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Abstract. The mechanism of generation of 2-day photo-
chemical oscillations in the mesopause region (80–90 km)
has been studied analytically. The initial system of equations
of chemical kinetics describing the temporal evolution of O,
O3, H, OH and HO2 concentrations with allowance for di-
urnal variations of solar radiation has been simplified suc-
cessively to a system of two nonlinear first-order time equa-
tions with sinusoidal external forcing. The obtained system
has a minimum number of terms needed for generation of 2-
day oscillations. Linearization of this system near the period-
doubling threshold permits separating explicitly a particular
case of the Mathieu equationẍ+α·sinωt ·x = 0, in which the
first sub-harmonic (ω/2) of the exciting force starts to grow
exponentially when the amplitude of external forcing (α) ex-
ceeds its threshold value. Finally, a system of two simplest
differential equations with power-law nonlinearity has been
derived that allows analytical investigation of the effect of
arising of reaction-diffusion waves in the mesospheric pho-
tochemical system.

1 Introduction

An intriguing photochemical property of the mesosphere is
that this system can respond nonlinearly to diurnal varia-
tions of solar radiation. Sonnemann and Fichtelmann (1987,
1997), Fichtelmann and Sonnemann (1992), Feigin et
al. (1998), and Konovalov and Feigin (2000) used zero-
dimensional models (without spatial transport) to show that
a wide spectrum of periodic (subharmonic, with periods of
2, 3, 4, and more days) and chaotic regimes of behavior
of minor gas constituents may exist at the heights of the
mesopause region (80–90 km). Note that diurnal variation

of solar radiation is the key mechanism of the Sun’s in-
fluence on the chemical process in the entire atmosphere
of the Earth. However, no other atmospheric photochemi-
cal systems possessing similar nonlinear dynamic properties
are known to date. Besides, the interest in nonlinear oscil-
lations in the mesopause region is associated with the fact
that they may influence the behavior of key characteristics of
the mesosphere. The point is that exothermal reactions be-
tween the chemical constituents of the mesospheric photo-
chemical system ensure the main photochemical heating of
the mesospheric air (and the rate of the heat influx caused by
these processes) reaches 1–2 K per day at the heights of the
nonlinear-response region (Sonnemann et al., 1999). There-
fore, nontrivial behavior of minor gas constituents can man-
ifest noticeably in the variability of air temperature in the
upper mesosphere and, consequently, in variations of other
characteristics of this region. Specifically, the presence of
the constituent with a period of 48 h in the spectrum of air
heating variations suggests that there is a connection (Son-
nemann and Fichtelmann, 1997) between nonlinear photo-
chemical oscillations and the so-called excitation of quasi-2-
day waves. These powerful atmospheric waves have been ob-
served regularly in the mesosphere and lower thermosphere
for more than 40 yr already (starting with Doyle, 1968 and
Muller, 1972), but possible mechanisms of their excitation
as a function of latitude and season are still being discussed
(see, e.g. Sandford et al., 2008).

Further studies of the nonlinear response of mesospheric
photochemistry (Sonnemann et al., 1999; Sonnemann and
Feigin, 1999; Sonnemann, 2001; Kulikov and Feigin, 2004,
2005; Kulikov, 2004, 2007; Sonnemann and Grygalashvyly,
2005; Kulikov and Gashturi, 2006) revealed that behavior of
the concentrations of minor gas constituents may be simpler
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or more complicated, depending on atmospheric transport
(eddy diffusion, winds in the vertical and horizontal direc-
tions, or quasi-2-day atmospheric waves). For example, Ku-
likov and Feigin (2004, 2005) found that the influence of the
horizontal eddy diffusion leads to the formation of a new
class of nonlinear reaction-diffusion waves in the form of
moving fronts of the oscillating phases of minor gas con-
stituents traveling with constant velocity in the zonal direc-
tion. Specifically, it was shown that for the oscillations with
a period of 48 h, the propagation velocity of such waves is
directly proportional to the coefficient of the horizontal eddy
diffusion (D) and reaches 100 km per day for the coefficients
typical of that diffusion (Ebel, 1980). Therefore, potential
experimental registration of reaction-diffusion waves of mi-
nor gas constituents in the upper mesosphere (using satellite-
based methods or rocket-borne measurements) allows deter-
mining the coefficient of horizontal eddy diffusion that has
not so far been measured in the upper mesosphere.

The above mentioned studies were performed mainly by
numerical simulations. No simple physical model of the
mechanism of formation of the nonlinear response of the
mesospheric photochemical system has been developed up
to now. Meanwhile, without knowledge of this mechanism it
is difficult to reveal possible causes of the mentioned effects
in the photochemistry of the stratosphere and troposphere.
Besides, reaction-diffusion waves have not been studied. To
all appearances, the mechanism of generation of these waves
markedly differs from that of classical waves arising, for in-
stance, in bistable chemical systems where the concentration
front speed is proportional to

√
D.

In this paper we study analytically the mechanism of gen-
eration of 2-day photochemical oscillations in the mesopause
region. To do so, we simplify the initial system of equations
successively (retaining the qualitative properties, rather than
seeking the quantitative correspondence) and reduce it to a
system of two simplest, yet still nonlinear first-order time
equations with sinusoidal external forcing with a period of
24 h. Linearization of this system near the threshold of pe-
riod doubling allows us to single out explicitly a particular
case of the Mathieu equation in which an instability of the
first subharmonic of this forcing is known to arise at a suf-
ficiently high amplitude of external forcing. We expand the
initial system of equations and formulate a simplified sys-
tem of two differential nonlinear equations which fits best the
study of the effect of formation of reaction-diffusion waves
in the mesospheric photochemical system. It is shown that,
similarly to the initial system, the obtained system of equa-
tions has subharmonic oscillations with a period of 48 h, as
well as, generally speaking, a wide spectrum of similar oscil-
lations with periods of 3, 4, 5, etc. days, up to chaotic oscil-
lations. Spectral analysis has demonstrated that the harmonic
component with a period of two days is most pronounced
in the solution of the simplified system corresponding to the
period doubling, whereas the amplitudes of the harmonics
with periods of 1, 0.5, 0.25, etc. days are absent altogether.

Table 1.List of reactions.

(1) O+OH+M→ HO2+M (10) O+O3 → 2O2

(2) H+HO2 → O2+H2 (11) O+O+M→ O2+M

(3) OH+HO2 → O2+H2O (12) O3+H → O2+OH

(4) O+OH→ O2+H (13) O3+OH → O2+HO2

(5) O+HO2 → O2+OH (14) H+HO2 → 2OH

(6) O2+H+M → HO2+M (15) OH+OH→ O+H2O

(7) H2O+hν → H+OH (16) O3+hν → O2+O(1D)

(8) O2+hν → 2O (17) OH+H+M→ H2O+M

(9) O+O2+M → O3+M (18) H+HO2 → H2O+O

M – a molecule of air.

Additionally, the nonlinearity of this system has a power-law
character, which, in principle, is favorable for harmonic ex-
pansion. The numerical study of this system with allowance
for the diffusion transport reveals the possibility of formation
of reaction-diffusion waves which have all the properties of
the waves arising in the initial system of equations of the
mesospheric photochemical system.

2 Mesospheric photochemical system and its nonlinear
dynamic properties. Methods of model simplification

The photochemical processes in the mesopause region (80–
90 km) can be modeled by a mesospheric photochemical sys-
tem (MPCS) that usually includes 18 most significant reac-
tions with participation of 5 constituents: O3, O, H, OH, and
HO2 (see Table 1). The MPCS is subject to external forcing
with a period of one day that is associated with the Earth’s
rotation and has the form of a periodic modulation of photol-
ysis rates of ozone, water vapor, and molecular oxygen.

Temperature, concentrations of air and water vapor
molecules, and photolysis rates are basic (control) parame-
ters of the MPCS that have a strong impact on its dynam-
ics. These parameters, in turn, depend on altitude. In the
works by Sonnemann et al. (1999) and Sonnemann and Fei-
gin (1999), it was demonstrated that it is sufficient to take
this dependence into consideration in the mesopause region
only for the air concentration and photolysis rate of molecu-
lar oxygen.

The research performed by Fichtelmann and Sonne-
mann (1992), Sonnemann and Fichtelmann (1997), Feigin
et al. (1998), and Konovalov and Feigin (2000) points to a
possible nonlinear response of the MPCS to diurnal varia-
tions of solar radiation. Analysis within the framework of
the zero-dimensional MPCS model revealed a wide spectrum
of periodic (subharmonic) and chaotic modes of behavior of
minor gas constituents of the mesosphere that are realized
depending on the values of control parameters, such as H2O,
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Fig. 1. (a) Bifurcation diagram demonstrating possible modes of
MPCS behavior as a function of height;(b) same as in Fig. 1a, but
for a different moment of local time;(c) same as in Fig. 1a, but with
allowance for vertical eddy diffusion with coefficient 10 m2 s−1;
(d) same as in(a), but without allowance for H+HO2 → 2OH and
O3+OH → O2+HO2 reactions.

temperature and height. Modes of MPCS behavior as a func-
tion of height are shown as a bifurcation diagram (BD) in
Fig. 1a. Note that time evolution of the MPCS variables is
forced; hence, their values depend on local time. One can see
in Fig. 1a values of H concentration acquired at a definite
moment of local time corresponding to the end of the night –
beginning of the day. The sections of the bifurcation diagram,
where the dependence of H concentration on height (H(z))
is single-valued, correspond to the oscillations with a period
of one day. In the sections whereH(z) is a multivalued func-
tion, the photochemical oscillations are subharmonic (with
periods equal to two, three, four days, etc.) or chaotic. For
example, the two-valued functionH(z) at heights of about
83.7–84.7 km corresponds to oscillations with a period of
two days. If different moments of local time are chosen (e.g.
in the middle of the day), the bifurcation diagram changes
quantitatively (Fig. 1b), but qualitatively it fully agrees with
the diagram in Fig. 1a.

The nonlinear dynamic mechanism of MPCS response to
diurnal variations of solar radiation was described in the
work by Konovalov and Feigin (2000). It was shown that this
mechanism is closely connected with the system dynamics in
the nighttime, when nonlinear relaxation of the great major-
ity of MPCS variables occurs in the absence of a light source.
This leads to existence in the phase space of the system of
regions with strongly differing image point velocities. It was
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Fig. 2. Oscillations of H and O concentrations (a and b, respec-
tively) at a height of 85 km (solid curves). Dashed curves are for the
oscillations of these variables with another value of initial phase.

demonstrated that such a phase space structure at night may
result in trajectory scatter.

The analysis of the influence of vertical eddy diffusion
on MPCS evolution performed by Sonnemann and Fei-
gin (1999) and Sonnemann et al. (1999) revealed that trans-
port reduces appreciably the spectrum of possible modes of
behavior of this system. It was found that for the values of
the vertical diffusion coefficient (5–20) m2 s−1 observed in
the mesopause region in summer (e.g. Lubken, 1997), only
2-day MPCS oscillations survive and cover the entire range
of heights of the nonlinear response region (see Fig. 1c). It is
also clear from this figure that allowance for diffusion leads
to pronounced expansion (primarily upwards) of the regions
of heights of nontrivial MPCS behavior. We will omit de-
tailed analysis of the causes of this expansion and will only
note that that, with the diffusion coupling taken into con-
sideration, the nonlinear dynamic mechanism described by
Konovalov and Feigin (2000) is triggered at higher altitudes.

The variation of the other control parameters (H2O and
temperature) within the range of the values typical of the
summer mesopause manifests itself into a slight shift of the
height of the region where the 2-day oscillations may occur
(Kulikov, 2007). These oscillations are illustrated in Fig. 2
for an example of time evolution of H and O concentration at
a height of 85 km.

The chemical mechanism of the origin of nonlinear be-
havior of MPCS is conditioned by the well-known catalytic
cycle

HO2 + O → OH+ O2

OH+ O → H + O2

H + O2 + M → HO2 + M

2O→ O2

that destroys atomic oxygen. The principal feature of this cy-
cle in the conditions of the upper mesosphere is that its rate
does not depend on the concentration of the destroyed sub-
stance and is determined only by a catalytic agent (atomic hy-
drogen concentration). As was demonstrated by Konovalov
and Feigin (2000), this feature ensures MPCS instability that

www.nonlin-processes-geophys.net/19/501/2012/ Nonlin. Processes Geophys., 19, 501–512, 2012



504 M. Yu. Kulikov et al.: The mechanism of non-linear photochemical oscillations

manifests itself as a sequence of period doubling bifurcations
and the transition to chaotic behavior as the control parame-
ters are varied (the variation of height in Fig. 1a).

Note that stoichiometric network analysis of the photo-
chemistry in the mesopause region was carried out in the
recent work by Hadac and Schreiber (2011). The analysis
showed that the chemical mechanism proposed by Kono-
valov and Feigin (2000) is stable, and a different catalytic
cycle

H + HO2 → 2OH

O3 + OH → O2 + HO2

O+ OH → O2 + H

O+ O2 + M → O3 + M

2O→ O2

is responsible for the nontrivial nonlinear dynamic properties
of MPCS. However, it can be readily demonstrated (for ex-
ample, by calculating the complete MPCS model) that with
formal exclusion from the model of the H+HO2 → 2OH or
O3+OH → O2+HO2 reaction, or exclusion of both these re-
actions (see Fig. 1d), all the qualitative features of the sys-
tem are retained and characteristic magnitudes of its vari-
ables remain almost unchanged, whereas elimination of any
reaction from the Konovalov and Feigin (2000) mechanism
completely destroys the MPCS nonlinear response to diur-
nal variations of light. The point is that, at the heights of
the mesopause region, the characteristic rates of the first
two reactions of the mechanism proposed by Hadac and
Schreiber (2011) are at least an order of magnitude less than
the rates of the HO2 + O → OH + O2 and O + OH→ O2 +
H reactions. Therefore, the H+HO2 → 2OH and O3+OH →

O2+HO2 reactions are secondary for the mesospheric photo-
chemistry and do not affect its nonlinear dynamic properties.

It is worthy of notice that 2-day oscillations are forced and,
depending on initial conditions, there may exist two solutions
differing by initial phases only (Kulikov and Feigin, 2005).
This taken into account, the initial phase of the 2-day oscil-
lations may be represented as a sum of three quantities:

ϕph = ϕ0/2+ ϕ̂ + α. (1)

Here,α is the latitude-dependent constant,ϕ0 is the phase
of external, one day periodic forcing, andϕ̂ may take on one
of the two values,π or 2π , depending on initial conditions.
Figure 2 shows two possible MPCS solutions correspond-
ing to these phase values. It is apparent that this feature can
manifest itself in the dependence of the characteristics of the
2-day oscillations on the horizontal coordinates. The phase
distribution of the 2-day oscillations may be arbitrary, and
distribution of the concentrations of minor gas constituents
may be significantly inhomogeneous. In particular, apprecia-
ble gradients in the concentrations of minor gas constituents
of the MPCS arise in the neighborhood of abrupt jumps in
the phase of the 2-day oscillations. Note that in the zonal

direction (around the latitudinal circle), there exists natural
inhomogeneity in the phase distribution of diurnal variations
of solar radiation that is caused by the dependence of the sun-
rise and sunset moments on the zonal coordinatex:

ϕ0 = 2πx/L, (2)

whereL is the length of the corresponding latitudinal circle.
With Eq. (2) taken into account, Equaton (1) for the phase of
the 2-day oscillations takes on the form

ϕph(x) = πx/L + ϕ̂(x). (3)

It follows from that, in particular, that even in the case of
the homogeneous zonal distribution of the initial phases of
subharmonic oscillations (ϕ̂(x) ≡ const), at least one phase
jump exists in the zonal circle. The presence of sharp gradi-
ents in the horizontal distribution of concentrations demands
allowance for the horizontal eddy diffusion that “smooths”
the phase and concentration gradients. The resulting scale of
horizontal inhomogeneity of the oscillatory phase and con-
centration of minor gas constituents is evidently determined
by the balance between the photochemical and diffusion
processes. The numerical simulation performed by Kulikov
and Feigin (2004, 2005) taking into consideration the hor-
izontal diffusion revealed that the diffusion transport gives
rise to reaction-diffusion waves in the form of propagating
fronts and pulses. These waves are phase waves and manifest
themselves in a uniform, constant-rate displacement of sharp
jumps of the initial phase along the latitudinal circle. The
waves are caused by the presence of the zonal inhomogene-
ity of the phase of the diurnal light variations:ϕ0 = 2πx/L.
In the case of uniform spatial distribution of the phase of di-
urnal light variations, sharp changes in the initial phase turn
out to be stationary. It is shown that the propagation velocity
of such waves is directly proportional to the horizontal diffu-
sion coefficient and the gradient of the spatial nonuniformity
of the phase of diurnal variations of light along the latitudinal
circle, i.e.L−1.

Feigin and Konovalov (1996) and Feigin et al. (1998)
showed that basic dynamic models (BDMs) are a good tool
for studying the evolution of atmospheric photochemical sys-
tems. Within the considered region of the parameter values,
BDMs retain basic qualitative and quantitative properties of a
“complete” system and include a minimum possible number
of dynamic variables described by differential equations. The
key idea of constructing such models is to divide variables
of the system (concentrations of chemical constituents) into
two groups according to the relationship between the char-
acteristic time of their evolution, “τ ”, and the time scale of
the studied phenomenon,τ0. Variables of the first group are
“fast”, i.e. τ � τ0. Taking into consideration the dissipativity
of atmospheric photochemical systems, they are supposed to
be in the state of instantaneous stable equilibrium. In other
words, it is supposed that the relation

d

dt
n � I,S
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is fulfilled in the chemical balance equation of such a fast
component. Here,I andS are the total photochemical source
and sink, respectively. Thus, “instantaneously equilibrium”
values of fast variables are determined from a system of al-
gebraic equations obtained by zeroing the time derivatives in
the corresponding equations of chemical kinetics of the ini-
tial (complete) system. These values are generally functions
of parameters and of the slow (dynamic) variables referred
to by the second group whose evolution with characteristic
time τ ≈ τ0 is described by differential equations.

A zero-dimensional basic dynamic model of MPCS was
constructed by Feigin et al. (1998). In this model, O and
H concentrations are dynamic variables (with characteristic
times equal to 5× 104–105 s) found from a system of two
first-order differential equations:

dx1
dt

= −αx2 − (1− s (t))µx1 + δs (t)

dx2
dt

= −β
x2

2
x2

1
− σ

x2
2

x1
+ γ s (t) ,

(4)

where

s (t) =

{
1, t ∈ [τn; τn + τ/2]
0, t ∈ [τn + τ/2; τ (n + 1)]

n = 1, 2, . . . ,

α = 2R6 · O2 · M, µ=R9 · O2 · M, δ=2R8 · O2,

β = 2
R3R

2
6

R5R4
· O2

2
· M2, σ=2

R6 (R2 + R18)

R5
· O2 · M,

γ = 2R7 · r · M,

where r is water vapor concentration (ppmv),x1 and x2
are O and H concentrations, respectively, andR1−18 are the
constants of the reactions listed in Table 1. Following the
works by Sonnemann et al. (1999) and Sonnemann and Fei-
gin (1999), we will further take into consideration the fol-
lowing dependences of parameters on height:

O2,M ∼ e−z/H a , R8 ∼ e−z/(2H a),Ha = 6 km. (5)

The concentrations of the remaining three constituents
(O3, OH, and HO2) are “fast” variables that are found from
the system of algebraic equations

O3=

{ R9x1
R16

· O2 · M − day
const - night

, OH=
R6x2

R4x1
·O2·M, HO2=

R6x2

R5x1
·O2·M.

The modes of the BDM behavior are shown in Fig. 3a.
Note that despite the minimum1 possible number of dif-

ferential equations, System (4) is still rather complicated.
Therefore, it is almost impossible to use its initial form for
analytical study of the mechanism of generation of two-day
oscillations. First, the external periodic forcing is strong, so
the MPCS variables can change by several orders of magni-
tude during one day. In other words, the time evolution of
these variables is modulated significantly by a one-day pe-
riod (see Fig. 2). Second, this forcing is significantly non-
harmonic (meandering), which results in appearance in the

1 needed for formation of the nontrivial behavior illustrated in
Fig. 3.

 1 

 

Fig. 3. (a) Bifurcation diagram demonstrating modes of behavior
of the initial system of equations for MPCS BDM as a function of
height;(b) oscillations of H concentration at 83 km (blue curve) and
83.06 km (red curve).

oscillation spectrum of the MPCS variables of harmonics
with periods of 1/2, 1/4, etc. days, whose amplitudes de-
crease relatively slowly depending on their number. Third,
the fractional power nonlinearity in the second equation of
System (4) makes it virtually impossible to perform har-
monic expansion, which would allow one to obtain equations
for the component with a period of two days. Therefore, we
used the methods and approaches widely employed for so-
lution of such problems in nonlinear laboratory chemistry
(Field and Burger, 1985). To begin with, we analyzed indi-
vidual terms of the equations of System (4) so as to single
out the most important terms that determine the nonlinear re-
sponse to the external periodic forcing. The remaining, less
significant terms were omitted. Apparently, this simplifica-
tion resulted in both the quantitative and qualitative changes
– specifically, the boundaries of the nonlinear response re-
gion, bifurcation types, and their order changed. However,
the truncated system still demonstrated the oscillations with
a two-day period, which is important for further analysis. At
the second stage, we expanded the obtained system of equa-
tions near the period doubling threshold. It can be seen from
Fig. 3a that the excitation of the two-day regime is super-
critical, i.e. near the 83-km height, and the solution differs
little from the 1-day oscillations (see Fig. 3b). This means
that near this threshold the solution can be represented as a
sum of the main solution with a period of one day and a small
addition corresponding to the new period. The equations for
this addition can be found by linearization of the simplified
system of equations.

3 Development of the applicable model for
analytical analysis. Linearization near the period
doubling threshold

3.1 Simplification of the model

At the first stage of simplification of System (4), the function
s(t) was replaced by a sum of two harmonics that correspond
to the zeroth and main frequency of the external forcing, so
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 1 

 

 

Fig. 4. (a)Bifurcation diagram demonstrating modes of behavior of
System (6) as a function of height;(b) as in(a), but for System (7);
(c) as in(a), but for System (7) without allowance for the external
periodic forcing in the first equation of the system;(d) as in(a), but
for System (7) without allowance for the external periodic forcing
in the second equation of the System;(e) as in(a), but for System
(8); (f) as in(a), but for System (9).

as to decrease the amplitudes of harmonics of the external
periodic forcing (with periods of 1/2, 1/4, etc. days) in the
spectrum of oscillations of the MPCS variables:

dx1
dt

= −αx2 −
1
2

(
1− sin2πt

T

)
µx1 +

δ
2 +

δ
2 sin2πt

T

dx2
dt

= −β
x2

2
x2

1
− σ

x2
2

x1
+

γ
2 +

γ
2 sin2πt

T

. (6)

The bifurcation diagram for this system is shown in
Fig. 4a. As expected, with such a substitution the main prop-
erty of the initial system (nonlinear response) is retained,
despite the significant quantitative and qualitative changes
compared with the BD shown in Fig. 3. Note, first, that the
constant terms in the right-hand sides of Eq. (6) ensure non-
negativity of the variables, so it is meaningless to omit them.
Second, the term−αx2 in the first equation is of key im-
portance, as it ensures feedback with the variablex2 without

which the nonlinear response is impossible at any parame-
ter values of System (6). The important fact is that this term
implies the presence of the catalytic cycle of atomic oxy-
gen destruction in the photochemical system under consid-
eration. The destruction rate is determined by the concentra-
tion of atomic hydrogen, rather than by the concentration of
the destroyed substance. As was shown by Konovalov and
Feigin (2000), this cycle ensures thechemicalmechanism of
formation of the nonlinear response.

At the second stage, we omitted the term responsible for
the linear periodic dissipation of the variablex1:

dx1
dt

= −αx2 +
δ
2 +

δ
2 sin2πt

T
dx2
dt

= −β
x2

2
x2

1
− σ

x2
2

x1
+

γ
2 +

γ
2 sin2πt

T

(7)

The BD for this system is shown in Fig. 4b. Note that the
behavior of System (7) correlates with the initial system (in
terms of their spectrum and order) much better than in the
previous case.

At the third stage, we analyzed whether it is necessary to
take into account external periodic forcing simultaneously
for both variables of System (7). It was found that, if the
term responsible for the forcing is omitted in the first equa-
tion, the nonlinear response disappears (see Fig. 4c), whereas
its presence in the equation for the termx2 is less significant
(see Fig. 4d) and may be neglected.

Finally, we studied the importance of both types of nonlin-
earity and considered two systems of equations, respectively:

dx1

dt
= −αx2 +

δ

2
+

δ

2
sin

2πt

T

dx2

dt
= −β

x2
2

x2
1

+
γ

2
(8)

and,

dx1

dt
= −αx2 +

δ

2
+

δ

2
sin

2πt

T

dx2

dt
= −σ

x2
2

x1
+

γ

2
. (9)

It was found that both nonlinearities lead to nonlinear re-
sponse (see Fig. 4e and f), but the behavior of System (9)
correlates with the initial System (4) much better in terms
of their spectrum and order. Therefore, it was chosen for the
further analysis. In the case of System (8), the nonlinear re-
sponse proved to be height-unbounded from above, which
allows (see Fig. 4e) generation of multiperiodic oscillations
with a period of tens of days and more. Specifically, at a
height of 90 km, this type of nonlinearity leads to oscillations
with a period of 39 days, which is not observed in the initial
system.

Let us pass over to the dimensionless variables of Sys-
tem (9). We use the following substitution:

x =
2α

δ
x1, y =

2γα2

σδ2
x2; τ =

t

T
,
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 Fig. 5. Bifurcation diagram demonstrating modes of behavior of
the system of Eq. (10).

thus appreciably reducing the number of parameters:

dx
dτ

= α0 (1+ sin(2πτ) − y)
dy
dτ

= β0

(
1−

y2

x

) (10)

whereα0 =
γα2

σδ
T , β0 =

γαT
δ

. In what follows, for the sake
of certainty and simplicity, we will regard these parameters
to be independent and use, e.g.β0 as the control parameter.
Figure 5 shows an example of the bifurcation diagram of Sys-
tem (10) atα0 = 10. One can see that at this value ofα0, the
generation of oscillations with a doubled period starts near
βbif ≈ 2.6.

3.2 Linearization near the period doubling threshold

We linearize System (10) near the bifurcation value of the
parameterβbif ≈ 2.6, making use of the fact that the new
solution with the doubled period actually differs little from
the solution with a period of 1. To do so, we represent the
solution in the formx = x1 + x2, y = y1 + y2, |x2| , |y2| �

|x1| , |y1|, and in what follows we will regard (x1, y1) to be
a solution of the system before the bifurcation (β0 > βbif)

and periodic with a period of external forcing. Let us expand
System (10) in a series to the first order in small parameters
x2/x1, y2/y1:

dx1
dτ

+
dx2
dτ

= α0 (1+ sin(2πτ) − y1 − y2)

dy1
dτ

+
dy2
dτ

= β0

(
1−

y2
1

x1
+

y2
1

x2
1
x2 − 2y1

x1
y2

)
.

By excluding the higher terms responsible for the gener-
ation of (x1, y1), we obtain a linear system of equations for

 1 

 

 

 

Fig. 6. Time evolution of the solution of Eq. (12) obtained for pa-
rameterβ0 slightly less than the threshold value.

(x2, y2):

dx2
dτ

= −α0y2

dy2
dτ

= β0

(
y2

1
x2

1
x2 − 2y1

x1
y2

)
. (11)

Here,
y2

1
x2

1
and y1

x1
are periodic functions with a period of ex-

ternal forcing, therefore they may be expanded in the Fourier
series:

y2
1

x2
1

=

(
y2

1
x2

1

)
0
+

(
y2

1
x2

1

)
1
sin(2πτ + ϕ) +

∑
...

y1
x1

=

(
y1
x1

)
0
+

(
y1
x1

)
1
sin(2πτ + ϕ) +

∑
...

.

The above equations contain harmonics of the external pe-
riodic forcing under the summation sign. It is evident that
within the approximation to which System (11) corresponds,
these harmonics with periods of 0.5, 0.25, 0.125, etc. days
cannot result in the excitation of a solution with a period
equal to 2. It means that in the first order of smallness, these
harmonics can be omitted, and specific values of the con-

stants

(
y2

1
x2

1

)
0
,

(
y2

1
x2

1

)
1
,
(

y1
x1

)
0

,
(

y1
x1

)
1

can be determined

from the Fourier expansion of the numerical solution of Sys-
tem (10) near the bifurcation thresholdβbif ≈ 2.6. As a result,
System (11) is easily rewritten in the form of one equation:

d2x2

dτ2
+ 2β0

((
y1

x1

)
0
+

(
y1

x1

)
1
sin(2πτ + ϕ)

)
dx2

dτ
(12)

+ α0β0

((
y2

1

x2
1

)
0

+

(
y2

1

x2
1

)
1

sin(2πτ + ϕ)

)
x2 = 0.

This is a linear oscillator equation with parametric action
and periodic dissipation. Figure 6 shows the time evolution
of the solution of this equation, which was obtained forβ0 =

2.55. One can see that this solution represents the needed
oscillations with a period equal to 2, whose amplitude grows
exponentially with time. The performed numerical analysis
shows, first, that if the values of the constants in Eq. (12)
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are determined forβ0 > βbif , the oscillations with a period
equal to 2 are not excited. Second, the obtained equation can
be made much simpler, as neither the constant portion of the
frequency of our linear oscillator nor the periodic dissipation
lead to excitation of the solution that we seek and, hence, can
be omitted. The obtained equation

d2x2

dτ2
+ λsin(ωτ + ϕ)x2 = 0, λ = α0β0

(
y2

1

x2
1

)
1

(13)

is a particular case of the Mathieu equation. To the first ap-
proximation (neglecting the harmonics3ω

2 , 5ω
2 , etc.), the so-

lution can be written in the analytical form:

x2 = Aexp

i
ω

2
τ + τ

√
λ

2
−

ω2

4
+ i

ϕ

2


+ B exp

i
ω

2
τ − τ

√
λ

2
−

ω2

4
+ i

ϕ

2

+ k.c. (14)

One can make two conclusions from this expression. First,
the increment of oscillations at half frequency arises when
λ > ω2/2. Second, since the phaseϕ of the photochemi-
cal oscillations with the frequency of the external forcing
is related linearly by the intrinsic phaseϕ0 of this forcing
(ϕ = ϕ0+ const), the phase of oscillations with a doubled
period isϕ2 = ϕ0/2+ const. Note, first, that in the initial
system of Eq. (4), this relationship between the phases of
the two-day oscillations and diurnal variations of solar ra-
diation is ambiguous, as was found numerically by Kulikov
and Feigin (2004, 2005). Second, it follows from this phase
relationship that, taking into consideration the invariance of
ϕ0 → ϕ0 + 2π , the phase of the excited subharmonic oscil-
lations can take on two values differing byπ , depending on
the initial conditions.

4 A system of two differential equations with power-law
nonlinearity and reaction-diffusion waves

4.1 A system of equations with power-law nonlinearity

It was shown in the previous section that the period dou-
bling is described by a particular case of the Mathieu equa-
tion, where unlimited instability of the first subharmonic of
this forcing arises at a sufficiently high amplitude of external
forcing (λ > ω2/2). However, in the initial model, the ampli-
tude of the two-day oscillations is limited. Therefore, for fur-
ther analysis we found a simple mechanism that would stabi-
lize the exponential growth of the Mathieu equation. For this,
System (10) was expanded in series up to higher orders of
smallness, and the best-fit (in terms of limitation of instabil-
ity) nonlinearity in the form−x2y was found enumeratively.
Thus, we obtained a system of two differential equations with
power-law nonlinearity required for analytical study of the

 1 

 

 

Fig. 7.Bifurcation diagram demonstrating modes of behavior of the
system of Eq. (15) for ω = 2π .

effect of formation of reaction-diffusion waves in the meso-
spheric photochemical system:

dx
dt

= −y
dy
dt

= α sin(ωt + ϕ)x − x2y.
(15)

Figure 7 shows the BD of this system as a function of the
parameterα, demonstrating the possibility of a wide spec-
trum of non-trivial subharmonic and chaotic behavior. One
can see that the nonlinear response arises in this system
at α > 17, which is a little lower than the period doubling
thresholdαbif ≈ 19.74 obtained from the analytical formula
of Eq. (14). Such a small difference is due to the neglect
of the weak influence of harmonics with semi-integral pe-
riods 3ω

2 , 5ω
2 , etc. in Eq. (14). The time evolution of the

variables in System (15) and the respective time spectra cor-
responding to the oscillations with a period equal to 2 are
presented in Fig. 8. One can see, first, that the oscillations
with half-frequency (ω2 ) have the highest amplitude, whereas
the amplitudes of the other harmonics rapidly decrease as
their number increases. Therefore, one can neglect their in-
fluence in the first order of smallness. Second, another fa-
vorable circumstance is absence of the frequency of external
periodic forcing (ω) and its harmonics (2ω, 3ω, 4ω...) in the
presented spectra.

4.2 Reaction-diffusion waves

For verification of the possibility of simulating the reaction-
diffusion waves of the mesospheric photochemistry using
System (15), we considered a continuous chain of such non-
linear oscillators with diffusion coupling and with linear spa-
tial inhomogeneity of the phase of external periodic forcing:
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 1 

 

 

Fig. 8. (a–b) Time evolution of the variables in System (15) for
α = 20; (c) spectra of harmonic oscillations of the variables.

∂x
∂t

= −y + D ∂2x

∂l2

∂y
∂t

= α sin
(
ωt +

2π
L

l
)
x − x2y + D

∂2y

∂l2

. (16)

Here,D is the diffusion coefficient andL is the length of the
oscillator chain, i.e. the length of the corresponding “circle”
formed by the spaced apart oscillators. It follows from the
conclusions of Sect. 3 that, even in the case of uniform spa-
tial distribution (ϕ0 (x) ≡const) of the initial phases of sub-
harmonic oscillations with a period equal to 2, there exists at
least one sharp phase change. We performed numerical simu-
lation of System (16) with periodic boundary conditions and
found the reaction-diffusion waves (see Fig. 9a) possessing
all the properties typical of the waves in the initial system
of Eq. (4). First, these waves have a strictly defined direc-
tion of propagation. Second, the transition of these waves
through a fixed point in space (i.e. through a specific oscil-
lator) leads to a change in the phase of local oscillations by

 1 

 

 

 

Fig. 9. (a)Spatio-temporal evolution of the solution of system (16)
allowing for diffusion. The front of the phase jump propagates along
the zonal circle with constant velocity. Dark and light regions cor-
respond to the solution with phases differing byπ ; (b–c) local evo-
lution of the variables in system (16) under the conditions of phase
front propagation.

π (see Fig. 9b–c). Third, when the external forcing has uni-
form phase distribution, the phase changes are stationary, i.e.
no waves are formed. Fourth, the wave propagation velocity
is directly proportional toD and inversely proportional toL
to a good accuracy.

5 Discussion and conclusion

Thus, in this work we have studied analytically the mech-
anism of generation of two-day photochemical oscillations
in the mesopause region. To do so, we simplified the initial
System of Eq. (4) and reduced it to system (9) that repro-
duces sufficiently well the principal qualitative features of
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the initial model. The linearization near the period doubling
threshold demonstrated that the mechanism of generation is
described by the particular case of the Mathieu equation in
which, at high enough amplitude of external forcing, the first
subharmonic of the forcing becomes unstable.

Note, first, that the obtained system of Eq. (9) takes into
consideration only 7 photochemical reactions:

H + HO2 → O2 + H2

O+ OH → O2 + H

O+ HO2 → O2 + OH

O2 + H + M → HO2 + M

H2O+hν → H + OH

O2 + hν → 2O

H + HO2 → H2O+ O

Second, for nontrivial nonlinear dynamic properties of
System (9) to arise, harmonic action should be taken into ac-
count only for the O2 + hν → 2O reaction. We carried out a
special numerical-analytical analysis of System (7) aimed at
understanding why allowance for periodic action in the equa-
tion for variablex2 only leads to disappearance of nonlinear
response. We considered the following system of equations:

dx1
dt

= −αx2 +
δ
2

dx2
dt

= −β
x2

2
x2

1
− σ

x2
2

x1
+

γ
2 +

γ
2 sin2πt

T

. (17)

System (17) was expanded like in Sect. 3 and the Mathieu
equation for a two-day harmonic was obtained. The numeri-
cal analysis revealed that the solution of this equation is sta-
ble and has no oscillations with a period of 2 days throughout
the simulated range of heights. In other words, allowance for
periodic action only in the equation forx2 does not lead to
appearance of an increment for this harmonic.

Note that the studied mechanism is also responsible for all
further period doubling bifurcations and subsequent super-
critical excitation of subharmonic oscillations with periods
of 4, 8, 16, etc. days. Indeed,

1. if we consider System (10) near the excitation thresh-
old of the oscillations with, e.g. a period of 4 days (see
Fig. 5),

2. if the solution is represented in the formx = x1 + x2 +

x4, y = y1+y2+y4, |x4| , |y4| << |x1 + x2| , |y1 + y2|,
where (x1+x2, y1+y2) is the solution of the system be-
fore the bifurcation and includes the harmonics with fre-
quenciesω2 and ω

2 , respectively,

3. if all the required small parameter and Fourier series
expansions are performed in accordance with the pro-
cedures described in Sect. 3, and

2 frequency of the external periodic forcing.

4. if we single out the terms in resonance with the fre-
quency we are interested in,

then we will obtain an equation describing the excitation
of solutions with frequencyω/4:

d2x4

dτ2
+ λsin

(ω

2
τ +

ϕ0

2
+ const

)
x4 = 0,

where ϕ0 is the phase of external periodic forcing.
Note that from the formal viewpoint, natural oscilla-
tions with frequencyω/2 act as the “external” forcing
required to excite these oscillations, rather than as the
initial forcing with frequencyω. For excitation of the
oscillations with frequencyω/8, we obtain the equation
d2x8
dτ2 +λsin

(
ω
4 τ +

ϕ0
4 + const

)
x8 = 0, etc. Here, the fol-

lowing regularity is easily observed. The phase of sub-
harmonic oscillations with a period ofN days is rep-
resented as a sum of three values,ϕ0/N + ϕi+const,
whereϕi can take on a value from the discrete series
2π
N

(i − 1), i = 1, ..,N .

It should be noted that, in principle, the obtained mech-
anism of generation of two-day photochemical oscillations
cannot explain the subcritical excitation of the modes of be-
havior with odd periods, e.g. periods of three days, which
is demonstrated by the initial photochemical system (see
Fig. 3). However, it works well for all consequent period
doubling bifurcations when supercritical excitation of sub-
harmonic oscillations with periods of 6, 12, 24, etc. days
takes place.

It was mentioned in the Introduction that diurnal variation
of solar radiation is the key mechanism of the Sun’s influ-
ence on the chemical processes in the entire atmosphere of
the Earth. However, but for MPCS, no other atmospheric
photochemical systems are known which have similar non-
linear dynamic properties. Besides, the atmosphere is char-
acterized by a sufficient amount of other periodic actions
with large enough amplitudes (including those of the anthro-
pogenic origin), which, in principle, can lead to the nonlinear
response of the atmospheric photochemistry in other regions.
Based on the derivation of the oscillator equation performed
in Sect. 3, one can formulate basic preconditions of this phe-
nomenon. First of all, the external periodic forcing should
be sufficiently strong: the higher its frequency, the higher
its amplitude will be. On the other hand, the excitation pe-
riod should be of the order of the characteristic time of the
evolution of the considered system. The presence of the cat-
alytic cycle of destruction of some chemical componentx

in this system is actually unnecessary. The required linear
term3 in the balance equation for this component can, e.g.
ensure a chemical source proportional to the concentration
of the other component,y. Specifically, this may occur when
x is born as a result of the bimolecular reactiony + z → x,

3 as in the first equation of system (10).
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and the relative change in the third variablez is small com-
pared to the relative changes in the first two variables, i.e.
z ≈ const.

We also formulated a simplified system of two differential
nonlinear equations for analytical study of the effect of aris-
ing of reaction-diffusion waves in the MPCS. It was shown
that this system has subharmonic oscillations with a period of
two days and, in general, a complete spectrum of such oscil-
lations with periods of 3, 4, 5, etc. days, up to chaos. Spectral
analysis verified that the harmonic component with a period
of two days is best pronounced in the two-day solution of this
system, while there are no harmonics with periods 1, 0.5,
0.25, etc. days. In addition, the nonlinearity of this system
has a power-law character, which, in principle, is a favorable
feature for the harmonic analysis. The numerical study of this
system, with diffusion taken into consideration, revealed the
possibility of formation of reaction-diffusion waves possess-
ing all the properties of waves arising in the initial system of
equations for MPCS.

It should be noted that Kulikov and Feigin (2004) used
the one-dimensional (in zonal direction) model of the MPCS
to demonstrate that the reaction-diffusion waves are formed,
generally speaking, for any period of subharmonic oscilla-
tions. It was found that for the periods of 4, 6, 8 etc. days, the
situation is similar to that for the oscillations with a period
of two days, i.e. the waves are caused by the zonal nonuni-
formity of the phase of diurnal illumination variations. Their
velocities are directly proportional to the diffusion coefficient
D and inversely proportional to the length of the zonal circle.
In turn, for periods of 3, 5, 7 etc. days, the situation is basi-
cally different. First of all, nonuniformity of the phase of di-
urnal illumination variations is not a necessary condition for
formation of such waves, which makes it possible for them to
propagate in any horizontal direction rather than only along
the zonal coordinate. Their velocity is proportional to

√
D,

inversely proportional to the oscillation period and, in gen-
eral, weakly depends on the length of the zonal circle. Note
that, actually, the derived system of two differential nonlin-
ear equations allows analytical study of the mechanism of
reaction-diffusion waves for any type of subharmonic oscil-
lations. Such a study performed within the framework of the
theory of solitons will be presented in a separate paper.
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