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Abstract. The inverse problem of using the information of
historical data to estimate model errors is one of the science
frontier research topics. In this study, we investigate such a
problem using the classic Lorenz (1963) equation as a pre-
diction model and the Lorenz equation with a periodic evo-
lutionary function as an accurate representation of reality to
generate “observational data.”

On the basis of the intelligent features of evolutionary
modeling (EM), including self-organization, self-adaptive
and self-learning, the dynamic information contained in the
historical data can be identified and extracted by computer
automatically. Thereby, a new approach is proposed to esti-
mate model errors based on EM in the present paper. Nu-
merical tests demonstrate the ability of the new approach to
correct model structural errors. In fact, it can actualize the
combination of the statistics and dynamics to certain extent.

1 Introduction

Monthly, seasonal, annual and inter-annual climatic predic-
tions became the next targets of the frontier research of at-
mospheric sciences since the successful implementation of
short-term weather forecasts. However, with the discovery
of chaos, it is well known that the climate system is a com-
plex nonlinear system, and climate prediction is a great chal-
lenge to researchers. Moreover, inherent defects of statistical
methods and dynamical methods result in significant uncer-
tainties of their applications in climate prediction. Statistical
methods are mainly used to search prediction clues from his-
torical observational data, based on the historical behavior

and statistical regularities of the climate system. The results
of statistical model are sometimes satisfactory, but such sta-
tistical regularities and the prediction models derived from
such statistical methods are often unstable due to the effects
of nonlinearity of the climate system (Gu, 1958).

The prediction problem based on dynamical methods can
be regarded as a problem of initial value of differential equa-
tions. It implies that it is necessary to ensure sufficiently pre-
cise initial values and boundary conditions as well as the ac-
curacy of the prediction model in order to obtain a reliable
prediction. In fact, these conditions cannot be satisfied com-
pletely. Despite the continuous improvement and optimiza-
tion of numerical model and data assimilation systems, it is
difficult to improve the time limit of weather forecasts be-
yond two weeks (Lorenz, 1965, 1969) due to the complexity
of the atmospheric motion. Therefore, it is crucial to develop
alternative ways to improve the capability of the climate pre-
diction model (Schubert, 1985; Vannitsem and Toth, 2002;
Chou, 2003a, b; Li and Ding, 2011).

The dynamics-statistics approach is an important step for
the improvement of climate prediction models. Extensive re-
search has been carried out using a combination of statistics
and dynamics. Qiu and Chou (1988) noted that the obser-
vational data could be regarded as sufficiently precise solu-
tions for atmospheric models, and could be used to correct
the errors of model parameters by solving an inverse prob-
lem. Cao (1993) and Feng (2004) suggested that the atmo-
spheric motion is an irreversible process, and they introduced
a memory function that can make use of historical observa-
tional data to deduce the self-memorization equation for the
atmospheric motion including multi-time observational data.
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Chou (2007) argued that past daily weather changes, espe-
cially the recent evolutionary status of the atmosphere, con-
tain the information of numerical model errors. It should be
used to correct the model errors. Some related mathematical
and numerical issues in the geophysical fluid dynamics and
climate dynamics have been discussed (Li and Wang, 2008).
These methods have shown to be useful techniques for cli-
mate prediction in numerical experiments and applications. It
is an evidence of the effectiveness of the dynamics-statistics
approach.

In fact, the idea of the correction of the model errors is old.
Many studies provided some objective methods of estimat-
ing model errors, but their use for improving model perfor-
mance, is comparatively small. Examples are given by Schu-
bert (1985), Klinker and Sardeshmukh (1992). D’Andrea and
Vautard (2000) proposed a methodology for the correction
of systematic errors in a simplified atmospheric general cir-
culation model, and confirmed that this improvement actu-
ally stems from the flow dependence of the model error.
Such flow dependence was found in the Euro-Atlantic sec-
tor, while similar attempts to establish this relation in other
sectors of the globe failed. Vannitsem and Toth (2002) inves-
tigated the short-term dynamics of model errors by means
of numerical analysis of the Lorenz (1984) low-order atmo-
spheric system, and found that the short-term mean square
error evolution is mainly characterized by an initial quadratic
or linear behavior, depending on the dynamical properties
of the model error source terms. Also, there are studies of
the impact of model errors associated with parameter errors.
Duan and Zhang (2010) investigated the effect of initial er-
rors and model parameter errors on a significant “spring pre-
dictability barrier” (SPB) for El Nĩno events. They inferred
that initial errors, rather than model parameter errors, may
be the dominant source of uncertainties that cause a signifi-
cant SPB for El Nĩno events. Mu el al. (2010) suggested that
conditional nonlinear optimal perturbation approach (CNOP)
can be applied to estimate model parameter errors for El Niño
events, but did not consider other kinds of model errors at
present. Despite this, it is expected that CNOP will play an
important role in the studies of atmospheric and oceanic sci-
ences.

However, most of the works mentioned above remain in
the theoretical stage, and many issues need to be addressed
for their application in weather forecasts (Chou et al., 2007).
For example, traditional methods for solving inverse prob-
lems of differential equations face one essential problem of
ill-posed characteristic, such as the instability of approxi-
mate solutions. The models describing the complex climate
system can only approximately describe the major dynamic
processes of atmospheric motion. Therefore, not all the de-
tails are described in these prediction models. In fact, climate
change can be viewed as a long-range evolutionary process
with self-adaptation. So, it is unnecessary to describe all the
characteristics of the problem in detail, and all it requires is

a solution in accordance with the evolutionary laws of the
nature.

In the case that only limited information is known on a
dynamic system, a possibility is to replace human intelli-
gence with computational intelligence in some steps of the
traditional modeling, including the development of assump-
tions, the construction and the calculation of the model. This
is the idea of so-called evolutionary modeling (EM; Cao
et al., 2000). Evolutionary computation is a mathematical
modeling approach based on the evolutionary laws of nature
(Back et al., 1997; Cao et al., 2000). In EM, simple cod-
ing techniques can be used to represent a variety of com-
plex mathematical structures. The approximate solutions of
inverse problem can be automatically searched by computer
programs. This step is iterated for some number of genera-
tions until the termination criterion of the run has been satis-
fied. The characteristics of evolutionary algorithms are self-
organizing, self-adaptive and self-learning. Natural selection,
namely survival of the fittest, and evolution strategies provide
many conveniences and advantages for solving inverse prob-
lems of complex differential equations.

In the present work, the problem of how to use combina-
tion of the dynamics and statistics to correct model errors has
been studied. On the basis of the EM method, a new approach
is proposed to correct model errors. Using the new approach,
dynamic information of model errors can be extracted from
historical observational data. The results of numerical exper-
iments based on the Lorenz (1963) model have been prelim-
inarily validated in terms of their ability to correct model er-
rors. It must be noted that the model error studied here mainly
refers to the dynamic structural error in a prediction model.

2 Algorithm of EM

EM is a calculation strategy and method on the basis of the
principles of biological natural selection and genetic inher-
itance (Back et al., 1997; Cao et al., 2000). Complex prob-
lems can be solved by means of computer simulations of the
natural evolutionary process in EM. In accordance with rules
of natural evolution, such as the “survival of the fittest”, the
complexity of the computing and solution can be controlled
in EM. Evolutionary computation provides an effective ap-
proach to deal with those problems (Holland, 1975), which
are complex and intractable problems by traditional mathe-
matics. Generally, differential equations can be expressed as
binary trees in EM (Fig. 1). In these binary trees, each tree
structure uniquely corresponds to a complex or simple func-
tion within the solution space of the problem. These func-
tions generally consist of arithmetic operations, logic opera-
tions, variables, constants, and elementary functions, such as
sine, cosine, and exponential function. The tree structure can
be changed dynamically by using genetic operators, such as
crossover and mutation. The evolution of these tree structures
continues from one generation to another generation until the
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Fig. 1. Hierarchical structure diagram of binary tree of the Lorenz
model.

termination criterion of the run has been satisfied. The com-
plexity of a function can be controlled by setting the depths
of the layers of a binary tree. The detailed algorithm of EM
can be found in Cao et al. (2000). As an example, the classic
three-dimensional Lorenz (1963) model can be written as the
form:

dx
dt

= ax + ay = Lx(x,y)

dy
dt

= rx − (y + xz) = Ly(x,y,z)

dz
dt

= xy − bz = Lz(x,y,z).

(1)

Here, the three parameters,a,r andb, are positive, and are
called the Prandtl number, the Rayleigh number and a phys-
ical proportion related to convective scale, respectively. In
the present study, the three parameter values are 10.0, 28.0
and 8/3, respectively. Whenr > 24.74, the Lorenz system
exhibits chaotic behavior. The binary tree form of the Lorenz
model is shown in Fig. 1.

In evolutionary algorithms, an individual mathematical
model structure corresponds to a unique binary tree (Fig. 1).
Three popular methods can be used to implement evolution-
ary computation, namely, genetic algorithm (GA), gene ex-
pression programming (GEP; Ferreira, 2001), and genetic
programming (GP; Saiedian, 1997). The GP and GEP meth-
ods will be selected to implement EM program in the present
study.

3 Correction scheme for model errors

Numerical prediction models are the dynamic equations con-
structed according to the basic laws of atmospheric and cli-
mate motion as currently understood. Undoubtedly, these
models use simplified and approximate equations. It can only
describe main features of atmospheric motion. In fact, the

problem is that the disturbance terms have to be overlooked,
or certain important dynamic elements are not included due
to the limitation of the existing knowledge. One of the current
measures for correcting errors is a post-processing strategy
for model prediction results, i.e. statistically correct on the
prediction results. However, the omission of dynamic char-
acteristics of the model error affects the quality of the results
of the statistical correction.

3.1 Description of the inverse problem

An inverse problem is a general framework that is used
to convert observed measurements into information about a
physical object or system that we are interested in. For ex-
ample, if we have measurements of the Earth’s gravity field,
then we might ask the question: “given the data that we have
available, what can we say about the density distribution of
the Earth in that area?” The solution to this problem (i.e.
the density distribution that best matches the data) is use-
ful because it generally tells us something about a physi-
cal parameter that we cannot directly observe (Keller, 1976;
http://en.wikipedia.org/wiki/Inverseproblem).

In contrast, with a forward problem, an inverse problem
of differential equations is based on existing results to de-
duce the cause of the results. In other words, on the basis of
the solution or partial solution of one differential equation,
the unknown components of the equation can be deduced.
In terms of differential equations, Leverentiev and his col-
leagues argued that the inverse problem can be defined as
follows: an inverse problem for a partial differential equation
is any problem involving the determination of the coefficients
or right-hand side of a partial differential equation on the ba-
sis of certain functionals of the solution of the equation (Lev-
erentiev et al., 2003). Without loss of generality, the general
form of differential equations can be written as

L · u(x,y, t) = f (x,y, t), (x,y) ∈ �,t ∈ (0,∞). (2)

Here,L is the differential operator, andu(x,y, t) is the
solution of the differential equation. The functionf (x,y, t)

is the right-hand side source term of the equation. When
L is unknown, this is called an inverse problem of opera-
tor identification; furthermore, when the right-hand source
term f (x,y, t) is unknown, this is called a source-term in-
verse problem. The ill-posedness and nonlinearity of an in-
verse problem make the related theories and solutions more
complex and difficult than those of a forward problem.

In order to investigate the inverse problem based on the use
of the information of historical data to estimate model errors,
Eq. (1) is regarded as an approximate model derived from
practice, while the corresponding true model is represented
by
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
dx
dt

= Lx(x,y)3Ex(x,y,z)

dy
dt

= Ly(x,y,z)3Ey(x,y,z)

dz
dt

= Lz(x,y,z)3Ez(x,y,z).

(3)

Here, E(x,y,z) is the potential unknown error term,
which is a composite function, such as trigonometric, ex-
ponential and power functions. The symbol “3” represents
connecting nodes. Generally, the symbol can only be basic
arithmetic operators, such as “+,−,×,÷”. If L(x,y,z) is
the main dynamic structure of the function, “3” can be deter-
mined. In this case, the symbol “3” usually is “+”. Even for
a simple dynamic equation, such as Eq. (1), it is difficult to
determine the specific mathematical expression ofE(x,y,z)

using traditional methods. On the basis of the definition of
the inverse problem, determining the error termE(x,y,z)

in Eq. (3) is a classic inverse problem, namely, solving the
source term on the right-hand side.

The limitation of those traditional methods is that model
structure must be determined in advance, and then model pa-
rameters can be estimated. However, it generally depends on
personal experience to construct model structure. It is a com-
plicated problem, especially when the data space takes on
the form of hyper-surfaces with multi-parameters and multi-
variables.

3.2 Error correction scheme of evolutionary
algorithm-based prediction model

The main steps for correcting prediction model error terms
through historical data are as follows: an approximate predic-
tion model and an accurate prediction model are constructed,
respectively. The solutions of the approximate model are re-
garded as the prediction results of a specific system, and
the solutions of the accurate model are regarded as “obser-
vational data”. Subsequently, the EM algorithm is used to
automatically search for the error term. During modeling,
a large ensemble of mathematical model structures is ran-
domly formed by means of the search in the basic function
library using the evolution program. Simultaneously, the pa-
rameters of the individual model structures will be continu-
ously estimated and optimized by the parameter optimization
module. According to certain criteria, poor individual model
structures will be eliminated, and good model structures will
be retained, which can be continuously used to EM of the
next generation. Finally, several mathematical models with
relatively minimal errors will be obtained.

Firstly, in Eq. (3), for example, the functionL(x,y,z)

must be unchanged in the EM. Then, the function will be
expressed as the binary tree hierarchy (Fig. 1), which can be
represented in a certain program code, and then can be placed
into the evolutionary process. Obviously, obtaining the ex-
pression of the error functionE(x,y,z) is an inverse problem

that solves the right-hand side of the differential equation.
Here,L(x,y,z) is the approximate model, and the correction
scheme of the prediction equation is as follows.

1. Constructing Gene(L), the binary tree of the main func-
tion L(x,y,z).

2. Specifying randomly the node symbols and the con-
stants contained in the error termsE(x,y,z), and
the nodes include{+,−,×,÷,sin,cos, ln,exp} in the
present study. The populations Pop with a certain size
will be generated randomly.

3. Forming several binary tree structures Genei(E) of the
error functions using the evolutionary algorithm GP and
GEP. Meanwhile, Genei(E) will concurrently evolve
with the main binary tree Gene(L) by applying evo-
lutionary operations, including selection, hybridization
and mutation. By controlling the depths of the binary
tree layers of Genei(E), several complex-controllable
composite binary trees (i.e. the revised function) can be
obtained.

4. Computing and evaluating the adaptive values of
these composite binary trees in combination with “ob-
servational data”. Retaining the superior individuals
Genei(E) in the generation, and then these superior in-
dividuals will be used as EM of the next generation.

5. Repeating the above procedures until a new function
body meets the predetermined conditions (i.e. the ter-
mination condition).

3.3 Numerical experiments

In order to test the performance of the error correction
scheme presented in this study, it is necessary to generate
“observational data”. To deal with this issue, a classic three-
dimensional Lorenz model is regarded as an inaccurate pre-
diction equationL(x,y,z). The Lorenz model with an error
termEx = 5sin(sin(x)) is regarded as an accurate prediction
equation, and connecting node3 = “+′′, as follows:

∧ = “+′′

Ex(x,y,z, t) = 5sin(sin(t))
Ey(x,y,z, t) = 0
Ez(x,y,z, t) = 0.

Thus, Eq. (3) can be written as
dx
dt

= Lx(x,y) + 5sin(sin(t))

dy
dt

= Ly(x,y,z)

dz
dt

= Lz(x,y,z).

(4)

In Eq. (4), the integral initial values ofx0,y0 andz0 are 1.19,
3.08 and 21.65, respectively. The integral step is 0.1. The first
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Fig. 2.The “observed value” (x0,z0) and the corresponding predic-
tion data (x,z) of the prediction model, where the sample size is
700. (a) Variablex in the Lorenz model; and(b) variablez in the
Lorenz model.

700 integral steps of Eq. (4) are regarded as “observed data”
(solid line in Fig. 2). The corresponding prediction data can
be generated by the classic Lorenz model (Eq. 1), and the so-
lution of the approximation model has been shown in Fig. 2
(dash line). Comparing the prediction data with the obser-
vational data, it is clear that there is some small difference
between the prediction data and the observational data when
the integral time is less than about 180 steps. Thereafter, the
differences gradually become larger, and even the phases of
evolution of the prediction data and the observational data
are sometimes in opposition.

In accordance with the correction scheme, the GP and GEP
are used in the modeling approach. The details of the related
parameters are already listed in Table 1, and a relative error
function is used as the fitness function,

fitness(f (x)) =
100.0

N∑
i=1

(xi − xi′)
2

. (5)

Equation (5) is called the evaluation function, which is a
quantitative indicator of the quality of model, and also pro-
vides the termination condition of the EM program. Here,
xi is the “observational data”, andxi′ is the solutions of the
revised model by EM. It is the most crucial element of the
evolutionary algorithm for the problem to be solved. The
selection of the fitness function has a significant impact on
the convergence speed and results of the evolutionary algo-
rithm. The evaluation function (Eq. 5) is comparatively con-
sistent with the law of evolution, the “survival of the fittest”.
It retains a suitable adaptive range and can create a state
space that can be addressed by the evolutionary algorithm.
A suitable evaluation function can improve the convergence

- 2 0
- 1 0

0
1 0
2 0

1 0
2 0
3 0
4 0
5 0

- 2 0
- 1 0

0
1 0
2 0

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0
1 0
2 0
3 0
4 0
5 0

X

 X 0
 X  f o r  E x ( 1 )
 X  f o r  E x ( 2 )
 X  f o r  E x ( 3 )

Z

 Z 0
 Z  f o r  E x ( 1 )
 Z  f o r  E x ( 2 )
 Z  f o r  E x ( 3 )

( a )

( b )

( c )

( d )

X

 X 0
 X  f o r  E x ( 4 )
 X  f o r  E x ( 5 )
 X  f o r  E x ( 6 )

Z

n

 Z 0
 Z  f o r  E x ( 4 )
 Z  f o r  E x ( 5 )
 Z  f o r  E x ( 6 )

Fig. 3.Error correction based on the first componentLx(x,y) using
EM. (a) and(b) are the fitting and prediction data of the corrected

models using the error functionE(1)
x , E

(2)
x andE

(3)
x , respectively.

(c) and (d) are the same as(a) and (b), but for E
(4)
x ,E

(5)
x ,E

(6)
x ,

respectively.

velocity of the evolutionary algorithm and avoid excessively
rapid or slow evolution of populations. Thus, it can ensure
to obtain several reliable solutions with high quality. A few
prediction equations have been listed in Table 2 obtained by
the error correction scheme.

Generally, it is difficult to have the knowledge on the
forms and positions of the error terms. The error corrections
have been implemented for the three functionsLx(x,y),
Ly(x,y,z), Lz(x,y,z), respectively. Based on the results of
the EM, seven representative error functions are shown in Ta-
ble 2 for the error corrections on the first functionLx(x,y) in
the Lorenz model (Eq. 1). The error functionE(0)

x obtained
by EM is identical to the real error term because the func-
tion E

(0)
x can be transformed into the original error func-

tion. Indeed, it is no doubt that the probability for obtain-
ing an identical error function is very low in climate models
based on the existing technology. The reason is that the vari-
ables and physical mechanisms of the atmospheric motion
are more complicated than those of the current example. The
other six error functions can be divided into two categories.
The first three error functions only contain time variablet ,
and the style of these functions is similar to that of the real
error function. In contrast, there are more than one variable
contained in the other three error functions. It is easy to find
that most of these error functions obtained by EM are similar
to the given error termEx , namely, trigonometric functions
are the main form in these error functions.

The fitting curves and prediction curves are shown in
Fig. 3. The sample size of the training data is 500, and that
of the prediction data is 200. Obviously, they are all good
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Table 1.Parameters in the EM procedure.

Setting GP GEP

Population size 100 100
Generation 100–1000 500–1000
Selection method Elite Elite
Functions +,−,∗,/,sin, cos, ln, exp +,−,∗,/,sin, cos, ln, exp
Random constant range 0–100 0–100
Crossover prob. 75 % 75 %
Mutation prob. 4.4 % 4.4 %
Minimum level of binary tree 3 /
Maximum level of binary tree 5 /
Head length / 20
Observations size 700 700

Table 2.Error functions and errors of the equations obtained by EM (for variablex).

Error function
Expression of error function

Errors (based on x)

Object function Including
reviesd name variables Fitness Prediction

dx/ dt

E
(0)
x t

10sin(0.5sin(t))cos(0.5sin(t))
+5sin(sin(t))

0 0

E
(1)
x t 2sin(t) + 1 0.26 1.37

E
(2)
x t 3.248sin(cos(t)) 1.50 8.41

E
(3)
x t 4.584

t+2 0.56 3.14

E
(4)
x x,y 5cos(x)cos2

(
cos(y)−0.5

y

)
0.038 0.02

E
(5)
x x, t sin(sin(sin(y + t))) + 1.554 0.02 1.68

E
(6)
x x,z ln(cos(ex) + cos(cos(z + 0.5)) + 5) 0.03 0.06

fitting results for different error functions by EM, and the
prediction errors are largely reduced by the correction before
reaching the first 150 steps. Even though the prediction error
becomes slightly larger in the final 50 steps, the overall vary-
ing trend remains unaffected. It is also indicated that there
exists a time limit in the correction efficiency of these error
functions. In Fig. 3a and b, the adaptive value calculated by
Eq. (5) is less than 2, and the maximum of the predication
error is only 8.41. Obviously, it is a successful error correc-
tion. Figure 3c and d show the results of the revised equation
corrected by three relatively more complex error items:E

(4)
x ,

E
(5)
x andE

(6)
x . They contain more than one variable, includ-

ing components(x,y,z) and t . Even though they are more
complicated than the original error function, the effects of
the error correction are still satisfactory. Except for the pre-
diction result of the revised equation byE(5)

x , the average
prediction errors are very small. The corrected prediction re-
sults are similar for the prediction of the variablesy andz by
error correction on the first functionLx(x,y) in Eq. (4). It

shows the ability of EM to reduce model error using histori-
cal observational data.

The results of the error corrections on the second func-
tion Ly(x,y,z) of the Lorenz model are listed in Table 3.
The original error termEx is in the first functionLx(x,y)

in Eq. (4), but the error corrections on the second function
Ly(x,y,z) can achieve the effect of reducing prediction er-
ror by the automatic searching process of the EM and the
correction effect is almost the same as with the function
Lx(x,y). Apart from the error functionsE(1)

y andE
(2)
y , the

fitting values of other four revised functions are less than
1.0. The fitting value ofE(1)

y is the largest in the six cases;
however, it can be seen that the prediction error also can be
largely reduced (Fig. 4). For the other three error functions
E

(4)
y ,E

(5)
y ,E

(6)
y , the average prediction errors of the revised

function are very small. The prediction errors of the revised
model by the error functionE(4)

y ,E
(5)
y ,E

(6)
y become rela-

tively larger when the integration time is greater than about
150 units. The results further indicate that there exist time
limits in the correction efficiency by these error functions. It
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shows that the structural errors of a prediction model can be
adjusted by correcting its different components of the model.
Similar error corrections have been implemented for the third
function Lz(x,y,z). The results are listed in Table 3 and
shown in Fig. 5. The effects of the corrections are similar
with those of the other two components in the Lorenz model.

Based on these results, it can be concluded that various
forms of error function can be obtained by the EM algorithm.
Some of them are simple error function forms, which may be
almost identical to the original error function in the inaccu-
rate equation; however, there are also complex forms, which
contain various kinds of compound functions. In certain time
range, they provide similar dynamic characters. In summary,
the information of the prediction error contained in the obser-
vation data can be effectively extracted by EM. EM provides
a variety of possible forms of error function, which can be
used to largely reduce the prediction error in a certain time
limit.

4 Conclusions

The development of a numerical model largely depends on
the continued improvement of the model and the quality of
observational data. The dynamical methods have already be-
come an important research direction in climate prediction.
The dynamics-statistics approach is a significant and effec-
tive way to improve prediction capabilities under the condi-
tions of existing models and data. Different from the simple
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statistical correction strategy, this paper proposes a direct
correction method of model error based on the EM algorithm,
which can make use of dynamic regularities inherent in his-
torical data.

In comparison with the original prediction equation, the
numerical results indicate that prediction errors are signifi-
cantly reduced after the correction by the EM algorithm and
the feasibility and ability of the correction scheme proposed
in this paper. The present work demonstrates that, using the
EM algorithm, the abundance of information present in his-
torical data can be used to correct model errors. The present
method can make full use of the advantages of dynamics and
statistics.

Various forms of error function can be obtained by EM al-
gorithm, and it will be a difficult task to choose an appropri-
ate equation in application. An ensemble forecasting method
can be used to deal with this problem. Based on the predic-
tion errors of the model corrected by EM, the proportion of
the prediction results of the different revised model can be
quantitatively allocated. It can reduce the uncertain of the
prediction results by the revised model as well as avoiding
randomicity of a single revised model.

Only a simple three-dimensional Lorenz equation is se-
lected to study the scientific problem for model error correc-
tion in the present paper, but our work has undoubtedly paved
a new way for the implementation of a combined dynamics-
statistics. The results of the numerical experiment will be a
great encouragement for researchers to continually study in
this field, and it further demonstrates that the combination of
dynamics and statistics is an important and feasible approach
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Table 3.Error functions and errors of the equations obtained by EM (for variabley).

Error function
Expression of error function

Errors (based onx)

Object Function Including
reviesd name variables Fitness Prediction

dy/dt

E
(1)
y t sin(sin(t) + sin(t + 2)) + 0.5 4.58 2.45

E
(2)
y t

4√

10t2 2.28 7.60

E
(3)
y t cos(0.5t + t sin(t)) + 0.642 0.96 3.74

E
(4)
y y,z e

√
5

y−
√

zt−
√

yt/1.5 0.03 0.22

E
(5)
y x,y, t (sin(cos(x)) +

√
yt)/5 0.04 0.25

E
(6)
y x,y,z cos

(
xy −

1
2ln(2z)+y−5)

)
0.02 0.08

Table 4.Error functions and errors of the equations obtained by EM (for variablez).

Error function
Expression of error function

Errors (based onx)

Object Function Including
reviesd name variables Fitness Prediction

dz/dt

E
(1)
z t e0.5−t

ln
(
0.5t2+2

) 1.44 7.9

E
(2)
z t

√
5−(0.5t−et )

et 0.87 2.29

E
(3)
z t sin(e2t+0.4) + (sin(et ) + 0.4)/5 0.42 2.33

E
(4)
z x,y,z

sin(x+5/x)
(sin(y)+ln(z)+5)

− t 0.12 0.32

E
(5)
z x,y,z 2

x cos
(

2zcos(0.5y)
y

)
0.02 0.04

E
(6)
z z esin(ez)−z 0.03 0.22

for the improvement of prediction precision. In future work,
the idea presented in this paper will be gradually applied to
higher dimensional ordinary differential and partial differ-
ential equations. The ultimate goal is to apply the present
method to a variety of numerical prediction models.

Currently, EM can be optimized by means of parallel com-
puting or cloud computing. It can be realized by implement-
ing multithread parallel computing not only for the correc-
tion of model errors of single dynamic equation but also for
that of multi-equations. Based on this, the computational ef-
ficiency of EM can be improved greatly. In fact, the numer-
ical calculations used in this paper all are based on multi-
core multi-threaded algorithms, which obviously improves
the computational efficiency of EM. So we believe that the
present study could be applied to more complex systems for
the correction of model errors including the model errors of
large-scale numerical prediction models.
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