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Abstract. The finite-size ensemble Kalman filter (EnKF-N) 1 Introduction
is an ensemble Kalman filter (EnKF) which, in perfect model o
condition, does not require inflation because it partially ac-Let us first introduce two recently developed and comple-
counts for the ensemble sampling errors. For the Lorenz '63nentary ensemble Kalman filters.
and '95 toy-models, it was so far shown to perform as well or
better than the EnKF with an optimally tuned inflation. The 1
iterative ensemble Kalman filter (IEnKF) is an EnKF which
was;hown o p'e.rform much bettgr than the EnK!: n Stror3g|yThe finite-size ensemble Kalman filter (EnKF-N), introduced
nonlinear conditions, such as with the Lorenz '63 and '95. . S .
. . : . ; in Bocquet(201J), relies on the statistical modelling as-

models, at the cost of iteratively updating the trajectories of : : o

. . ; . sumption that the ensemble used in the analysis is a col-
the ensemble members. This article aims at further explorin

the two filters and at combining both into an EnKF that doesqecnon of samples of the prior probability density function
p(X|X1, X2, ...,XyN), Wherex; is thek-th member of the N-

notrequire inflation in per_fect model gondmon, a_md which is member forecast ensemble. The idea behind EnKF-N is that
as efficient as the IEnKF in very nonlinear conditions. L
the empirical moments of the ensemble,

In this study, EnKF-N is first introduced and a new imple-

.1 An ensemble Kalman filter without the intrinsic
need for inflation

mentation is developed. It decomposes EnKF-N into a cheap N 1N

two-step algorithm that amounts to computing an optimal in-x = — E Xk s P=——_ E Xk —X) e —%X)", (1)
. . S e . o N N-—-1

flation factor. This offers a justification of the use of the in n=1 k=1

flation technique in the traditional EnKF and why it can of-

ten be efficient. Secondly, the IEnKF is introduced following do not nec;essarily mgtch the m_g}anand Fhe error covari-
a new implementation based on the Levenberg-Marquard nce matrix of the prior probability density function (pdf).

optimisation algorithm. Then, the two approaches are com" the large ensemble size limit — oo, we expect that they

bined to obtain the finite-size iterative ensemble Kalman fil- c0incide. But for any finiteV, sampling errors may induce a
ter (IENKF-N). Several numerical experiments are performeddiScrepancy.

on IEnKF-N with the Lorenz '95 model. These experiments An effectiye form.for the prior pdf'was proposed. ltis the
demonstrate its humerical efficiency as well as its perfor-reSUIt of an integration over all possibig andB. The effec-

mance that offer, at least, the best of both filters. We havei€ Prior pdf which is advocated to be used in the analysis
also selected a demanding case based on the Lorenz '63€P Of the ensemble Kalman filter is:

model that points to ways to improve the finite-size ensem- N

ble Kalman filters. Eventually, IEnKF-N could be seen as p(X|X1.X2, ...,Xy) o« |(X—X) (X—Y)T+8N(N—1)P‘ L@

the first brick of an efficient ensemble Kalman smoother for

strongly nonlinear systems. rather than the Gaussian prior
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p(x|x1,xz,...,xN)aexp{—%(x—i)TP1(x—i)} (3) H=(HA)TRIHA + (N - Dy, 8

L . . ) whereH is the Jacobian matrix off as is done in the tradi-
which is implicitly assumed in traditional EnKF. Notation tonal scheme. is based on the Hessiadh Eq. ()
|X| designates the determinant of matkixNote that the de-

terminant and the inverse operators in formula Egsatd ~ ) (EN +WTW) Iy —2ww’
(3) are meant to operate in the vector space spanned by thE = (HA) ' RT"HA + N — : 9)
anomalies{x; —X};—1_ y. Otherwise they would often be (e +wTw)

zero for the determinant and undefined for the inverse. ThehoerelN is the identity matrix in ensemble space. The com-
constanty depends on the assumptions made to derive th(?)Iete algorithm is recalled in algorithfh In this algorithm,

prior. Two glasses of filter that erend on these assumptiong; s an arbitrary orthogonal matrix in ensemble space that
ha_lve been mtroducied. For the first, b&;@nde are uncer- preserves the ensemble meSakov and Oke2008.
tain, andey = 1+ 5. For the second, it is assumed that the
empirical mearx is a fine approximation of,. In this case:
EN = 1.
The analysis step of EnKF-N follows from Bayes rule: ~ Require: The forecast ensembley };—1
and error covariance matrik
1. Compute the meaxiand the anomalie& from {x;};,—1  n-
2: ComputeY =HA,§ =y —HX
3: Find the minimum:

Algorithm 1 Finite-size ensemble Kalman filter.

N the observationg

yenes

PXIY, X1, X2, ..., XN) o p(Y[X) p(X|X1, X2, ..., XN), 4)
wherey € R? is the observation vector at a given update step.
It is assumed that the observational likelihood is Gaussian:

1 W, = min (8—YW)TR_1(5—YW)+NIn +wlw
p(y|x>o<exp{—§<y—H(x)>TR1<y—H<x)>}, (5) w { (SN >}

(eN+wIwa)lN—2w,,WI>_l

whereH is the observation operator aRds the observation  4: Compute, = (YTRle +N ( )
ENTW,Wq

error covariance matrix. . “ <

In Bocquet(2011), the filter was seen as a deterministic 2 ggmgﬂma_ﬁaﬁﬁmaﬂ/zu
filter and, in particular, the focus was on its ensemble trans- 5. Computex? = x + AW¢
form variant. It is assumed that the system skatee would
like to estimate, can be decomposed into

The filter was, in particular, tested on the Lorenz '95 toy-
X=X+ Aw, (6) model Lorenz and Emmanugl 998, using the root-mean-
square error of the analysis as a criterion. In this context,
whereA =[x1 —X, ..., Xy —X] is the matrix of the anoma- EnKF-N was used without inflation which is usually required
lies. The weightsv € RY are the (redundant) coordinates of to stabilise or optimise the performance of such systém (
X in ensemble space. derson and Anderspri999. As a consequence the burden
The filter follows the same algorithm as the ensembleof tuning inflation was avoided. Yet, EnKF-Mx = 1 type)
transform Kalman filter oHunt et al.(2007), except thatthe  systematically levelled or slightly outperformed EnKF with
optimal vector of weightv, at the analysis step is obtained optimally tuned inflation, for a large range of time intervals

from the minimisation of the cost function between updates. The extra numeral cost of using EnKF-N
N 1 — instead of EnKF was deemed marginal, especially for high-
J(w) = > (y—HX+Aw)) R (y— HX+Aw)) dimensional systems. This statement will be confirmed and

N clarified in the present article.
+=1n (sN +WTW), 7)
2 1.2 Anensemble Kalman filter for strongly nonlinear
whereH is the observation operator aRds the observation systems
error covariance matrix. The tilde symbol indicates that the
function is defined in ensemble space. This variational analy-The extended Kalman filter propagates the error covariance
sis step has similarities with that Afipanski(2009; Harlim ~ matrix from timer to time z;, based on a tangent linear
and Hunt(2007). model that has been computed at the previous analysis step
The other madification is the computation of the posterior around the analysix(lo). However, when new observations
error covariance matrix, which, instead of being based on they> are assimilated at time, a new estimation of the state
Hessian in ensemble space at timer; conditional on the future observatiogs can be
obtained. For strongly nonlinear systems and large update
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intervals, this new estimation may significantly differ from of the ensemble, this IEnNKF was shown to significantly out-
x\?, and the tangent linear model should be corrected anderform EnKF especially for large time interval between up-
obtained at this new state. One would usually solve for thedates.

optimal analysed state at tingby minimizing Two versions of the filter were put forward. The first one
1 mimics the use of the tangent linear model by the propagation
Jo(x2) = = (Y2 — H(x2)) TR™L(y2 — H (X)) of a rescaled ensemble,bandleo_f trajectories. It is called
2 Y y IEKF by Sakov et al(2012. In this study, we shall not use
+} (X2 _ Xg) P2—1 (X2 _ Xf) ’ (10) IEKF, bgt a close variant that will be calle_d thendlevari-
2 ant. It will turn out to offer a performance improvement over

the IEKF. The second one consists in transforming the en-

whereP, is the background error covariance at timeln- ; . X
semble before its propagation, using the ensemble transform

stead, it is preferable, in strongly nonlinear conditions, to

minimise for the (re-)analysed statg conditional on the fu-

ture observations: T o -1/2

. T = (W =DIx+Y,RY) (15)

Ji(x) = 5 (V2= HM(x2)) TR™H (y2 = H(M(x0) _ o _ ,

obtained at the previous iteration. The inverse transformation

+} ( - X(10>) p;t (Xl _ X<10)> , (11)  is applied after propagation. It performs a form of precondi-
2 tioning of the optimisation problem in ensemble space. We

whereM is the transition model from tima to timer,, and  shall call it here théransformvariant.

P1 is the background error covariance at time@btained by The IEnKF still requires inflation. In strongly nonlinear

a forecast from the assimilation step priort@and does not ~ conditions, the inflation factor may be large, althoRgkov

depend on future observations. This is equivalent to solvinget al. (2012 remark that the sensitivity to it is weaker and

a One_|ag extended Kalman smoother. Even with a linear Obthat the requirEd magnitudes are smaller than in non-iterative

servation operator, cost functigh is difficult to solve when schemes.

the model is non"near' since as Opposem jl iS non- Note that the minimisation scheme Imp|ICIt|y adopted by

quadratic, so that this cost function needs to be iterativelySakov et al(2013) is the iterative Newton scheme. Because

opt|m|sed This approach has been Suggested‘/%yr(ner the Newton method is one of many schemes to minimise

et al, 1969 Jazwinskj 197Q Tarantola2005. cost function Eq. 11), there is a large freedom in choos-
Cost function71 can be, for instance, optimised using a ing the iterative scheme. In this article, we shall choose
Newton approach the Levenberg-Marquardt algorithhgvenberg1944 Mar-
quardt 1963, in order to have a better control of the optimi-
X(1P+1) — X(lp) _ H&,l)le(x(l”)), (12 sation and safely generalize the iterative ensemble Kalman

filter of Sakov et al(2012 to an inflation-free iterative en-

Wherep is the iteration index and where the gradient and thesemble Kalman ﬁlter, which is the final goal of this article.

Hessian are respectively given by 1.3 Outli
) utline

(p) T uTp-1 (p)
\% =—-M, HR < —H X . . . .
J1 ) Y2 Mxy )) In this article, the focus is on the deterministic EnKFs rather

+pL (X(p) _ X<0)> (13)  than the stochastic EnKF. The variants of the filters with lo-
1\t 1 L . . .
L calization are deliberately not studied. It is well beyond the
Hpy =P+ M(TP)HTR_lHM (p) s (14) objective of this article and, to some extent, a disconnected
topic.
whereM (,,y is the tangent linear model computed@?. To start with, we shall come back to the EnKF-N and

More recently it has been suggested to use a similar aptEnKF filters. Our starting points are the resultsBzfcquet
proach, but with the EnKFGu and Olivey 2007). Kalnay (2017 andSakov et al(2012, and we develop on these two
and Yang(2010 suggested repeating the assimilation cyclefilters. In Sect2 we shall first give another interpretation of
by applying the ensemble transform calculatedyab the EnKF-N. It makes an explicit connection with inflation and
ensemble from the previous iterationrauntil the best fitto  provides an efficient way to optimise cost function Ef. (
observations is obtained. One advantage of the EnKF frameBesides it sheds light on the use of inflation and why it can
work is that the use of the tangent linear model and its adjointoe surprisingly efficient when accounting for sampling er-
is replaced with the use of the ensemble. It has been properlyors. In Sect3, we introduce an implementation of IEnKF
formalized as the iterative ensemble Kalman filter (IEnKF) that is based on a Levenberg-Marquardt algorithm. As a pre-
in the framework of the deterministic filters and tested on thecursor of the trust-region methods, it allows the controlling
Lorenz '63 and '95 bySakov et al(2012. At the cost of  of the update which will be useful in the generalization to a
additional iterations and, hence, of additional propagationdinite-size version of the filter, which we introduce in Sekt.
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Numerical experiments are carried out on the new systems invhereas the original problem

Sect.5. Conclusions and leads for improvements are given in .
Sect.6. M =infJ(w) (22)

. . is called the primal problem. In Appendix we demonstrate
2 The finite-size ensemble Kalman filter that the two global minima @b and.7 coincide. In particular
IT = A. This is a remarkable non-quadratic case of so-called
strong duality Borwein and Lewis2000. This means that
She problem of finding the global minimum of our original
(primal) problem can rigorously be traded with the problem
of finding the global minimum of the dual function.

To connect the corresponding optingdl, o* andw,, and

to compute the dual cost function, we write the condition of
stationarity of the Lagrangian overand ovew. It yields

In this section, we give a new insight on the EnKF-N, whose
principles have been recalled in the introduction. For the sak
of simplicity, the observation operatdd is assumed lin-
ear. The generalization to a nonlinefdris not difficult and
will be treated in the framework of iterative EnKFs anyway
(Sects3 and4). Equation {) can be written

Jw) = % @ —Yw) TR —Yw)

df N
N = (pM) = , 23
+5In (ey W) ) TG T h )
N _ Tp-1
whereY = HA is the observation anomaly matrix add-= CWe = Vwg(Wy) = =Y "R —YW,). (24)
y — H(X) is the innovation. The minimisation Qf is per- Since p* >0, Eq. @3) implies that z* belongs to

formed over en_semble space, which is numeripally efficient[o’ N/en], the interval from 0 (excluded) taV/ey (in-
in high-dimensional applications. How.ever,. this cost func- cluded). The solutions of Eq23) and @4) are

tion was shown to be non-convex. Besides it has one global

minimum and possibly additional local minima. In practice, « _ N - (25)
in Bocquet(2011J), the L-BFGS-B minimizer oByrd et al. r* '
(1995 was used. The quasi-Newton algorithm prevents from _ o \71 _

forming a Hessian with a negative eigenvalue, which mightW* - (YTR e IN) YRS (26)
occur with the joint use of such cost function and of a New-

s By inserting these solutions in the Lagrangian, one obtains
ton optimisation method. y g grang

the dual cost function

2.1 Dual scheme D) = LWy, p*, )
Although this path is successful and efficient, we would like = EST (R + yg—lyT)_ls
to find a more explicit scheme in order to establish stronger 2
connections with traditional EnKF with inflation. We wish to +% + N In N_N ) (27)
split the radial degree of freedom of, that isv/wTw, from 2 2 ¢ 2
its angular degrees of freedom, thamigvw'w. The dual cost function is a function of one single variable.

To alleviate the notations, we define the functions: Hence, itis easy to find its g|0ba| minimum, even in the pres-
(W) = (6 — Yw) TR1(5—Yw) 17) ence of several minima. _

’ As a result, instead of minimizing’ (w) overw, one can

f(p)=Nin(en +p). (18)  equivalently:

Having in mind.7 (w) of Eqg. (16), a related Lagrangian is , . N .
introduced: 1. find the global minimunt* of D(¢) in ]0, N/ey],

1 1 1 2. computew, = (Y TR7LY + ¢*1y) " YTR-16.

Lw.p.8) =W +5¢ (WTw=p)+=f(p).  (19) P ( )

] ) o The implementation of the corresponding EnKF-N is de-
The dual cost function, that we define for- 0, is given  ajled in algorithm2.

by:

D(¢) =inf supL(w, p, ). (20)
W p=0

2.2 Assets of the dual approach

Let us discuss this alternate minimisation. It has several ad-
It is easy to check that the maximum and minimum thatvantages.

defineD(¢) exist. The dual problem consists in minimizing  Firstly, even though the primal problem seems to be effi-

this dual cost function: ciently solved with the help of a quasi-Newton minimizer, it

is only guaranteed to find one minimum, not necessarily the

A= ;QBD(C)’ (21) global one. On the contrary, because the search of the global

Nonlin. Processes Geophys., 19, 38339, 2012 www.nonlin-processes-geophys.net/19/383/2012/
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Algorithm 2 Dual finite-size ensemble Kalman filter.

Require: The forecast ensembi&;};—1 . the observationg,

1:
2:
3:

and error covariance matrix
Compute the meaxand the anomalie& from {X;}z—1, -
ComputeY =HA,§ =y — HX
Find the minimum:
-1
= min {§"(R+Ys71YT) 75
¢ CG]O,N/€N]{ ( ¢ )

+eN;+N|n§—N} (28)

-1
: ComputeQ, = (YTR—lY +§“IN)

Computew, = Q.Y TR15.
Computex? =X+ Awg.

: Computew? = (N — 1)Q,)2U
: Computexy = x4 +AW¢

387

That EnKF-N can equivalently be rewritten as a a tradi-
tional EnKF with an optimal (prior) inflation factor sheds
light as to why inflation can be so successful in dealing with
sampling errors. At a fundamental level, the introduction of
¢ was possible because of the rotational invariance of the
prior in ensemble space. In short, the inflation works well to
compensate sampling errors because of the exchangeability
of members in the ensemble.

Finally, we found the dual approach to be more stable than
the primal one. Indeed, in the primal algorithm the BFGS it-
erations cannot lead to a singular Hessian by construction.
However, at the end of the minimisation, one has to generate
the new ensemble by computify in algorithml. In infinite
machine precision, the Hessian is positive-definite. However,
it might be singular in finite numerical conditions, in very de-
manding conditions, that we only found in the severe Lorenz

‘63 test case of Seds. The dual algorithm does not meet this
problem because the value ff that enters the definition of
minimum is reduced to a one-dimensional problem, the duak, is controlled and is guaranteed to be positive, siR¢g)
problem allows to easily find the global minimum. We have goes to+-oco when¢ vanishes.

performed numerical tests about this issue on the Lorenz '63

model (orenz 1963 which are discussed in Se&. We

found that in marginal cases, the dual approach (global opti3 The iterative ensemble Kalman filter

misation) would perform better than the primal scheme (lo-
cal optimisation). However, for most of the tests (Lorenz '63

and Lorenz '95) we found no significant performance differ- ble fit hich | itten here | bl A
ences between the dual and primal approaches. Specifical Semble HIer, Which IS written here in ensemple space. An-
ther one is an improvement in terms of performance over

for the numerical tests we have performed with Lorenz '95, he IETKE of Sak L(201 h dated i
the primal and dual algorithm systematically led to the same" '€ of Sakov et al.(2012, whose updated version

optimum. will be called the bundle IEnKF. Another significant differ-

Secondly, the algorithm clearly exhibits the extra cost of€Nce consists of noticing that one has the freedom to choose
EnKF-N against EnKF: minimizing Eq2{) over scalar any iterative optimisation scheme. Here we shall choose the

Note that the inverse matrix in the first term of E2j7 can be Levenberg-Marquardt scheme.
obtained from a singular value decomposition that can als
be used in the gain computation EQ6). In practice, for

the (.—:‘x.periments of Sech, we found that the extra cost is | et ys notex the ensemble mean at timeandA the anomaly
negligible. _ - ensemble matrix at timg. Equivalently to using cost func-
Thirdly, this algorithm parallels the traditional EnKF tjon Eq. (L1) to perform the analysis, one can use a cost func-

scheme. Comparing ER§) with Egs. (20) and (21) dflunt  tjon depending on the coordinatesof x; = X -+ Aw in en-
et al. (2007, it is clear that; replacesV —1 found in the  gemple space:

traditional deterministic filters. That is whycan be seen as
the effective size of.the ehsemble: thg mean number of mem=Z ) — 1 (V2 — HOMX+Aw))) TR™?
bers that truly contribute in the effective prior. The Lagrange 2

multiplier ¢ is also connected to an inflation of the prior er-
ror covariance matrix. It can be absorbed into a rescaling of
the ensemble anomalies by a factg(N — 1)/, so that the
analysis Eq. 26) coincides with the usual formula. There-
fore, if we define the inflation operation as:

In this section, we follow the steps &akov et al.(2012.
One minor difference is in the formulation of the iterative

%1 The IENKF in ensemble space

1
X (Y2 = HM®E+AW)) + 5(N - Hw'w, (31)

The derivation of the background term can be reddunt
et al. (2007). The iterative minimisation of the cost function
following a Newton algorithm reads:

X —> X+ A(X —X), (29)

wPtDh W _ ’F((_pl)Vj(W(”)), (32)
EnKF-N forecasts the followingptimal prior inflation

factor wherep is the iteration index and where the gradient and the

Hessian are given by
N-1

é‘*

Ar =

(30)

www.nonlin-processes-geophys.net/19/383/2012/ Nonlin. Processes Geophys., 1939832012
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(2012, and we found this value to be suitable for the exper-
- iments described in Sed&. After propagation, the ensemble
VI = —Y(I,)R_l (yz - HM(X+ AW(”))) is inflated by a factor fe.
LN — Dw? (33) " Note that in _the transform variant, the last propagatlon_ of
-~ e ensemble is often unnecessary. But when the algorithm
Hipy = (N=Dly+ Y, R7Y (), (34)  exits on, e.g., the maximum iteration criterion, it may be nec-
essary to propagate the ensemble, because it may not have
whereY () = [H MA], is the tangent linear of the operator been updated at the lateg(as opposed to the Gauss-Newton
from ensemble space to the observation space that propagatgaplementation oBakov et al.2012. Therefore, it is possi-
the ensemble anomaliésthrough the modeM and the ob-  ple to avoid this last propagation. However, for the sake of
servation operatoH , and computed at(lp) =X+ AwP), simplicity we have preferred to keep the simpler implemen-

tation.
3.2 Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithmLdvenberg 1944 4 Combining the finite-size and iterative ensemble
Marquardt 1963 is a precursor of the trust-region method Kalman filters

in the sense that it seeks to determine when the (superlinear)

Newton method is applicable and when it is not, and should!he EnKF-N and IEnKF are complementary since, when
be replaced by the slower but safer gradient descent methol@0oking at the underlying cost function of the analysis, the
(also known as steepest descent). The distinction between tHe"KF-N modifies the prior likelihood, while IEnKF modi-

two regimes is obtained by the ratio fies the observational likelihood. Combining the outcome of
the previous sections, the cost function used in the analysis
Tw) — T W) as a function of coordinates of x; = X+ Aw should be

_ 7 (35)
L) — LW — 7
©) = LW —w) Tw) = % (Y2 — HM®X+Aw))) TR
x (Y2 — HM(X+ Aw)))

+% In (eN +WTW> , (37)

wherew’ is the new tentative vector, aridis the quadratic
local expansion of7:

L(AW) = J (W) + (AW) VT + }(AW) THAW. (36)
2 J has a global minimum ilR" since it is a positive function
Instead of determining a region of confidence as in mod-and since it goes to infinity as 'w goes to infinity. Several
ern trust-region methods, it shifts the Hessian in ensemblétrategies are certainly possible to minimise this cost func-
space used in the Newton methdd:—> H + ul y, where ~ tON.
1 is a positive constant. If the quadratic expansion of the cost

function allowed by the gradient and the Hessian matches thé"1 Dual approach

behaviour of the exact cost function, which corresponds to 8rhe first one consists in using the dual transformation put

large, theny. is reduced, otherwisg is increased (small ¢,y a1 for the EnKF-N in Sect. The derivation holds if
or negatived). Whenp is small the algorithm is close to a one replaces with

Gauss-Newton method which has a superlinear convergence.
When . is large enough the algorithm is close to a gradi- g(w) = (Yo — HM X+ Aw)) TR~

ent descen.t method. A textbook gnd a clear synthesi; on this X (Y2 — HM(X + Aw)) . (38)
well-established technique are givengcedal and Wright
(2006 and byMadsen et al(2004. In the following, the In particular, the strong duality holds (this can be checked

Levenberg-Marquardt algorithm describedNtadsen et al.  going through Appendixd). As a consequence, it demon-

(2009 is adapted to our ensemble Kalman filter context. strates that there should be an optimal inflation factor in this
In the part of the algorithm which seeks a satisfyjng  context. However, each one of the subproblems, indexed by

a single model propagation is necessary. At each successfyl,

Newton step, the propagation of the full ensemble is required.

The resulting IEnKF scheme is detailed in algoriti@mof igvf (g(W) +§WTW) (39)

AppendixB. The algorithm describes both the bundle and

the transform variants. When algorithmic steps differ in the which were equivalent to solving the traditional EnKF anal-

two variants, the variant is explicitly mentioned. ysis in ensemble space EQH], is now equivalent to solving
In the bundle variant, the ensemble is shrunk by a smallan IEnKF analysis, with a prior inflation factgf(N — 1)/¢.
e factor before propagation. It is chosen to be= 10~4 Hence, such a path may be numerically costly. Solutions

throughout this article. It is the same as thaSatkov et al.  such as primal-dual algorithms may be contemplated, but we

Nonlin. Processes Geophys., 19, 38339, 2012 www.nonlin-processes-geophys.net/19/383/2012/
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prefer to explore a more straightforward way to minimise at the end of Sects, it might be tedious to define a pro-
Eq. 37). However, the existence of an optimal inflation fac- gram in whichu is always large enough so as to guarantee

tor is proven in this context. a positive-definite Hessian. One rigorous way around it is to
truncate the Hessian to a positive-definite matrix in the itera-
4.2 Primal approach tive minimisation, while the gradient is left unchanged. This

_ o truncation of the Hessian does not apply when building the
The second and more direct way to minimise E3{)(st0  new ensemble. This is equivalent to a slightly sub-optimal

minimise with respect to the/ coordinates, with the sole  pre-conditioning of the minimisation problem. For instance,
guarantee to find a local minimum. The gradient and HeSgne can choose:

sian are
v7 = _yTR! HM X+ A He—L iy +YTR Y, (43)
+N————, (40) _ iy - . :
EN+W'W which is an always positive-definite substitute matrix for the
~ en +Wiw)ly —2ww’ Hessian.
7o )l 4 YTRYY. (41)
T
(en +WTw)

The main drawback is that the Hessian may have a non5 Numerical experiments
positive eigenvalue. A priori, this precludes Newton ap-
proaches. One solution around it is to use a quasi-NewtorMost numerical tests will be performed on the Lorenz '95
minimizer such as L-BFGS-BByrd et al, 1995. Only the  toy-model {orenz and Emmanugll998. It has M = 40
gradient is provided to the minimizer. This approach was sucvariables and its dynamics reads for=1,..., M:
cessfully tested. However, on very rare occasions and only
for very non-Gaussian systems, the filter can break becausdx,,
the approximate tangent linear leading to an approximate ¢
adjoint leads the minimizer into re-initializing the quasi-
Hessian, which may break the filter. This is also a very eco-whereF = 8, and the boundary conditions are chosen cyclic.
nomical approach, as part of the work is carried out by thelt is integrated using a fourth-order Runge-Kutta scheme
minimizer, known to be very efficient. with a time-step of M5. With this choice ofF, the model is
However, for this article, we prefer to report results ob- strongly chaotic with 13 positive Lyapunov exponents and a
tained in a more controlled environment. We can use thedoubling time of 042 time unit. Hence, it is difficult to con-
Levenberg-Marquardt algorithm as it uses a shifted Hessiantrol by filtering techniques and can offer simple but severe
which can be made positive-definite, for large enoygh tests for new methods. Since the model is a simplistic repre-
Besides, we know that at the minimum of the cost func- sentation of a mid-latitude band of the global atmosphere, a
tion, the Hessian is positive-definite, so there is a neighbortime step of 05 in the model’s time represents 6 h of physi-
hood around the minimum where the Hessian is positive-cal time.
definite. This means that in the vicinity of the minimum, the  The data assimilation experiment setup we have chosen
Levenberg-Marquardt can safely rely on the Hessian of theconsists in computing a reference run of the model, defined
cost function. as the truth $akov and Oke2008 Bocquet 2011 Sakov
As a diagnostics, an intermediate result of the dual ap-et al, 2012). This truth is observed for every variable each
proach can be used. Indeed, from EB3)( and using the  At. Each observation is perturbed by an independent draw
fact that p* = w/w, at the saddle-point, an equivalent op- from a Gaussian variable of mean 0 and variance 1. Because
timal prior inflation factor can be obtained from the analysis we do not want to use localization that would mask some of
in ensemble space: the properties of the filters, the ensemble size is chosen to be
N =40 in the rank-sufficient regime. Nevertheless, one can
. N-1 T contemplate building local versions of the filters similarly to
A :\/ N (en +wlw,). (42)  what was done bydunt et al.(2007; Bocquet(2011). The
performance of a data assimilation run is assessed computing
For instance, the statistics of over a long data assimila- the average root-mean-square of the difference between the
tion experiment can tell us about the need to enforce adaptivelata assimilation analysis and the truth (denoted rmse in the
inflation or not. Cases wherg" is strongly fluctuating are following), for a sufficiently long run. In the following, the
cases where IEnKF-N may outperform IEnKF with optimal runs’ duration, that does not include the burn-in period, is
but constant inflation. 5 x 10* days (physical time), and we have checked that the
The details of this primal scheme are given in algorithm convergence of the statistical indicators, such as the rmse, is
of AppendixB. In severe conditions, such as the one studiedsatisfying.

= (xm+1 — Xm—2)Xm—1—Xm + F (44)

www.nonlin-processes-geophys.net/19/383/2012/ Nonlin. Processes Geophys., 1939832012
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Fig. 2. Sequence of efficient ranks’ in a long run of EnKF-N

Fig. 1. Mean, standard deviation (shown by errors bars), median,app“ed to Lorenz '95 model, witihr = 0.30 and with an ensemble

tenth percentile and percentile of the efficient rgfkor a long run
of the EnKF-N, and an ensemble sizef= 40. The dashed line

represents the efficient rank diagnosed from the inflation of EnKF

leading to the best analysis rmse.

5.1 Complementary experiments on EnKF-N

of N =40 members.

of the EnKF obtained from selecting the best rmse configura-
tion. It is also plotted in Figl, and shows a similar evolution

as the efficient rank of EnKF-N. Since the mean and median
do not differ much, it also suggests that, most of the time,

EnKF-N has been tested on the Lorenz '63 and Lorenz '95the efficient rank is rather constant, but that it occasionally

models inBocquet(2011). Here, we wish to report some

suffers sudden drops. We have checked this examining se-

complementary experiments related to the dual implementaduénces ot“. In Fig. 2 is displayed a typical sequence in

tion of EnKF-N, introduced in Sec, in its ¢y = 1 variant.

The efficient rank; ¢ of the ensemble prior, as estimated
by the EnKF-N formalism, is computed using E&3), and
0% =w]w, at optimality:

N
a:—’ 45
¢ en +WIw, (45)

for a long run of EnKF-N applied to Lorenz '95, with
the setup described above. Note tlig#t—= N —1 would
correspond to a deterministic EnKF without inflation.
The time interval between updatesr is varied: Ar =

the caseAr = 0.30.

5.2 Testing IEnKF, Levenberg-Marquardt
implementation

The IEnKF is first tested in its Levenberg-Marquardt im-
plementation, for the bundle and transform variants. Since
the focus is on the ability of the IEnKF to handle strong
nonlinearity, the time interval between updat&s is var-

ied: At =0.05,0.10,...,0.60. The filters are run with op-
timal inflation: the inflation factors leading to the best rm-
ses are selected. The termination criteria of the iterative min-

0.05,0.10,...,0.60, so as to probe the critical cases whereimisation are such that the maximal nhumber of iterations is

inflation is strong (wheg“/N is small). The statistics af*

Pmax = 40, and the precision has reachpgtiw|| = vVwTw ~

are plot in Fig.1: mean, standard deviation, tenth percentile e, with ex = 1073, Provided pmax is large enough (espe-

and percentile.

This allows to study the variability of the efficient rank,
or, indirectly, of theoptimal prior inflation factor (as seen by
EnKF-N). Itis clear that the efficient rank decreases wth

cially fort large Ar), the results are largely independent from
this choice. The choice of the influential criterienis more

critical. A compromise must be found between precision
and limiting the number of iterations. This leads to choos-

More importantly, the variability increases very significantly ing e, = 103, found to be satisfying for all experiments re-

since the tenth percentile decreases below 2@\for 0.50.
Because of this variability of the rank in time, the optimal

ported in this article. The condition on the gradient was not
implemented (see algorith8), which means that; = 0. We

inflation factor diagnosed by EnKF-N is not constant andalso chose = 10~3 which has an influence on the iteration

varies with time. That is why we believe EnKF-N may out-

number, since it tells whether the minimisation at the begin-

perform EnKF with optimised constant inflation, when the ning is closer to a Newton method (sma)l or to a steep-

system becomes significantly nonlinear. Using E@) (the

est descent method. We found that in the weakly nonlinear

efficient rank has been diagnosed from the optimal inflationregime of smallA¢, a smallerr could decrease the number

Nonlin. Processes Geophys., 19, 38339, 2012
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‘ ‘ ‘ ‘ ‘ ‘ It is clear that the bundle variant requires less iterations
0.8 than the transform variant, between 1 to 2 fewer iterations.
08 N=40 This is different from the implementation &akov et al.
o7 (2012, who showed that the IEKF variant usually requires
slightly more iterations than the transform variant, when not
05 / using the Levenberg-Marquardt framework. Note that in the
transform variant algorithm, as opposed to the bundle vari-
ant, it is legitimate to skip the computation of the forecasted
03 e gnsemble .(Iines 41-44) becagse it has beep dor)e earlier in
757 [ENKF (bundle, opt,infl) line 29. This could lead to a gain of up to one iteration. How-
// I 1EnkF (wransform, opt. inf. ever, in practice, we found it was inefficient in our test cases,
02 since it had a negative impact on the precision which may
v/ have required additional iterations at a later cycle.
0T %2 o3 04 o5  os The large number of iterations needed at snagd] be-
Time interval between updates tween 3 to 4, is not very significant because the Levenberg-
Marquardt is not designed to optimally perform a conver-
gence of a very few iterations. In this case, the more straight-
forward Gauss-Newton method, such as the implementation
eof Sakov et al(2012) is preferable.

0.6

Analysis rmse
o
N

Fig. 3. Analysis root-mean-square error of the IEnKF (bundle and
transform versions) for the Lorenz '95 model and for several time
intervalsAt between two subsequent updates. For comparison th
same results for EnKF (ETKF version) are given for optimal infla-

! 5.3 Testing IENKF-N
tion.

Here, the IENKF-N, bundle and transform versions, are tested
of required iterations. This is consistent with the intuition that ©" the same configuration as IEnKF. The results are reported

a steepest descent method is unnecessary in this regime afyFig. 5.

favouring Newton’s method results in a finer convergence. First the ‘wo v_ariants of IENKF-N offer the same rmses
The results are reported in Fig. in this configuration over the full range @:. Secondly, in

As a comparison, the rmse for the EnKF with optimal in- this example, they are essentially equ_ally performing or bet-
flation is also reported. It clearly shows that, at the cost of cy-t€r than the IEnKF with optimal inflation. This shows that,
cling the ensemble propagation, the more nonlinear the prop@S hoped for, some of the properties of the finite-size EnKF
agation is the more IENKF outperforms EnKF. apply as well to iterative variants of the IEnKF.

As opposed takov et al(2012, we did not find a sig- The average number of model runs used until convergence
nificant difference between the transform and bundle vari-'S réported in Fig4 for the bundle and transform variants of
ants for small and moderatas, as far as analysis rmses IEn_KF-N_. L|_ke f_or the IEnKF experiments, the san;e termi-
are concerned. The main difference is not in the LevenbergMation cgltenon is chosempfax=40,e1 = 0,e2 = 10"°, and
Marquardt implementation, but in the fact that after the anal-t = 10 °) for all runs. The finite-size versions of the filters
ysis full cycle, we propagate the ensemble frarto 7, avoid- require a swmlar number of iterations (pr less) as their optl-
ing to use the rescaled ensemble used within the cycle. Thi§hised inflation counterparts. Here again, the bundle variant
final propagation of the non-rescaled ensemble makes thi$ doing better than the _transform variant: it requires 1to2
bundle scheme used in this study no longer based on the e)€SS énsemble propagations on average required by the trans-
tended Kalman filter, as the IEKF Bakov et al(2012). form variants to achieve the same precision, using the same

However, note that forAr > 0.5, the transform outper- t€rmination criterion. o
forms the bundle variant. As opposed3akov et al(2012) Similarly to Fig.1in the case of EnKF-N, the statistics of
implementation of IENKF, we found that the rmses are ¢ are plot in Fig.6: mean, standard deviation, median, tenth

rapidly increasing beyond: > 0.60. Beyond this time inter-  P€rcentile, and percentile. o

val, which is more than the doubling time of the dynamical The results are.q_ualltatlvely similar. However, as could be

system, multiple minima are likely to form in the underlying €XPected, the efficient rank is larger in the IEnKF-N case

cost function Eq.11) as pointed out bires et al(199§. than EQKF-N in the same conflgurathn. Eyen though the
The average number of model runs used until convergenc@€rcentile remains high beloar < 0.5, it rapidly falls off

is reported in Fig4 for the bundle and transform variants. In Peyond. Consistently this is where the IEnKF-N starts to

addition to theN = 40, an ensemble a¥ = 25 members is slightly outperform IEnKF with optimal inflation.

also considered in order to quantitatively compare with the

results ofSakov et al.(2012). However, we did not notice

any qualitative change between the outcomes of the two en-

semble configurations.

www.nonlin-processes-geophys.net/19/383/2012/ Nonlin. Processes Geophys., 1939832012
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Fig. 5. Analysis rogt mean-square errot of the IENKF-N (bundle Fig. 6. Mean, standard deviation (shown by errors bars), median,
and transform versions) for the Lorenz '95 model and for several ; . -

o —__tenth percentile and percentile of the efficient rgfkfor a long run
time intervalsAr between two subsequent updates. For comparison

. of the IEnKF-N, bundle variant and an ensemble sizevof 40.
the same results are given for EnKF-N, IEnKF (bundle and trans- . - )
. . ? ; - The dashed line represents the efficient rank diagnosed from the
form variants) with optimal inflation (repeated from F8).

inflation of EnKF leading to the best analysis rmse.

5.4 Focusing on the weakly nonlinear regime 5.4.1 Diagnosis

The Lorenz '63 modell{orenz 1963 is defined by the set of

To mitigate the optimistic results obtained on Lorenz '95, we . : ) :
tthree ordinary differential equations:

would like, in this section, to illustrate and discuss apparen
limitations of the formalism. To do so, we choose the quite dx

demanding case of the 3-variable Lorenz '63 toy model, with g, ~ oy —x),

an ensemble of 3 members. It might not be directly relevantdy

to high-dimensional geophysical systems. But the goal of thisg, = #* =Y =~ XZ-

section is to find out about flaws or inconsistencies of the g,

schemes and to point to directions of possible improvement. @ xy — Bz, (46)

Nonlin. Processes Geophys., 19, 38339, 2012 www.nonlin-processes-geophys.net/19/383/2012/
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N 12 EnKF optimal inflation| .~ 30 EnKF optimal inflation|
o [3-E1 EnKF-N dual < [3-E1 EnKF-N dual
b5 & EnKF-N primal b5 & EnKF-N primal
o 10 [3)
[ = 2.5 >/<
=} =}
=3 =3 ]
c 08 220 o ada/g
< Q@ <
3] 3]
: 5 | E =i
5§ ¢ ?@/&‘ 815 .
IS IS
R R}
Bod J 10 %@W/
g 2 g 2
o =1 =
0.2 bs 0.5 0 =8
0O 0.1 0.2 0.3 0.4 0.5 0O 0.1 0.2 0.3 0.4 0.5
Time interval between updates Time interval between updates

Fig. 7. Analysis root-mean-square error for three filters applied to the Lorenz '63 mddel3): the EnKF with optimally tuned inflation,
the primal EnKF-N and the dual EnKF-N. Left panel iIIustratesdﬁgsz 1 case and the right panel illustrates d§53= 8 case.

wheres = 10, p = 28, andg = 8/3. This model is chaotic inflation. Indeed we have checked that the EnKF-N behaves
with a doubling time of 078 time unit. It is integrated us- to a large extent similarly to an EnKF on a linear advection
ing a fourth-order Runge-Kutta scheme with a time-step ofmodel (LA model) used iSakov and Ok€2008. It is, there-
0.01 time unit. In the data assimilation experiments aheadfore, likely that this underperformance could be traced back
all three variables are observed evevy These observations to the determination of the optimal prior inflation through
have normal uncorrelated errors of standard deviatigg the minimisation of Eq.47) that may become inaccurate in
All runs are 5< 10°-cycle long with an additional spin-up pe- that regime. If one trusts the Bayesian formalism underlying
riod of 5x 10 cycles. To illustrate an apparent limitation of EnKF-N, then according to the discussiorBacquet(2011)
the finite-size formalism in either the EnKF or the iterative this inaccuracy can be ascribed to either (i) an inappropriate
EnKF, we vary the time interval between updates betweerchoice of the hyperprior which is at the heart of the deriva-
At = 0.05 (nearly linear regime between update steps) andion of Eq. @) andin fine specifies the particular form of
At = 0.50 (strongly nonlinear regime). The error covariance Eq. 27), (ii) or the use of the priop(x|X1,...,Xy) rather
will either beagbsz 1, oroozbsz 8. than p(X|y, X1, ..., Xy), (iii) or the use of a local minimum

The results are first obtained for three non-iterative ensemrsather than the global minimum. Point (iii) can be ruled out,
ble Kalman filters. EnKF with optimally tuned inflation (the because the present study essentially solved this problem.
inflation factor that yields the best analysis rmse), EnKF- Beyond time intervalAr ~ 0.15, the EnKF-N primal and
N using its primal implementation, and EnKF-N using its dual implementations significantly outperform the EnKF
dual implementation are considered. As discusseBado- with optimally tuned inflation. As should have been ex-
quet (2011 about the application of the EnKF-N filters to pected, the dual implementation is better than the primal
the Lorenz '63 model, they = 1+ % variant should be used implementation. Note that whefsr < 0.15, the primal vari-
for such a small ensemble where the analysed state vector ent can beat the dual one. However, since it is in a regime
not well estimated by the ensemble mean. The fundamentalhere the formalism breaks down for the likely reasons given
difference between the primal and dual formalism is that theabove, this difference is essentially irrelevant.
primal implementation picks upne minimum for the anal- A similar experiment was performed but for= 9, closer
ysis, whereas the dual implementation determines the globab the asymptotic ensemble size limit. In that case, the turning
minimum of the analysis cost function. point is at aboutAr >~ 0.04.

The analysis root-mean-square errors are reported on The same study was conducted for the iterative ensem-
Fig. 7. ble Kalman filters. The results are reported in FBgNote

First of all, it is clear that the finite-size filters underper- that we have not introduced any dual variant of the IEnKF-
form below some threshold equalsAo = 0.16 foragbsz 1, N. That is why only the IEnKF with optimally tuned infla-
andAr =0.14 fOrggbsz 8. They ultimately diverge for too tion and the IEnKF-N in its primal implementation have been
small Ar. This divergence is not directly due to the quasi- tested. The bundle variant was chosen. The results are qual-
linearity of the model in that regime, but to the fact that itatively similar to the non-iterative filters. However, since
even in that regime it still diverges without a properly tuned the flow between updates is made more linear thanks to the

www.nonlin-processes-geophys.net/19/383/2012/ Nonlin. Processes Geophys., 1939832012
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Fig. 8. Analysis root-mean-square error for two iterative filters applied to the Lorenz '63 midelJ): the IEnKF, bundle variant with
optimally tuned inflation, and the primal algorithm for the IENKF-N, bundle variant. Left panel iIIustrate%nge: 1 case and the right

panel illustrates thegbs= 8 case. The EnKF results of Figare reported for comparison.

iterative corrections, the regime is pushed toward the qualithis renormalization of,, and not to the abrupt truncation

tative behaviour of smali\r. Consistently the turning point

of Eq. 27) to the intervall0, N — 1].

beyond which the IEnKF-N outperforms, is pushed towards The resulting performances of the capped EnKF-N, primal

higherAt.

5.4.2 An empirical solution

Exploring the smallAt regime and the behaviour of the dual
cost function Eq.Z7), we found that, in that regime, the ar-
gumentz* of its minimum is mostly given by the maximum
of the interval, that isN /ey . But if N/ey asymptotically
behaves likeN — 1, it is bigger thanV — 1 at finite N, for
ey=1orey=1+4+1/N. For instance, in the cas¥ =3
andey =14+ 1/N, one hasN /ey = 2.25 as compared to

N —1=2.Hence, in that regime, EnKF-N tends to often im-
plicitly deflate the ensemble, which may lead to an overcon-

fident Kalman filter and to its divergence.

and dual variants, are displayed in FgWith our setup, the
dual EnKF-N outperforms or equals EnKF with optimally
tuned inflation over the enlarged range < [0.05,0.50].
The benefit of the dual filter over the primal variant is now
even clearer in the almost linear regime.

In that regime¢* remains close t&v — 1, with occasional
excursions to smaller values. These events are mostly pro-
voked by transitions of the dynamics of the Lorenz '63 model
between lobes. Because of the shart it is only on these
occasions that the ensemble departs from the control run,
whereas most of the time the system is in a quasi-linear
regime where almost no inflation is needed. The behaviour
of ¢* is illustrated in Fig10in the caseAr = 0.05.

The corresponding results for the bundle IEnKF-N are re-
ported in Fig.11 for its primal variant. Even though the

From this educated guess, we propose to cap the argleapping essentially solves the divergence problem diagnosed

ment¢* of the minimum of Eq. 27) at N — 1. Note that

earlier, IENKF-N underperforms IEnKF with optimal infla-

the case;* = N — 1 corresponds to an absence of inflation tion in the nearly linear regime. Guided by the capped primal
and does not a priori guarantee the filter’s stability. More- and dual EnKF-N results, we conjecture that a dual variant of

over, rather than capping®, we prefer to modify Eq.47)
in such a way that the maximum value ©f cannot exceed

the capped IEnKF-N would at least partially close this gap.
However, implementing the dual IEnKF-N is certainly chal-

N —1. The first reason for doing so is that the duality result of lenging and left as an open question.

AppendixA is derived on the full interval0o, N /ey], and an

In addition to being empirical, the capping solution can-

abrupt truncation would invalidate the duality equivalence.not be fully satisfying since it leads back to some tuning.

The second reason is that a direct capping*ofequires an
access to Eq.2(7), which is not straightforward in the case

However, in the context of this numerical experiment, no
scalar was tuned. It was only necessary to distinguish the

of the primal schemes. For these two reasons, we proposgeakly nonlinear regime from the rest of the range. This

to renormalizesy to ey = N/(N — 1). That way, it is easy
to check through Eq.2Q) that the maximum value af* is
*=N —1 atp* = 0. In the followingcappingwill refer to

Nonlin. Processes Geophys., 19, 38339, 2012

also suggests that, in the context of this experiment, a gen-
uinely satisfactory solution that avoids tuning of inflation
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2 _
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a

dimensional geophysical systems. We have presented and
justified their algorithms. They have been mostly tested on
' I | S . T the Lorenz '95 chaotic toy model.

The first filter, the finite-size ensemble Kalman filter, is
built to reduce the impact of sampling errors, and was shown,
in a perfect model context, to significantly reduce the need
for inflation. We have shown that the scheme can be made
equivalent to a traditional deterministic EnKF, but with an
inflation of the prior, whose value is determined by the min-

N
I

=
]

[
o

Optimal efficient rank of the priog
=

20 : ‘ ‘ ‘ imum of a one-dimensional non-necessarily convex cost-
» 10[k 4 B ‘ i ] 4 R function. Assuming that EnKF-N significantly reduces the
E.f 0 ’ : of i, é need for inflation accounting for sampling errors, this sug-

% i i Y] ¥y guE . . . .. i .
-1op WHHY ‘ {1 ‘ ‘ ' g ¥ ¥ gests why inflation is usually so efficient in accounting for
2% 200 400 600 800 100( sampling errors. It tells that this efficiency mathematically

Time of Lorenz '63 model comes from the invariance of the ensemble by permutation

of its members. Through a dual transformation, it was shown

Fig. 10. Sequence of efficient rank¥ in a long run of a capped how to find the global minimum of the EnKF-N analysis
dual EnKF-N applied to the Lorenz '63 model, vviargbs: 1and  cost function. This solves one of the open questions raised
At = 0.05 which corresponds to a nearly linear regime, and with by Bocquet(2011).
an ensemble ofV =3 members. The lower graph displays the X  The second filter, the iterative ensemble Kalman filter, out-
variable of the Lorenz '63 reference trajectory (the truth). Note the performs EnKF in strongly nonlinear regime, at the cost of
good correlation between the .perioq of.reilative stabilityfbrand iterating the ensemble propagation between updates. The im-
the presence of the true state in orbit within a lobe. plementation oBakov et al(2012 corresponds to a Newton

method in solving the underlying analysis cost function. In
._this article, we have proposed to use a Levenberg-Marquardt
?mplementation of the filter instead. It offers a better control
on the convergence, the positive-definiteness of the Hessian
and seems to require less iterations in strongly nonlinear con-
ditions. However, it is less efficient in mild nonlinear condi-
tions where the number of required iterations is small. The
transform and bundle variant of IEnKF lead to very similar

In this article, we have further more explored two recently ésults and we suggest that they should be considered as vari-
developed ensemble Kalman filters meant to operate in higignts of a same IEnKF filter.

modelling of the hyperprior, beyond Jeffrey’s prior that leads
to the particular form of the dual cost function Eg7Y.

6 Conclusion
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Fig. 11. Analysis root-mean-square error for two iterative filters applied to the Lorenz '63 mddelJ): the IEnKF, bundle variant with
optimally tuned inflation, and the primal algorithm for the IEnKF-N with capping, bundle variant. Left panel iIIustrat@c%Dghel case
and the right panel illustrates timgbsz 8 case. The EnKF with optimally tuned inflation and dual EnKF-N with capping results ofFig.
are reported for comparison.

Exploiting their complementarity, the two filtering ap- of degrees of freedom in the ensembleMat- 1 through a
proaches have been combined into an inflation-free iterativanodification of the dual cost function EQ®7). For the cases
ensemble Kalman filter. The Levenberg-Marquardt schemainder scrutiny, this offers a satisfying solution in the EnKF-
provides the necessary control on the minimisation of theN case and a promising one in the IEnKF-N case. However,
non-convex underlying cost function. Their performances ardt surely requires a robust argument such as the derivation of
close to that of the IEnKF with optimised inflation. The num- the modified dual cost function from a more fitted hyperprior.
ber of ensemble propagation required by IEnKF-N seems tcAdditionally it was shown in this special case that knowledge
be very similar to that of IENKF in the same context. of the global minimum of the analysis, which is provided by

In this article, we have deliberately eluded the rank prob-the dual algorithm, leads to a systematically better perfor-
lem aspect of the EnKF. To go beyond, and extend the resultsnance than the primal algorithm.
to low-rank ensemble, one should additionally built localiza-  For the longer term, we believe that this finite-size iterative
tion into this algorithm as was for instance done for EnKF-N ensemble Kalman filter can be seen as a first elementary one-
in Bocquet(2011). But it should bring us far from the pre- lag brick of an efficient ensemble Kalman smoother.
liminary objectives of this article.

A possible improvement over the iterative filters in their
Levenberg-Marquardt implementation, would be to re-shapeAppendix A
the algorithm so that it avoids extra fundamentally unneces-
sary iterations for small time interval between updates. On
has to keep in mind that the Levenberg-Marquardt metho

was de5|g'ne'd tq reduce the large ngmber of |ter§1t|0ns needqﬂ this appendix, proof is given that the dual and primal prob-
in the optimisation of a system built on a nonlinear model lems lead to the same global minimum. We define the par-
and, in the present form, is not optimal for system built on Qticular Legrendre-Fenchel transform of a function- 0 —

mildly nonlinear model. : % :
Another previously identified challenge is to build an op- (@) as the functionp > 0~ 4% (f) defined by

timisation algorithm for the cost function of tiueial IENKF- . _
N. h(B) = OLQB (@B = h(a)) . (A1)
In the last section of this article, we have identified a de-

manding regime, the almost (but not exactly) linear regime  Applying this transform to functiorf defined by Eq.18),
with a small ensemble, where the finite-size (iterative or not)it is easy to check that:

EnKFs do not apparently succeed in determining a proper
effective inflation. We have proposed a motivated but empir- N—ent—NInY for ¢ €10, N/ey]
ical solution which consists in capping the diagnosed valuef™(¢) = { ’

?trong duality of the EnKF-N optimisation problem

—Nlney for¢ > N/en, (A2)
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and, using the concavity of the In function and, in particular,

foranyp =0 Algorithm 3 Levenberg-Marquardt IENKF.
Nln(ey +p) < Nlney + ﬂp’ (A3) Require: Transition model fromy, to 72; M, an observat}icon op-
EN erator H. Algorithm parameters, 7, e, e2, pmax Ej, the

.. forecast ensemble at, y the observation &
it is found that for any > 0 Ay b

Therefore,f coincides with its bi-conjugatg™*.
To prove strong-duality, we consider the dual problem and
we gradually transform it into the primal one:

T =1 y (transform)
E1 = X1 + €A (bundle),
E1 = X1 + AT (transform)

1: Computex andA from E{
sk _ 2:p=0,v=2,W=O
[ (P)=NIn(en +p). A 3 %+ Aw
41 yp = HM(xp)
5
6

o 7: Ep = M(Eyp)
A= ;'rlfop(o 8: Y = (H(E) —Yy2)/e (bundle),
Y= (H (Ep) —y)T~1 (transfojrvm)1
= inf (infsupLw, p. ) 9T =30~y Ry —y) + Spiwlw
=0\ W 2 10: VT = (N - Dhw—Y Ry —yy)

12: flag= (IIVJ Il > €1), 1t = T max(Hx)

) 11 H=(N - DIy +YIR71Y;,
13: while flagand p < pmaxdo

= inf inf | supZ(w, p, ¢)
c>0W<pz€( p.¢

1. . T . 14 p:=p+1 -
= éz"lfo'a,f gW) +¢w W—:)g%((p—f(p)) 15: _Solve(H+,u,IN)AW=—VJ
1 16:  if ||Aw]|| < ep then
= Zinf inf(g(w) +¢w Tw — f* 17: flag = FALSE
> inf (sw)+¢ £4©) i
1, . T . 19: W =w+ AW
= Elgvf(g(w)+{lgfo(§w w—f (())) 20: X1 =X+ AW/
1 2L Y2 =1HM(X1) N
= Sinf (g + £ ww)) 222 L=3Aw' (paw-VJ)
1 23 J'=30-y2 R y-y)+¥7wTw
— Zinf (g(W) n f(wTw)) 2. 6=(T-J)/L
2w 25: if 6 > 0then
= inf J(w) 26: J=J
_ IY[V A5 27: w=w
) (AS) 28: E1 = X1 + €A (bundle),
E; = X1 + AT (transform)

The key assumptions that make this derivation possible ar%g
the following. First the infima oD(¢), and7 (w) in Eq. (A5) — _

are attained and make the derivation meaningful. Secondly, ;(5; ((g((g)) _3//;))46_(1b&?: r'go m)
we used the fact thaf defined by Eq. 18) coincides with 3. VT =(N-Dw— Yngl(y_yz)

Ex = M(Eyp)

its bi-conjugate:f** = f, as proven above. It can also be 30: = (N-Dly+YIR1v,
checked that the infimum dP(¢) over¢ > 0 is attained in ~ 1 2
0N 33: T ="H" 2 (transform)
] ) /‘9N] . =

34: flag= (I[VTlloc > €1)

_ 35: u::umax{%,l—(26—1)3},v:2

Appendix B 36: else

37 W=y, v:=2v
Algorithms of the iterative filters 38: end if

39: endif

40: end while

41: X1 =%+ Aw

42: T =72 (bundle)
43 Eq = xq + AT

44: Ey = M(Ep)

45: Ep :=Xo+A(Ex —X2)

www.nonlin-processes-geophys.net/19/383/2012/ Nonlin. Processes Geophys., 1939832012



398 M. Bocquet and P. Sakov: The iterative finite-size ensemble Kalman filter

Algorithm 4 Levenberg-Marquardt IENKF-N.

Require: Transition model fromrq to f2: M, an observation op-
erator H. Algorithm parametersz, t, e1, €2, pmax- E{, the

forecast ensemble at, y the observation ap

1: Computex andA from E{
2. p=0,v=2,w=0

3! X1 =X+ Aw

4: yp = HM(xy)

5: T =1y (transform)

6: E1 =x1+ €A (bundle),

E1 = X1 + AT (transform)
: Ep = M(Ep)

~

8: Yo = (H(Ep) —y2)/e (bundle),
Yo = (H(Ep) — yo)T~1 (transform)
9: T=3y-y2 Ry -y+ ¥ In(en +ww)
10: VT = Nt = YR My —y2)
T T
11 7 = N Evtwwiy—2wmwl 1oy
T (sN+WTW)2 Y2 2

12: flag= (/IVT llc > €1), 1 = T max(Hyx)
13: while flagand p < pmax do

14: p:=p+1 ~

15:  Solve(H+uly)Aw=-VJ

16: if [|JAw]|| < ep then

17: flag = FALSE
18: else
19: W =w-+ AW
20: X1 =X+ Aw
21: yo = HM(X1)
22: L=3aw" (nAaw—-V7)
23: T =30-y2"RIy-y2+5In (eN +W/TW/)
24: 0= -T)/L
25: if & > 0then
26: JT=J
27: w=w
28: E1 =X1 + €A (bundle),
E1 = X7 + AT (transform)
20: Es = M(Ep)
30: Yo = (H(E2) —y7)/e (bundle),
Y2 = (H(Ep) —y»)T~1 (transform)
31 VJ:N8N+WVVTW ~YIR Ly -y»
32: 7=yl 2wt | ety
(en+wTw) 2
33: T= 776_% (transform)
34: flag= (IIVJ lloo > e1)
35: M::umax{%,l—(29—1)3},v:2
36: else
37: ni=puv,v:i=2v
38: end if
39: endif
40: end while
41: X1 =x + Aw

42: T=F3 (bundle)
43: Eq = X1 +AT
44: Ey = M(Eq)
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