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Abstract. Two unsupervised pattern recognition algorithms,
k-means, and Gaussian mixture model (GMM) analyses have
been applied to classify seismic events in the vicinity of Is-
tanbul. Earthquakes, which are occurring at different seis-
micity rates and extensions of the Thrace-Eskisehir Fault
Zone and the North Anatolian Fault (NAF), Turkey, are being
contaminated by quarries operated around Istanbul. We have
used two time variant parameters, complexity, the ratio of in-
tegrated powers of the velocity seismogram, and S/P ampli-
tude ratio as classifiers by using waveforms of 179 events
(1.8 < M < 3.0). We have compared two algorithms with
classical multivariate linear/quadratic discriminant analyses.
The total accuracies of the models for GMM,k-means, lin-
ear discriminant function (LDF), and quadratic discriminant
function (QDF) are 96.1 %, 95.0 %, 96.1 %, 96.6 %, respec-
tively. The performances of models are discussed for earth-
quakes and quarry blasts separately. All methods clustered
the seismic events acceptably where QDF slightly gave bet-
ter improvements compared to others. We have found that
unsupervised clustering algorithms, for which no a-prior tar-
get information is available, display a similar discriminatory
power as supervised methods of discriminant analysis.

1 Introduction

Identification and classification of different seismic events
with similar characteristics in a region of interest is one of
the most important subjects in seismic hazard studies. Dif-
ferent techniques using various predictants to discriminate
earthquakes and man-made explosions such as quarry blasts,
nuclear tests, underwater explosions etc. have been derived

worldwide, each one appropriate to a particular region. One
well-known statistical method, linear discriminant analysis
(LDA), is frequently applied to seismic studies to find a lin-
ear combination of features that characterizes or separates
two or more classes of events (Koch and Fah, 2002; Rodgers
and Walter, 2002; Horasan et al., 2009). Alternatively, soft
computing techniques such as artificial neural networks, self
organizing map, adaptive neuro-fuzzy inference system etc.
have been employed recently (Yıldırım et al., 2011; Kuyuk
et al., 2010; Campus and Fah, 1997; Falsaperla et al., 1996;
Musil and Plesinger, 1996; Muller et al., 1999; Dowla et al.,
1990; Tiira, 1999; Jenkins and Sereno, 2001; Ursino et al.,
2001; Del Pezzo et al., 2003; Scarpetta et al., 2005).

Cluster algorithms (we use this term for distinguish-
ing earthquakes from non-earthquake events, but not after-
shocks) can be characterized into three groups, with respect
to the type of feedback to which the learner has access:
(1) supervised, in which learning is the machine learning task
of inferring a function from supervised training data; (2) semi
(or reinforcement)-supervised, in which learning is a class
of machine learning techniques that make use of both labeled
and unlabeled data for training – typically a small amount
of labeled data with a large amount of unlabeled data; and
(3) unsupervised, in which learning refers to the problem of
trying to find hidden structure in unlabeled data. Since the
examples given to the learner are unlabeled, there is no er-
ror or reward signal to evaluate a potential solution. Clas-
sic LDA statistical based approaches fall into the supervised
group which means a-priori information is provided to train
an algorithm wherek-means and Gaussian mixture models
are considered as unsupervised since no target is given (fac-
tor analysis, principal and independent component analysis
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etc.).k-means algorithm is used for clustering source zona-
tion in the Aegean region (Weatherill and Burton, 2009) for
pattern recognition of the three-dimensional structure of the
active part of a fault network using the spatial location of
earthquakes (Ouillon et al., 2008) and for separating stresses
from earthquake focal mechanism data (Otsubo et al., 2008).
Gaussian mixture model is used for seismic facies classifi-
cation (Han et al., 2011). Han et al. (2011) proposed an ap-
plication of the expectation–maximization algorithm to au-
tomatically identify geological facies from seismic data. Yet,
two algorithms analyzed in this study are not deeply investi-
gated in clustering of seismicity or removing contamination
of seismicity catalogs by man-made noise in a region.

Therefore, western part of the North Anatolian Fault
(NAF), Turkey, which is one of the most active seismic re-
gions all over the world, is considered to investigate. There
is high seismic activity in this area especially in Marmara re-
gion, where the metropolitan mega-city Istanbul is located in
the north (Fig. 1). Kandilli Observatory and Earthquake Re-
search Institute (KOERI) operates, records and processes the
seismic activities for seismic hazard assessment constantly.
However, these tasks need to be auto-operated, and system-
atic since there is high seismic activity, and the operation
should be immune to personnel changes. Such a systematic
approach does not require an expert’s continuous attention,
and reduces time-consuming tasks such as late/night work.

As a predictant in clustering studies, amplitude peak ratios,
power ratios, and spectral amplitude ratios etc., which are
derived from time- and frequency-domain analysis of seis-
mograms, were utilized in the literature (Bennett and Mur-
phy, 1986; Ẅuster, 1993; Gitterman et al., 1998; Wiemer
and Baer, 2000). Horasan et al. (2009) first studied in the
Marmara region/Turkey using three parameters: amplitude
peak ratio, power ratio, and spectral amplitude ratio with lin-
ear discriminants analysis. They advised adding origin time
of events as a parameter, because quarry blasts are happen-
ing in daytime. Then, Yıldırım et al. (2010) demonstrated
the use of feedforward neural networks (FFNNs), adaptive
neural fuzzy inference systems (ANFIS), and probabilistic
neural networks (PNNs) to discriminate between earthquakes
and quarry blasts for the region. The input vectors consist
of the peak amplitude ratio (S/P ratio) and the complex-
ity value. The success of the developed models on regional
test data varies between 97.67 % and 100 %. The same year
Kuyuk et al. (2010) extended discriminants by using four
parameters (complexity, spectral ratio, S/P wave amplitude
peak ratio and origin time of events) and applied an unsuper-
vised learning approach self-organizing map (SOM); how-
ever, they have showed that complexity and S/P parameters
are more useful than others. Compared to spectral ratios, time
domain parameters are more convenient and reliable for the
seismicity-related clustering (Pomeroy et al., 1982; Bennett
et al., 1989; Baumgard and Young, 1990).

However, it is a fact that clustering algorithms that might
be efficient in one region could be incompetent in some other
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Kemerburgaz, II: Çatalca, III: Ömerli, IV: Hereke) determined from satellite images (Musaoğlu et al., 

2004) and field observations. Filled black star shows the location of 20th November 2005 explosion. 

MMF, Main Marmara Fault; ÇS, Çınarcık segment of the MMF (from Horasan et al., 2009). 

Fig. 1. Map showing the study area (40.70–41.60◦ N latitude
and 28.00–29.70◦ E longitude) and locations of seismic events
used for statistical analysis of the seismicity catalogs (KOERI-
NEMC) for 1995–2007 (first 8 months) marked by open black
circles and locations of seismic events with duration magni-
tude between 1.8 and 3.0 (filled black circles) used for wave-
form of digital data for vertical seismograms recorded at ISK
broad-band station (open triangle) and CTT and HRT short-period
(filled triangles) stations (KOERI-NEMC, 2001–2004). Boxes
show the quarry sites (I: Gaziosmanpaşa/Cebeci and Kemerburgaz,
II: Çatalca, III: Ömerli, IV: Hereke) determined from satellite im-
ages (Musaǒglu et al., 2004) and field observations. Filled black star
shows the location of 20 November 2005 explosion. MMF: Main
Marmara Fault; ÇS: Çınarcık segment of the MMF (from Horasan
et al., 2009).

regions due to local site and source effects, geological struc-
ture of path, etc (Zeiler and Velasco, 2009).

The aim of this study is to examine and discuss the per-
formance of three statistical pattern recognition methods,
namely Gaussian mixture model,k-means and two algo-
rithms of discriminant functions including QDF, in order to
distinguish microearthquakes from quarry blasts in the vicin-
ity of Istanbul. Complexity and S/P ratio are first derived
from the seismograms, and they are used as a criterion for
the investigation. Comparison of the results has revealed that
all methods satisfactorily cluster the seismic events where the
QDF slightly gave better improvement compared to others.

2 Data and study area

In this study, the parameters S/P amplitude ratio and com-
plexity are used for classification of seismic activities using
statistical analysis. These parameters are obtained by Ho-
rasan et al. (2006), which is supported by Bogazici Univer-
sity Research Fund Project. Within the scope of this project,
179 events (Fig. 1) including earthquakes and quarry blasts
recorded by KOERI-operated HRT, ISK, and CTT stations by
means of computational vertical-velocity seismograms were
chosen. These events occurred between 2001 and 2004, and
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the duration magnitudes are between 1.8 and 3.0 (KOERI,
NEMC).

The study area is located 40.70–41.60◦ N latitude and
28.00–29.70◦ E longitude. The rectangles shown in Fig. 1 (I:
Gaziosmanpaşa; II: Çatalca, III:Ömerli, IV: Gebze-Hereke)
represent quarrying areas as determined by satellite and field
observations (Musaoǧlu et al., 2004; Horasan et al., 2006).

Horasan et al. (2009) indicated that the seismic events with
a magnitude less than three are related to both earthquakes
and man-made explosions from the quarries in the study area.
No explosions with magnitude 3 or more were observed in
the study area.

The number of seismic events in the quarries increased
during the daytime interval of 07:00 to 16:00 GMT (09:00
and 18:00 local time), which corresponds to regular blasting
hours of the quarries (Horasan et al., 2009). This information
is not sufficient to discriminate earthquakes and quarry blasts
in the high seismic activity region. Therefore, the waveforms
of these events must be investigated. The quarry blast wave-
form is dominated by the P-wave (the first arrival), whereas
the earthquake has a much larger S-wave and surface waves.
Therefore, seismogram features may play an important role
in the discrimination methods.

Station ISK has a broad-band seismometer, while CTT
and HRT have short-period seismometers. The short-period
seismometers for CTT and HRT stations were changed with
broadband ones after 2007. The sampling frequency of the
recorded data was 20 samples per second before Octo-
ber 2001 and 50 samples per second after that.

The first parameter, S/P amplitude ratio, was obtained
from the P and S wave peak to peak amplitude measurements
on the seismograms using GURALP visualization program
Scream 4.3. by Horasan et al. (2009).

The second parameter, complexity, is the ratio of inte-
grated powers of the velocity seismograms2(t) in the se-
lected time windows length (t1 andt2: first and second time
window lengths;t0: the onset time of P-wave). The complex-
ity (C) can be expressed as follows:

C :

t2∫
t1

s2(t)dt

/ t1∫
t0

s2(t)dt. (1)

The limits of the integrals (t0, t1, t2) of C given in Eq. (1) are
t0 = 0 s, t1 = 2 s , andt2 = 4 s. The complexity has higher
value for earthquakes, because the S-wave amplitude on the
earthquake waveform is greater than the P-wave amplitude
(Fig. 2).

Even if the S/P and complexity values might lead us to
make wrong classifications, the statistical analysis will even-
tually show these misclassifications.

 

Fig. 2 Distribution of seismic events according to complexity and S/P ratio. There are totally 179 events  

in the data set where 150 of them are QBs and 29 of them are EQs. Red color indicates the complexity 

which has higher values for earthquakes and blue color shows the S/P ratios.  

 

Fig. 2. Distribution of seismic events according to complexity and
S/P ratio. There are totally 179 events in the dataset where 150
of them are QBs and 29 of them are EQs. Red color indicates the
complexity, which has higher values for earthquakes, and blue color
shows the S/P ratios.

3 Methods

Classification techniques can be categorized as supervised,
semi-supervised and unsupervised according to their usage
of a-priori information (Duda et al., 2001). Mixture modeling
andk-means fall into the unsupervised group, which means
methods are not trained by feeding them the target identifi-
cation. On the other hand, classical linear and quadratic dis-
crimination analyses are considered supervised learning.

3.1 Gaussian mixture model

Mixture modeling constructs a model based on a mixture
of statistical distribution without requiring that an observed
dataset should identify the sub-population to which an indi-
vidual observation belongs. It supposes that the distribution
of the analyzed data is generated from a mixture of simpler
statistical distribution, representing the number of clusters
within the data. Mixture modeling could be used to obtain
cluster classification of point in 2-D. Gaussian mixture model
is a probability distribution that is a convex combination of
other Gaussian probability distribution (GPF) and is defined
as follows:

f (x) = 1
/√

2πσ 2e−(r−x̄)2/2σ2
(2)

where parameters̄x andσ 2 are mean and the variance. Sup-
pose that the random variabler is a mixture ofM Gaussian
models. Then, the probability density function (pdf) ofr is
given as the Gaussian mixture model:

P (r|β,2) =

M∑
i=1

αiP (r|x̄i,Ci) (3)

where β = (α1,α2, · · · ,αM) is the mixture of propor-
tions for eachi = 1,2, · · · ,M, and portions should satisfy
M∑
i=1

αi = 1. 2 = (θ1,θ2, · · · ,θM) andθi = (x̄i,Ci) in Eq. (3).

P (r|x̄i,Ci) is a distribution with emphasizing covariance
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matrix Ci and mean̄xi . Let 8 = (β,2) donate the mixture
model parameters, then the equation becomes

P (r|8) =

M∑
i=1

αiP (r|θi), (4)

We assume in this part that the parameters derived from
seismic data fit a Gaussian probability distribution; therefore,
the seismic data, which contain both quarry blast and earth-
quakes, are samples of a mixture model. To identify them, we
need to find the Gaussian models and the model from which
each datum is sampled. The theoretical framework and ex-
plicit solutions for Gaussian mixture models have been origi-
nally introduced by Hasselblad (1666, 1969). The commonly
used expectation-maximization (EM) algorithm (McLachlan
and Peel, 2000) is utilized to derive the parameters of the
mixture model distribution (see Appendix A).

3.2 k-means method

Like Gaussian mixture analysis,k-means clustering is a tech-
nique of cluster analysis that aims to separatei events from
within the g cluster, in which each event belongs to clus-
ter with nearest mean.k-means is a procedure in the form
of stochastic hill climbing in the log-likelihood function. Of
the various techniques,k-means can be used to simplify the
computation and accelerate convergence.k-means uses the
distance measure to assign each event to the nearest cluster
based on the proximity to its mean.

k-means is an iterative two-step algorithm (MacKay,
2003). In the assignment step, each datumj is assigned to
the nearest mean. First guess for the clustergJ that the point
rJ belongs to bỹgJ is

g̃J = argmin
g

{d (2J , rJ )} (5)

where each cluster is parameterized by a vector2 andd is a
metric that defines distances between points, which is defined
as

d (a,b) =
1

2

∑
i

(ai − bi)
2. (6)

Alternatively, assignments of data to cluster can be repre-
sented by an indicatorzg

j where it is assigned to one, if mean

(x̄i) is the closest mean torJ ; otherwisezg
j is zero.

z
g
j =

{
1 if
o if

g̃J = g

g̃J 6= g
(7)

In the updated step, model parameters (2) are adjusted to
match the sample means of the data points that they belong
to by Eq. (8):

2g =

∑
j

z
g
j rj∑

j

z
g
j

(8)

This repeats until the assignments do not change (Spath,
1985; Seber, 1984).

3.3 Discriminant classification

Each class generates data using a multivariate normal distri-
bution.

– The model has the same covariance matrix for each
class; only the means vary for the LDA.

– Both means and covariance of each class vary for the
QDA.

Classification is achieved by minimizing the expected
classification cost:

ŷ = argmin
y=1,....K

K∑
k=1

P̂ (k|x)C(y|k) (9)

whereŷ is the predicted classification;
K is the number of classes;
P̂ (k|x) is the probability of classk for observationx;
C(y|k) is the cost of classifying an observation asy when

its true class isk.

4 Results and discussions

There are rich and various ranges of other clustering tech-
niques in the literature, such as exclusive/non-exclusive,
complete/partial, hierarchical/partitioned, and fuzzy. In this
study, three clustering techniques are analyzed: Gaussian
mixture model,k-means, and two discriminant functions.
From a practical point of view in clustering, applying a
threshold value to a raw dataset appears to be the easiest way
(Fig. 2). However, we could not find an effective value that
separates the data into two clusters. In Table 1, the descriptive
statistical information about calculated parameters indicates
that averages of complexity and S/P ratio are quite higher for
earthquakes than quarry blasts. Large standard deviations in
both parameters made it difficult to distinguish clusters with
a threshold value. Correlation coefficients between the dis-
criminants for just earthquakes, quarry blasts and total are
0.39, 0.79 and 0.83, respectively. The correlation between
complexity and S/P ratio is twice for quarry blasts compared
to earthquakes.

We have employed a probability density function (Gaus-
sian mixture model) of the seismic events as criterion in or-
der to determine clusters. 2-D probability density function
contour plots are shown in Fig. 3. Seismic events are drawn
from a two-dimensional Gaussian lie in two clouds centered
on the meansµi . Note that axes in the figure are in log scale.
The relations between complexity and S/P ratio of the events
are also plotted in Fig. 3. The method classifies the event
into two categories according to central distance. The ellipses
show lines of equal probability density of the Gaussian. Also
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Table 1.Fundamental descriptive statistical information about the data and their ranges.

Earthquakes Quarry Blasts Total

Complexity S/P ratio Complexity S/P ratio Complexity S/P ratio

Mean 8.99 2.58 1.18 0.61 2.44 0.93
Standard deviation 5.03 0.87 1.39 0.29 3.73 0.85
Maximum 22.13 4.47 14.42 2.28 22.13 4.47
Minimum 1.58 1.00 0.20 0.06 0.20 0.06

Correlation Coef. 0.39 0.79 0.83
 

 

 

Fig. 3 Seismic events drawn from a two dimensional Gaussian lie into two clouds centered on the 

means i .  The method classifies the event in to two categories according to central distance. The ellipses 

show lines of equal probability density of the Gaussian. Values are in log scale.    

Fig. 3. Seismic events drawn from a two-dimensional Gaussian lie
in two clouds centered on the meansµi . The method classifies the
event into two categories according to central distance. The ellipses
show lines of equal probability density of the Gaussian. Values are
in log scale.

a PDF of events as a function of complexity and S/P ratio is
illustrated as 3D plot in Fig. 4. A closer look at this figure
gives us an interesting threshold for recognition of events.
Neglecting the complexity parameter, a threshold of 0.55 for
the S/P gave four misclassifications in total. However, we
think this is a database-dependent value that might not be
valid for any other dataset/region.

The clustering results after applying of Gaussian mixture
models are shown in Fig. 5. Blue and red colors indicate
earthquakes and quarry blasts, respectively after classifica-
tion. The black circles show the misclassified events. Five
QBs and two EQs are misclassified by the method. The ac-
curacy of classifier for over all events is 96.1 %. The perfor-
mance of the algorithms for earthquakes is 82.8 % whereas
for quarry blasts it reaches 98.7 % (number of correct classi-
fications/number of the event type).

The k-means clustering fundamentally assumes that the
events come from spherical Gaussian distributions, and thus
other types of statistical distributions may not cluster cor-
rectly using the technique. Therefore,k-means algorithm

 

 

Fig. 4 Contours of probability density function (PDF) of the Gaussian mixture model. Fig. 4.Contours of probability density function (PDF) of the Gaus-
sian mixture model.

does not identify the attributes that are more significant in
the clustering process as it assumes that all attributes have
the same weight. This is probably why it gave the worst re-
sult. The clustering results ofk-means are shown in Fig. 6.
Blue and red colors show earthquakes and quarry blasts, re-
spectively. The black circles indicate the misclassified events.
Three QBs and six EQs are misclassified by the method.
The accuracy of classifier for over all events is 95.0 %. The
performance of the algorithms for earthquakes is 89.7 %
whereas for quarry blasts it reaches 96.0 %. The cluster cen-
troids are located at [0.92, 0.56] and [8.69, 2.78], and the
within-cluster sums of point-to-centroid distances are 103.89
and 98.119 for QBs and EQs respectively. Compared to pre-
vious algorithm, five of the misclassified events are the same
where three earthquakes with the highest complexity and S/P
ratio and the same two quarry blasts are shown in Fig. 5.
Algorithm achieved to identify two quarry blasts with the
lowest complexity and S/P ratio of misclassified earthquakes
(in Fig. 5) where Gaussian mixture model could not be rec-
ognized. However, four new additional misclassified earth-
quakes are recognized byk-means.

www.nonlin-processes-geophys.net/19/411/2012/ Nonlin. Processes Geophys., 19, 411–419, 2012



416 H. S. Kuyuk et al.: Application of k-means and Gaussian mixture model

Table 2.Comparison of the methods.

Methods # of # of Misclassified % of accuracy # of Misclassified % of accuracy % of total
events QB QB for QB EQs EQ for EQ accuracy

Gaussian mixture model 179 150 5 96.7 29 2 93.1 96.1
k-means 179 150 3 98.0 29 6 79.3 95.0
LDF 179 150 2 98.7 29 5 82.8 96.1
QDF 179 150 4 97.3 29 2 93.1 96.6

 

 

Fig. 5 The results after applying of Gaussian mixture model. Blue and red colors indicate earthquakes and 

quarry blasts, respectively after classification. The black circles show the misclassified events.  5 QBs and 

2 EQs are misclassified by the method. The accuracy of classifier is 96.1%. 

Fig. 5. The results after applying of Gaussian mixture model. Blue
and red colors indicate earthquakes and quarry blasts, respectively
after classification. The black circles show the misclassified events.
Five QBs and two EQs are misclassified by the method. The accu-
racy of classifier is 96.1 %.

Results of two cluster analyses, which are based on unsu-
pervised technique, used metric rather than a target classifi-
cation. Thus, we compare their responses with pre-defined
targets that were selected by authors manually. Kuyuk et
al. (2011) applied an unsupervised algorithm, called self-
organizing map (SOM) as a neural classifier for the same re-
gion using the partially similar discriminants. Although they
used extra two parameters (spectral ratio and origin time of
events) for better classification, their results indicated that
these two are fuzzy and misleading classifiers. SOMs reach
up to about % 94 accuracy for their problem. Two methods in
the present study achieved better success where applications
of algorithm are rather simple and faster than SOM. We hope
these approaches could be employed routinely in observatory
practice in Marmara region. In order to apply the methodolo-
gies to other regions, different statistics as potential classi-
fiers could give better results, because selection of discrim-
inants and methods are specific in this study. Another point
needs to be considered in the application that the discrimi-
nants should be normally distributed to fulfill requirements
of the two models. Strong abnormality from this assumption
might result in indiscriminate results of clustering without a
meaningful interpretation.

 

 

Fig. 6 The results after applying of k-means algorithm. Blue and red colors indicate earthquakes and 

quarry blasts, respectively after classification. The black circles show the misclassified events.  3 QBs and 

6 EQs are misclassified by the method. The accuracy of classifier is 95.0%. 

Fig. 6. The results after applying ofk-means algorithm. Blue and
red colors indicate earthquakes and quarry blasts, respectively af-
ter classification. The black circles show the misclassified events.
Three QBs and six EQs are misclassified by the method. The accu-
racy of classifier is 95.0 %.

We applied a traditional, discriminant analysis that uses
input events to estimate the parameters of discriminant func-
tions of the predictor variables. Discriminant functions deter-
mine the boundaries, in predictor space, between two classes.
The resulting classifier then discriminates among the classes
based on the predictors. Decision boundaries of clustering
represent the optimal trade-off between performance on the
dataset and simplicity of classifier, thereby giving the highest
accuracy using different algorithms: (a) linear discriminant
functions and (b) quadratic discriminant functions (QDF) are
shown in Fig. 7. Blue and red colors indicate earthquakes and
quarry blasts, respectively. The overall accuracies are 96.1 %
and 96.6 %, respectively (see Fig. 7). Quadratic discriminant
analysis resembles LDF, where it is assumed that there are
only two classes of points, and that the measurements are
normally distributed. Unlike LDF however, in QDF there is
no assumption that the covariance of each of the classes is
equal. LDF and Gaussian mixture model have the best esti-
mation with two misclassifications for quarry blasts. How-
ever, this is not the case for earthquakes. They gave the worst
estimation with 82.8 % accuracy, whereas QDF produces two
misclassifications. Below, LDF and QDF are given:
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Fig. 7 Classification with discriminant functions, decision boundaries (black lines) shown represent the 

optimal trade-off between performance on the data set and simplicity of classifier, thereby giving the 

highest accuracy. Two algorithms a) linear discriminant functions b) quadratic discriminant functions are 

presented. Blue and red colors indicate earthquakes and quarry blasts. The overall accuracies are 96.1% 

96.6%  respectively. 

(a) (b) 

Fig. 7. Classification with discriminant functions: decision boundaries (black lines) shown represent the optimal trade-off between perfor-
mance on the dataset and simplicity of classifier, thereby giving the highest accuracy. The two algorithms(a) linear discriminant functions
(b) quadratic discriminant functions are presented. Blue and red colors indicate earthquakes and quarry blasts. The overall accuracies are
96.1 % and 96.6 % respectively.

f = 16.82+
[
−0.56 −8.77

][
C

SP

]
(10)

f = 4.34+
[
−1.61 9.73

][
C

SP

]
+

∑[
C SP

][
−0.63 2.40
2.40 −14.41

][
C

SP

]
(11)

and criteria for the function are given below:

F =

{
EQ f < 0
QB f ≥ 0

(12)

Horasan et al. (2009) used LDF on S/P ratio with log S
and complexity with Sr (spectral ratio) together to discrimi-
nate the earthquakes and the quarry blasts in the same region.
They obtained similar results using LDF analysis from the
amplitude ratio with log S. They investigated the region by
dividing the events into the four locations. On the contrary,
this study evaluated all events at once and the predictors exe-
cuted using whole data. This study gives a more general im-
age, and these clustering techniques are more promising for
the vicinity of Istanbul.

5 Conclusions

Two unsupervised pattern recognition algorithms,k-means
and Gaussian mixture model (GMM) analyses, for which
we could not find any similar study of this type of cluster-
ing problems, have been applied to classify seismic events
in the vicinity of Istanbul. We have found that unsupervised
clustering algorithms, for which no a-prior target informa-
tion is available, display a similar discriminatory power as
supervised methods of discriminant analysis. It is fascinat-
ing that GMM gave the same total accuracy with LDF, for

which LDF uses a-priori target information to train. Further-
more, the two unsupervised techniques are very promising
and straight-forward compared to the other unsupervised al-
gorithms, such as the well-known self-organizing maps. On
the other hand,k-means and GMM are not a panacea for the
classification of different seismic events but are two likely
methods that can be easily employed in other earthquake
active regions with even more sophisticated datasets. Addi-
tional discriminants would cause problems across further di-
mensions, whereas this study dealt with only 2-D. Applica-
tions of all algorithms into practice, once they were set up,
are quite simple and computationally inexpensive. Seismol-
ogists, certainly with some caution, may use unsupervised
algorithms in regions where no initial information is avail-
able.

Appendix A

Expectation maximization algorithm

Supposing that a set of measurements (discriminants in this
study)R = (r1, r2, · · · , rM) are samples of Gaussian mixture
model of Eq. (4). The log-likelihood function of model pa-
rameters8 with the dataR is

L(8|R) = In [P (R|8)] . (A1)

The maximum likelihood estimate of8 can be easily de-
termined if we know from which Gaussian model each da-
tum is sampled – called the complete-data problem. Due to
the nature of unsupervised learning, no a priori information
is available on grouping, which makes it an incomplete-data
problem and can be solved by iteratively using an EM algo-
rithm. Alternatively, the log-likelihood function can be writ-
ten as
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L(8n|R) = Q(8n|8n−1) + 1(8n|8n−1) (A2)

wheren stands for the iteration number andQ is the expec-
tation of complete-data likelihood function given by

Q(8n|8n−1) = Eg {ln [P(R,G|8n)] |R,8n−1} (A3)

and1 is the difference between the incomplete-data (Eq. A1)
and complete-data (Q) log-likelihood.G = (g1,g2, · · · ,gN )

wheregj is a group indicator (quarry blast or earthquake) for
rj . Eg symbolizes a conditional expectation value.

If rj belongs toi-th group, thengj = i.
Due to difficulties in obtaining maximum likelihood esti-

mate of the8 by directly maximizing of Eq. (A1), EM algo-
rithm improvesL(8|R) by increasingQ.Q and can also be
written as

Q(8n|8n−1)

=

N∑
j=1

M∑
i=1

hi
j (8n−1) ln

[
αiP(rj |γ

i
j = 1,8n)

]
(A4)

whereγ i
j = 0, if gj 6= i and is equal to 1, ifgj = ihi

j (8n)is

the expectation ofγ i
j with given data.M is number of given

model and8n at previous iteration defined as

hi
j (8n) = Eg

{
γ i
j |R,8n

}
= P(γ i

j = 1|rj ,8n)

−
(αi)nP

(
rj |(x̄j )n, (Zj )n

)∑
t=1M (αt )nP

(
rj |(x̄t )n, (Zt )n

) (A5)

where

P
(
rj |(x̄i)n, (Zi)n

)
=

1
√

2π det(Zi)n
exp

[
−

1

2
(rj − (x̄i)n)

T (Zi)
−1
n (rj − (x̄i)n)

]
. (A6)

At expectation step, the membership matrix is calculated
for the (n + 1)-th iteration by the above equation.hi

j (8n)

defines the probability of thej -th datum belonging toi-th
event. In this step, entries(hi

j (8n)) of the expectation mem-
bership matrixHNxM = H(8n) are constructed for a given
8n.

In the next step, maximization step, the mixture model
parameters are estimated by maximizing theQ defined in
Eq. (A3) using the membership matrix, which is estimated
from the previous step as

8n+1 = argmaxQ(8n|8n−1) . (A7)

Solutions for the Gaussian mixture model parameters are

(x̄i)n+1 =

∑
j=1N (hi

j )nrj∑
j=1N (hi

j )n
, (A8)

(Ci)n+1 =∑
j=1N (hi

j )n(rj − (x̄i)n+1)(rj − (x̄i)n+1)
T∑

j=1N (hi
j )n

, (A9)

(αi)n+1 =
1

N

∑
j=1N (hi

j )n. (A10)

These results are used as new entries for next E-step until
the pre-defined convergence is reached (Han et al., 2011).
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