MFDFA
method is not clear since – at least in the multifractal case
– a completely rigorous mathematical analysis has not been
done, and the literature suffers from misleading claims to
the effect that the MFDFA is necessary because, by its con-
struction, it removes nonstationarities due to trends (linear,
quadratic etc. up to polynomials ordern− 1) in the data.
While it is true that it does remove polynomial trends, these
only account for fairly trivial types of nonstationarity: be-
yond this, the method continues to make the standard (and
strong) stationarity assumptions about the statistics of the
deviations which are left over after performing the polyno-
mial detrending. In particular, the MFDFA does nothing to
remove the most common genuine type of statistical nonlin-
earity in the geosciences: the diurnal and annual cycles which
still strongly break the scaling of the MFDFA statistics, and
this for any ordern. Furthermore, the corresponding wavelet
or finite difference definition of fluctuations can equally well
take into account these polynomial trends, and finally, the
method removes trends at all scales and locations so that
this emphasis on detrending is misleading. In other words,
the MFDFA is a variant with respect to some of the wavelet
methods, in particular with respect to the Haar wavelet and

its generalizations. While it may indeed yield accurate ex-
ponent estimates, it has the disadvantage that the interpreta-
tion of the fluctuations is not straightforward. In comparison,
the usual difference and tendency fluctuations and structure
functions have simple physical interpretations in terms of
magnitudes of changes (when 1>H > 0) and magnitudes
of average tendencies (when−1<H < 0).

5 A comparison of different fluctuations using
multifractal simulations

5.1 The simulations

To have a clearer idea of the limitations of the various fluctu-
ations for determining the statistics of scaling functions, we
shall numerically compare their performance and their corre-
sponding structure functions when applied to the characteri-
zation of multifractals. In order to easily compare them with
standard spectral analysis, we will only consider the second-
order (q = 2) structure functions and will use simulations of
universal multifractals (Schertzer and Lovejoy 1987, 1997).
Recall that universal multifractals are the result of stable, at-
tractive multiplicative cascade processes and have

K (q)=
C1

α− 1

(
qα − q

)
(21)

where 0≤ C1 is the codimension of the mean and 0≤ α ≤ 2
is the multifractality index (the Ĺevy index of the genera-
tor). The limit α → 1 givesK(q)= C1q logq and may be
obtained from Eq. (21) by using l’Ĥopital’s rule. Recall
(Eq. 3) that the corresponding structure function exponent
is ξ(q)= qH −K(q).

The following tests were all made on simulations with pa-
rametersα = 1.8, C1 = 0.1 with H in the range−7/10<
H < 7/10 (typical parameters in meteorology and in solid
earth geophysics; see the reviews Lovejoy and Schertzer,
2007, 2010b). These parameters yield an intermittency cor-
rectionK(2) = 0.18; 50 simulations were averaged to esti-
mate the ensemble statistics. The simulations were made us-
ing the technique described in Schertzer and Lovejoy (1987)
and refined in Lovejoy and Schertzer (2010a) for the fluxϕ

(i.e.H = 0). For the second fractional integration (to obtain
the fieldv from ϕ), we used a Fourier space power law filter
k−H (see Eq. 2). For this fractional integration, exponential
cutoffs were used at high wavenumbers to avoid small-scale
numerical instabilities (this is standard for differentiation; i.e.
when filtering byk−H with H < 0, it is equivalent to using
the “Paul” wavelet; see Torrence and Compo, 1998). The raw
series were 216 in length and were then degraded in resolu-
tion by factors of 4 to a length 214 pixels to avoid residual
finite size effects in the simulation at the smallest scales. In
order to avoid spurious correlations introduced by the peri-
odicity of the simulations, the series were split in half so that
the largest scale was 213.
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Fig. 5.The compensated spectra for an ensemble of 50 realizations,
214 each,α = 1.8, C1 = 0.1, intermittency correction=K(2)=

0.18, withH increasing from top to bottom from−7/10 to 7/10,
β = 1+2H−K(2). The dashed horizontal line is the theoretical be-
haviour indicated over the range used to estimate the exponent (i.e.
the highest and lowest factor of 100.5 in wavenumber have been
dropped). Each curve was offset in the vertical for clarity.

In Fig. 1 we already showed samples of the simulations
visually showing the effect of increasingH from −7/10
to 7/10. In Fig. 5, we show the compensated spectra (ob-
tained using standard Hann windows to avoid spectral leak-
age). As expected, we see that they are nearly flat, although
for the lowest and highest factors of about 100.5

≈ 3, there
were more significant deviations. The slopes of the central
portions were thus determined by regression, and the corre-
sponding exponents are shown in Fig. 6. In Fig. 5, the spectra
were averaged over logarithmically spaced bins, 10 per order
of magnitude (with the exception of the lowest factor of 10
where all the values were used). We also performed the re-
gressions using log-log fits using all the Fourier components
(rather than just the averaged values) in the same central
range; these gave virtually identical exponent estimates (the
mean absolute differences in the estimated spectral exponent
β were≈ ±0.007), and were thus not shown. Similarly, if
instead of using log-log linear regression, we use nonlinear
regressions over the same range, we obtain identical expo-
nents to within±0.009, and again these estimates were too
similar to be worth showing. From Fig. 6, one can see that
there seems to be a residual small bias of about−0.04, the
origin of which is not clear.

We next consider the Haar structure function which
we compare to the second- order(q = 2), quadratic (n=

2) MFDFA structure function analogue (based on the
MFDFA fluctuation (1v)MFDFA = F/1x where F is the
usual MFDFA scaling function; see Eq. 18). The former is
valid over the range−1<H < 1, the latter over the range
−1<H < 2. We can see (Fig. 7) that the Haar structure
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Fig. 6. This shows the regression estimates of the compensated
exponents for the spectraδξ (2) = ξ (2)numerics− ξ (2)theory (red;
perfect methods giveδξ (2) = 0), Haar structure function (q = 2;
green), quadratic,q = 2 MFDFA (dashed), the usual difference
(poor man’s) structure function (q = 2, blue, forH > 0), and the
tendency structure function (q = 2, same line, blue forH < 0).
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Fig. 7. This shows the compensated Haar structure functions

SHaar(1x)=

〈
1vHaar(1x)

2
〉1/2

(solid lines) and the second-order

MFDFA technique (dashed lines), again forH = −7/10 (top) to
H = 7/10 (bottom), every 1/5. Each curve was offset in the verti-
cal for clarity by 1/4. Flat regions correspond to the theoretically
predicted behaviours.

function does an excellent job with overall bias mostly
around+0.01 to 0.02, (Fig. 6), and that the MFDFA method
is nearly as good (overall bias≈ −0.02 to−0.04). It is inter-
esting to compare this in the same figure with the results of
the tendency structure function (H < 0) and the usual differ-
ence (poor man’s) structure function (H > 0), (Fig. 8). The
tendency structure function turns out to be quite accurate,

Nonlin. Processes Geophys., 19, 513–527, 2012 www.nonlin-processes-geophys.net/19/513/2012/



S. Lovejoy and D. Schertzer: Haar wavelets, fluctuations and structure functions 521

Fig. 8. This compares the compensated Haar structure function
(thick), the difference structure function (thin, below the axis, for
H = 3/10 (bottom) and 1/10 black, second up), and the tendency
structure function (third from bottom, thin red,H = −1/10), and
top, thin green,H = −3/10. It can be seen that the standard dif-
ference structure function has poor scaling for nearly two orders
of magnitude whenH = 1/10, and one order of magnitude for
H = 3/10 (see Fig. 6 for quantitative estimates).

except near the limiting valueH = 0 with the large scales
showing the largest deviations. In comparison, for the differ-
ence structure function, the scaling is poorest at the smaller
scales requiring a range factor of≈ 100 convergence for
H = 1/10 and a factor≈ 10 forH = 3/10. The overall re-
gression estimates (Fig. 6) show that the biases for both in-
crease near their limiting valuesH = 0 to accuracies≈ ±0.1
(note that they remain quite accurate if one only makes re-
gressions around the scaling part). This can be understood
since the process can be thought of as a statistical superposi-
tion of singularities of various orders, and only those singu-
larities with large enough orders (difference structure func-
tions) or small enough orders (tendency structure functions)
will not be affected by the theoretical limitH = 0. The main
advantage of the Haar structure function with respect to the
usual (tendency or difference) structure functions is precisely
that it is valid over the whole range−1<H < 1, so that it is
not sensitive to theH = 0 limit.

Before proceeding, we could make a general practical re-
mark about these real space statistics: most lags1x do not
divide the length of the series (L) exactly so that there is a
“remainder” part. This is not important for the small1x � L

sincef . For each realization, there will be many disjoint in-
tervals of length1x. However, whenL/3 ≈<1x < L, the
statistics can be sensitive to this since, from each realiza-
tion, there will only be one or two segments and hence poor
statistics. A simple expedient is to repeat the analysis on the
reversed series and average the two results. This can indeed
improve the statistics at large1x when only one or a small

number of realizations are available; it has been done in the
analyses presented here.

5.2 The theoretical relation between poor man’s,
tendency and Haar fluctuations, hybrid structure
functions

We have seen that, although the difference and tendency
structure functions have the advantage of having simple in-
terpretations in terms of respectively the average changes in
the value of the process and its mean value over an interval,
this simple interpretation is only valid over a limited range
of H values. In comparison, the Haar and MFDFA fluctu-
ations give structure functions with valid scaling exponents
over wider ranges ofH . But what about their interpretations?
We now briefly show how to relate the Haar, tendency and
poor man’s structure functions thus giving it a simple inter-
pretation as well.

In order to see the connection between the fluctuations, we
use the “saturation” relations:

δ1xv
d
= Ctendv; H < 0

T1xv
d
= Cdiffv; H > 0

(22)

whereCtendandCdiff are proportionality constants and
d
= in-

dicates equality in the random variables in the sense of prob-

ability distributions (a
d
= b if Pr(a > ζ)= Pr(b > ζ) where

“Pr” means “probability” andζ is an arbitrary threshold).
These relations were easily verified numerically and arise for
the reasons stated above; they simply mean that, for series
withH < 0, the differences are typically of the same order as
the function itself and that forH > 0, the tendencies are of
the same order: the fluctuations “saturate”. By using Eqs. (7)
and (22), we now obtain

H1xv = 2T1x/2δ1x/2v
d
= 2T1x/2v

d
= C′

tendT1xv;H < 0

H1xv = 2δ1x/2T1x/2v
d
= 2δ1x/2v

d
= C′

diff δ1xv;H > 0 (23)

whereC′

tend andC′

diff are “calibration” constants (only a lit-
tle different from the unprimed quantities – they take into
account the factor of two and the change from1x/2 to1x).
Taking theq-th moments of both sides of Eq. (23), we obtain
the results for the variousq-th order structure functions:〈
(1v)

q
Haar

〉〈
(1v)

q

diff

〉 = C′q

diff ; H > 0〈
(1v)

q
Haar

〉〈
(1v)

q

tend

〉 = C′q

tend; H < 0
(24)

This shows that, at least for scaling processes, the Haar
structure functions will be the same as the difference (H > 0)
and tendency structure functions (H < 0), as long as these
are “calibrated” by determiningC′

diff , andC′

tend. In other
words, by comparing the Haar structure functions with the
usual structure functions, we can develop useful correction
factors which will enable us to deduce the usual fluctuations
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given the Haar fluctuations. Although the MFDFA fluctua-
tions are not wavelet coefficients, at least for scaling pro-
cesses, the same basic argument applies. Since the MFDFA
and usual fluctuations scale with the same exponents, they
can only differ in their prefactors, the calibration constants.

To see how this works on a scaling process, we con-
fined ourselves to considering the root-mean-square (RMS)
S(1t)=<1v2 >1/2; see Fig. 9 which show the ratio of the
usualS(1t) to those of the RMS Haar and MFDFA fluctu-
ations. We see that, at small1x,s, the ratio stabilizes af-
ter a range of about a factor 10–20 in scale and that it is
quite constant up to the extreme factor of 3 or so (depend-
ing a little on theH value). The deviations are largely due
to the slower convergence of the usual RMS fluctuations to
their asymptotic scaling form. From the figure, we can see
that the ratiosC′

Haar= S/SHaar (Fig. 9 upper left) and corre-
spondingC′

MFDFA = S/SMFDFA (Fig. 9, upper right) are well
defined in the central region, and are near unity, more pre-
cisely in the range 1/2< C′

Haar<2 for the most commonly
encountered range ofH : −4/10<H < 4/10. In compari-
son (Fig. 9, bottom) over the same range ofH , we have
0.23> C′

MFDFA > 0.025 so that the MFDFA fluctuation is
quite far from the usual ones and varies strongly withH .
For applications, one may use the semi-empirical formulae
C′

Haar≈ 1.1e−1.65H andC′

MFDFA ≈ 0.075e−2.75H which are
quite accurate over the entire range−7/10<H < 7/10. Al-
though these factors in principle allow one to deduce the
usual RMS structure function statistics from the MFDFA
and Haar structure functions, this is only true in the scaling
regime. Since the corrections for Haar fluctuations are close
to unity, for many purposes they can be used directly.

5.3 Hybrid fluctuations and structure functions: an
empirical example with both H < 0, and H > 0
regimes

For pure scaling functions, the difference (1>H > 0) or ten-
dency (−1<H < 0) structure functions are adequate; the
real advantage of the Haar structure function is apparent for
functions with two or more scaling regimes: one withH > 0,
one withH < 0. Can we still “calibrate” the Haar structure
function so that the amplitude of typical fluctuations can still
be easily interpreted? For these, consider Eq. (23) which mo-
tivates the definition,

Hhybrid,1xv = max(δ1xv,T1xv), (25)

of a “hybrid” fluctuation as the maximum of the difference
and tendency fluctuations; the “hybrid structure function” is
thus the maximum of the corresponding difference and ten-
dency structure functions and therefore has a straightforward
interpretation. The hybrid fluctuation is useful if a unique
calibration constantChybrid can be found:

Hhybrid,1xv
d
≈ ChybridH1xv. (26)

To get an idea of how the different methods can work on
real data, we consider the example of the global monthly av-
eraged surface temperature of the earth. This is obviously
highly significant for the climate, but the instrumental tem-
perature estimates are only known over a small number of
years. For this purpose, we chose three different series whose
period of overlap was 1880–2008; 129 yr. These were the
NOAA NCDC (National Climatic Data Center) merged land
air and sea surface temperature data set (abbreviated NOAA
NCDC below, from 1880 on a 5◦ × 5◦ grid; see Smith et
al., 2008 for details), the NASA GISS (Goddard Institute for
Space Studies) data set (from 1880 on a 2◦

×2◦ Hansen et al.,
2010) and the HadCRUT3 data set (from 1850 to 2010 on a
5◦

×5◦ grid). HadCRUT3 is a merged product created out of
the HadSST2 (Rayner et al., 2006) Sea Surface Temperature
(SST) data set and its companion data set CRUTEM3 of at-
mospheric temperatures over land, see Brohan et al. (2006).
Both the NOAA NCDC and the NASA GISS data were
taken fromhttp://www.esrl.noaa.gov/psd/, the others from
http://www.cru.uea.ac.uk/cru/data/temperature/. The NOAA
NCDC and NASA GISS are both heavily based on the Global
Historical Climatology Network (Peterson and Vose, 1997),
and have many similarities including the use of sophisticated
statistical methods to smooth and reduce noise. In contrast,
the HadCRUTM3 data are less processed with correspond-
ing advantages and disadvantages. We could note that de-
tailed analysis has shown that in theH < 0 “macroweather”
regime (/ 10 yr in Fig. 10), the intermittency is typically
low; i.e.C1 ≈ 0.01 (Lovejoy and Schertzer, 2012b), whereas
it is ≈ 0.07 in the lower frequency (climate) regime which
is a value comparable to that in the weather regime, i.e. of
turbulence.

Figure 10 shows the comparison of the difference, ten-
dency, hybrid and Haar RMS structure functions; the latter
increased by a factorChybrid = 100.35

≈ 2.2. It can be seen
that the hybrid structure function does extremely well; the
deviation of the calibrated Haar structure function from the
hybrid one is±14 % over the entire range of near a factor
103 in time scale. This shows that, to a good approximation,
the Haar structure function can preserve the simple interpre-
tation of the difference and tendency structure functions: in
regions where the logarithmic slope is between−1 and 0,
it approximates the tendency structure function, whereas in
regions where the logarithmic slope is between 0 and 1, the
calibrated Haar structure function approximates the differ-
ence structure function.

Before embracing the Haar structure function, let us con-
sider its behaviour in the presence of non-scaling perturba-
tions. It is common to consider the sensitivity of statisti-
cal scaling analyses to the presence of non-scaling external
trends superposed on the data which therefore break the over-
all scaling. Even when there is no reason to suspect such
trends, the desire to filter them out is commonly invoked to
justify the use of quadratic MFDFA or high-order wavelet
techniques that eliminate linear or higher-order polynomial
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Fig. 9. These graphs compare the ratios of RMS structure functions (S (1x)=

〈
1v2

〉1/2
) for the simulations discussed in the text. Upper

left shows the ratio of the RMS usual structure function (i.e. difference whenH > 0, tendency whenH < 0) to the Haar structure function
for H = 1/10,3/10, ..9/10 (thick, top to bottom), and−9/10,−7/10, ...−1/10, (thin, top to bottom). The Haar structure function has been
multiplied by 2ξ(2)/2 to account for the difference in effective resolution. The central flat regions where the scaling is accurate indicate a
constant ratioC′

Haar= S/SHaar which is typically less than a factor of two. Upper right is the same but for the ratio of the usual to MFDFA

RMS structure functions after the MFDFA was normalized by a factor of 16 and the resolution correction 4ξ(2)/2 (its smallest scale is
4 pixels). Bottom left shows the ratio of the MFDFA structure function to the Haar structure function both with the normalization and
resolution corrections indicated above (note the monotonic ordering with respect toH , which increases from top to bottom).

trends. However, for this purpose, these techniques are not
obviously appropriate since, on the one hand, they only filter
out polynomial trends (and not for example the more geo-
physically relevant periodic trends), while, on the other hand,
even for this, they are “overkill” since the trends they filter
are filtered at all scales – not just the largest. The drawback
is that, with these higher-order fluctuations, we loose the sim-
plicity of interpretation of the Haar fluctuation while obtain-
ing few advantages. Figure 11 shows the usual (linear) Haar
RMS structure function compared to the quadratic Haar and
quadratic MFDFA structure functions. It can be seen that,
while the latter two are close to each other (after applying dif-
ferent calibration constants; see the figure caption), and that
the low and high frequency exponents are roughly the same,
the transition time scale has shifted by a factor of about 3
so that overall they are quite different from the Haar struc-
ture function. It is therefore not possible to simultaneously
calibrate the high and low frequencies.

If there are indeed external trends that perturb the scal-
ing, these will only exist at the largest scales; it is suffi-
cient to remove a straight line (or if needed second-, third-
or higher-order polynomials) from the entire data set (i.e. at
the largest scales only). Figure 12 shows the result when the

Haar structure function is applied to scaling data that have
been detrended in two slightly different ways: by removing
a straight line through the first and last points of the series;
and by removing a regression line. Since these changes es-
sentially effect the low frequencies only, they mostly affect
the extreme factor of two in scale. If we discount this ex-
treme factor 2, then in the figure we see that there are again
two scaling regimes; the low frequency one is slightly dis-
placed with respect to the Haar structure function, but not
nearly as much as for the quadratic Haar. In other words, re-
moving the linear trends at all scales as in the quadratic Haar
or the quadratic MFDFA is too strong to allow a simple in-
terpretation of the result and it is unnecessary if one wishes
to eliminate external trends.

In summary, if all that is required are the scaling expo-
nents, the Haar structure function and quadratic MFDFA
seem to be a excellent techniques. However, the Haar
structure function has the advantage of numerical efficiency,
simplicity of implementation, and simplicity of interpreta-
tion.
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Fig. 10. A comparison of the different structure function analyses
(root- mean-square, RMS) applied to the ensemble of three monthly
surface series (NASA GISS, NOAA CDC, HADCRUT3; see Love-
joy and Schertzer, 2012a), each globally and annually averaged,
from 1880–2008 (1548 points each). The usual (difference, poor
man’s) structure function is shown (dotted, lower left), the ten-
dency structure function (dot-dashed, lower right), the maximum
of the two (“hybrid”, thick, red), and the Haar in blue (as indi-
cated); it has been increased by a factorC = 100.35

= 2.2, and
the RMS deviation with respect to the hybrid is±14 %. Reference
slopes with exponentsξ(2)/2 ≈ 0.4, −0.1 are also shown (black
corresponding to spectral exponentsβ = 1+ξ(2)= 1.8, 0.8, respec-
tively). In terms of difference fluctuations, we can use the global

root-mean-square
〈
1T (1t)2

〉1/2
annual structure functions (fitted

for 129 yr>1t > 10 yr), obtaining
〈
1T (1t)2

〉1/2
≈ 0.081t0.33

for the ensemble. In comparison, Lovejoy and Schertzer (1986)

found the very similar
〈
1T (1t)2

〉1/2
≈ 0.0771t0.4 using Northern

Hemisphere data (these correspond toβc = 1.66, 1.8 respectively).
Reproduced from Lovejoy and Schertzer (2012a).

6 Conclusions

Geosystems are commonly scaling over large ranges of scale
in both space and time. In order to characterize their proper-
ties, one decomposes them into elementary components with
well-defined scales and characterizes the variability with the
help of various statistics. Their scaling behaviours can then
be characterized by exponents that are obtained by system-
atically changing the scale. The classical analysis techniques
are spectral analysis (Fourier decomposition) and structure
functions based on fluctuations defined as differences. How-
ever, over the last 20 yr, the development of wavelets has pro-
vided a mathematical basis for defining fluctuations. As far
as geophysical applications are concerned, this generality has
not proved to be so helpful. This is because different workers
use different types of wavelets and these are often chosen for
various mathematical properties which are not necessarily
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Fig. 11.The same temperature data as Fig. 10: a comparison of the
RMS Haar structure function (multiplied by 100.35

= 2.2), the RMS
quadratic Haar (multiplied by 100.15

= 1.4) and the RMS quadratic
MFDFA (multiplied by 101.5 = 31.6). Reproduced from Lovejoy
and Schertzer (2012a).

- 1.0 - 0.5 0.5 1.0 1.5 2.0

-

-

-

-

0.8

0.6

0.4

0.2 Haar

Log10 t (years)

Log10< T2 >1/2 (K)

0.5 K

0.2 K
Regression trend
removed

First to last point trend
removed

Fig. 12.The same temperature data as Fig. 10: a comparison of the
RMS Haar structure function applied to the raw data, after removing
linear trends in two ways. The first defines the linear trend by the
first and last points, while the second uses a linear regression; all
were multiplied byChybrid = 100.35

= 2.2.

important for applications. In addition, the numerical deter-
mination of the wavelet coefficients is often cumbersome.
Finally, and most importantly, the interpretation of the corre-
sponding wavelet coefficients is often obscure and attention
has been almost exclusively focused on the exponents.

These features of wavelet analysis have lead to the popu-
larity of a slightly different wavelet-like technique – the de-
trended fluctuation analysis (DFA) method and its extension,
the multifractal DFA (MFDFA). An unfortunate consequence
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is that the criterion for the applicability of the different
techniques has largely been ignored (the range ofH ex-
ponents), and the advantages and disadvantages of differ-
ent approaches have not been critically (and quantitatively)
evaluated. In this paper, we argue that the historically first
wavelet – the Haar wavelet – has several advantages. Iron-
ically, these advantages are not related to their wavelet na-
ture; the wavelet framework is not especially helpful nor is
it needed. These advantages are not so much at the level of
the accuracy of the exponents – which turn out to be about
the same as for spectral analysis and the DFA technique –
but rather in the ease of implementation and interpretation of
the results. This is demonstrated both with the help of mul-
tifractal simulations (exponents) and the ease of interpreta-
tion with an atmospheric example where we show that, with
“calibration”, the Haar structure functions can be made very
close to both the usual difference structure functions (in re-
gions where 1>H > 0) and to simple “tendency” structure
functions (in regions where−1<H < 0). This simplicity is
already lost when using either the DFA or even higher-order
wavelet-based generalizations of Haar fluctuations. The Haar
structure functions have recently been applied systematically
to atmospheric data where they have contributed to clarify-
ing the fact that there are not two regimes (weather and cli-
mate) but rather three: weather (/ 10 day); macroweather
(between≈ 10 days and≈ 10–30 yr,H < 0); and the cli-
mate (' 10–30 yr,H > 0) (Lovejoy and Schertzer, 2012a)
(seehttp://www.physics.mcgill.ca/for Haar software (Math-
ematica and MathLab)).

Appendix A

Relations between real and Fourier space analyses and
the limiting H exponents

We repeatedly underlined the limitingH values associated
with specific types of fluctuations. In this appendix we clarify
the origin of these limits by recalling the classical relation
between the fluctuations and the spectra.

Consider the statistically translationally invariant process
v(x) in 1-D: the statistics are thus independent ofx and this
implies that the Fourier components are “δ correlated”:

〈̃
v (k) ṽ

(
k′

)〉
= δk+k′

〈
|̃v (k)|2

〉
; ṽ (k)=

∫
e−ikxv (x)dx. (A1)

If it is also scaling, then the spectrumE(k) is a power law:
E(k)≈

〈
|̃v (k)|2

〉
≈ k−β (where here and below, we ignore

constant terms such as factors of 2π etc.). Let us first con-
sider the difference fluctuation. In terms of its Fourier com-
ponents, this fluctuation is thus

(1v (x,1x))diff = v (x+1x)− v (x)

=

∫
eikx ṽ (k)

(
eik1x − 1

)
dk (A2)

so that the F.T. of (1v(x,1x))diff is ṽ (k)
(
eik1x − 1

)
. We

first consider the statistics of quasi-Gaussian processes for
whichC1 = 0, ξ(q)= Hq. Assuming statistical translational
invariance, we drop thex dependence and obtain the relation
of second-order structure function to the spectrum:〈
|1v(1x)|2

〉
= 4

∫
eikx

〈∣∣∣̃v (k)2∣∣∣〉sin2
(
k1x

2

)
dk

≈

∫
eikxk−β sin2

(
k1x

2

)
dk. (A3)

As long as the integral on the right converges, then using
the transformation of variables,x → λx, k → λ−1k, we find〈
|1v(1x)|2

〉
∝1xξ(2)

≈

∫
eikxk−β sin2

(
k1x

2

)
dk ∝1xβ−1 (A4)

so thatβ = ξ(2)+1 = 2H+1(C1 =K(q)= 0 here, Eq. 21).
However, for largek, the integrand≈ k−β , which has a large
wavenumber divergence wheneverβ ≤ 1. However, since for
small k, sin2 (k1x/2)∝ k2, there will be a low wavenum-
ber divergence only whenβ ≥ 3. Although real world (finite)
data will not diverge, in the theoretically divergent cases,
the structure functions will no longer characterize the local
fluctuations, but rather those on either the highest or lowest
wavenumbers present in the data. In the quasi-Gaussian case,
or whenC1 is small, we haveξ (2)≈ 2H and we conclude
that the use of first-order differences to define the fluctuations
leads to second-order structure functions being meaningful
in the sense that they adequately characterize the fluctuations
whenever 1< β < 3 (i.e. 0<H < 1).

Since 0<H < 1 is the usual range of geophysicalH val-
ues, and the difference fluctuations are very simple, they are
commonly used. However, we can see that there are limita-
tions; in order to extend the range ofH values, it suffices
to define fluctuations using finite differences of different or-
ders. To see how this works, consider using second (centred)
differences:

(1v(x,1x))second= v(x)−
1

2
(v(x+1x/2)− v(x−1x/2))

=

∫
eikx ṽ(k)

[
1−

1

2
(eik1x/2 + e−ik1x/2)

]
dk

= 2
∫
eikx ṽ(k)sin

(
k1x

4

)2

dk. (A5)

Repeating the above arguments, we can see that the relation
β = ξ(2)+1 holds now for 1< β < 5, or (with the same ap-
proximation) 0<H < 2. Similarly, by replacing the original
series by its running sum (a finite difference of order−1) –
as done in the MFDFA technique – we can extend the range
of H values down to−1.

More generally, going beyond Gaussian pro-
cesses, we can consider intermittent fractionally

www.nonlin-processes-geophys.net/19/513/2012/ Nonlin. Processes Geophys., 19, 513–527, 2012

http://www.physics.mcgill.ca/


526 S. Lovejoy and D. Schertzer: Haar wavelets, fluctuations and structure functions

integrated flux processes (Sect. 5.1), which have
ṽ (k)≈ ϕ̃ (k) |k|−H . We see that the F.T. of (1v(x,1x))diff is(
eik1x − 1

)
|k|−H ϕ̃ (k). This implies that, for low wavenum-

bers, ṽ (k)≈ |k|1−H ϕ̃ (k) (k � 1/1x), whereas at high
wavenumbers, ṽ (k)≈ |k|−H ϕ̃ (k)(k � 1/1x). Hence,
since the mean ofϕ has no scale dependence, we find that,
for 0<H < 1, the fluctuations1v(1x) are dominated by
wavenumbersk ≈ 1/1x. So for this range ofH , fluctuations
defined as differences capture the variability of1x-sized
structures, not structures much smaller or much larger than
1x. More generally, since the F.T. of then-th derivative
dnv/dxn is (ik)n ṽ (k) and the finite derivative is the same
for small k but “cut-off” at largek, we find thatn-th order
fluctuations are dominated by structures withk ≈ 1/1x as
long as 0<H < n. This means that1v(1x) does indeed
reflect the1x scale fluctuations.
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