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Abstract. Existing sampling techniques applied within datasets (Whalesback copper deposit, Witwatersrand gold-
known orebodies, such as sampling along mining drifts, yieldfields and Black Cargo titanium deposit). Additionally, it is
element concentration values for larger blocks of ore if theydiscussed that nugget effects exist in a binary series of alter-
are extended into their surroundings. The resulting averag@ating mostly gneiss and metabasite previously derived from
concentration values have relatively small “extension vari-KTB borehole velocity and lithology logs, and within a se-
ance”. These techniques can be used for multifractal modelfies of 2796 copper concentration values from this same drill-
ing as well as ore reserve estimation approaches. Geometritole.

probability theory can aid in local spatial covariance mod-
eling. It provides information about increase of variability
of element concentration over short distances exceeding mi- )

croscopic scale. In general, the local clustering of ore crys-1 ~ Introduction

tals results in small-scale variability known as the “nugget

effect”. Parameters to characterize spatial covariance estiMost geological maps display bedrock as a mosaic of dis-
mated from ore samples subjected to chemical analysis fokinct rock units of different composition and age. Small rock
ore reserve estimation may not be valid at local scale becausg@mples are taken and subjected to chemical analysis. Nor-
of the nugget effect. The novel method of local singularity mally, the resulting chemical element concentration values
mapping applied within orebodies provides new insights into@re used to help with rock identification and to describe the
the nature of the nugget effect. Within the Pulacayo Orebodyphysico—chemical processes that led to the patterns of rock
Bolivia, local singularity for zinc is linearly related with log-  Units on the geological map and its three-dimensional exten-
arithmically transformed concentration value. If there is aSions into depth. Although orebodies and hydrocarbon de-
nugget effect, moving averages resulting from covarianceP0sits generally occupy relatively small volumes within the
models or estimated by other methods that have a smoothEarth’s crust, they are targets of intense exploration includ-
ing effect, such as kriging, can be improved by incorporat-ing chemical determinations both before and after discovery.
ing local singularities indicating local element enrichment or These targets of economic interest often possess fractal char-
depletion. Although there have been many successful app”acteristics that cannot be fully explained without the use of
cations of the multifractal binomiagl/model, its application ~nonlinear concepts. This paper is concerned with spatial pat-
within the Pulacayo orebody results in inconsistencies, indi-terns of chemical element concentration distribution that are
cating some shortcomings of this relatively simple approach.beSt described as multifractals, which are superimposed on
Local singularity analysis and universal multifractal model- the multifaceted mosaic of the geological map.

ing are two promising new approaches to improve upon re- During the past 40yr, the fractal geometry of many natu-
sults obtained by commonly used geostatistical technique$?! features in Nature has become widely recognized (see e.g.
and use of the binomiagl model. All methods in this pa- Mandelbrot, 1983; Barnsley, 1988; Turcotte, 1997). Fractals
per are illustrated using a single example (118 Pulacayo zinén geology either represent the end products of numerous,

values), and several techniques are applied to other orebodyiore or less independent processes (e.g. coastlines and to-
pography), or they result from nonlinear processes, that took
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24 F. P. Agterberg: Sampling and analysis of chemical element concentration distribution

place long ago within the Earth’s crust. Although a great
variety of fractals can be generated by relatively simple algo- ]
rithms, theory needed to explain fractals of the second kindg _|
generally is not so simple, because previously neglected nong
linear terms have to be inserted into existing linear, deter-2 |
ministic equations. Several types of patterns are best mod‘% 1
eled as multifractals, which are spatially intertwined fractals § =1,
(Stanley and Meakin, 1988). Most progress in multifractal §
theory development has been made in geophysics to study |
nonlinear processes including cloud formation and rainfall. |
Lovejoy and Schertzer (2007), Lovejoy et al. (2008) and
Cheng (2008) show that scaling and multifractal fields also  ° “ ® o
exist within solid Earth. pistance.m

In lthIS paﬁ.erh spgmal attention r\]NI” .bel paid to sampllng IFig. 1. Pulacayo Mine zinc concentration values for 118 channel
problems which arise because chemical concentration va samples along horizontal drift. Sampling interval is 2m. Original

ues for small rock samples must be extrapolated over muchyata (blue diamonds) are from de Wijs (1951) and “signal” (red line)
|arger FOCk masses in Order to describe the multifractal ﬁeldSretained after removal of “nugget effect” is from Agterberg (1974)
Such extrapolations remain subject to uncertainty. Use
will be made of geostatistical theory originally developed
by Matheron (1962), whose approach is also explained inwhat is now better known as scale invariance. It leads to the
various geostatistical textbooks including Journel and Hui-more general equation? (In x) =« x InV /v wheres? (In
joregts (1978) and Cressie (1991). Nearly all publicationsx) represents logarithmic variance of element concentration
by Matheron including his manual on the theory of re- valuesx in smaller blocks with volume contained within a
gional variables and its applications (Matheron, 1971) arelarger block of ore with volumé’.
now freely available on a website maintained by the Ecole Two geostatistical topics of practical interest are existence
Nationale Suprieure des Mines de Paribt{p://cg.endmp. of “sill” and “nugget effect” (see e.g. Journel and Huijbregts,
fr.bibliotheque/cgi-bin/public/biblindex.cg). Matheron 1968, or Cressie, 1991). Supposé:) represents the semi-
(1962) initially based his geostatistical theory on the princi- variogram, which is half the variance of the difference be-
ple of “similitude” underlying the model of de Wijs (1951). tween values separated by lag distahce Semivariogram
Later, Mandelbrot (1983) recognized that it can be said thatvalues normally increase when is increased until a sill
de Wijs (1951) developed the first multifractal now bet- value is reached for large distances. If element concentra-
ter known as the binomigl/ model (see e.g. Lovejoy and tion values are subject to second-order stationayityt) =
Schertzer, 2007). Krige (1978) demonstrated that the modes?(1— pj,) whereo? represents variance apg is the auto-
of de Wijs could be applied to hundreds of thousands of goldcorrelation function. The sill is reached when there is no spa-
assays, at scales ranging from local sampling scale; frontial autocorrelation ol (h) = o2. If regional trends can be
Witwatersrand goldfields (see also Mandelbrot, 1995). separately fitted to element concentration values, the residu-
To illustrate application of his model, De Wijs (1951) used als from the resulting regional, systematic variation may be-
a series of 118 zinc concentration values from samples takenome second-order stationary because the overall mean in the
at a regular (2m) interval along a horizontal drift in the Pu- study area then is artificially set equal to zero (see Sects. 4.3
lacayo Mine, Bolivia (Fig. 1). This series was used exten-and 4.4 for examples of this approach). Within most rock
sively for later study, as well by Matheron (1964), and sev-types such as granite or sandstone, randomness of chemical
eral other authors including, most recently, Chen et al. (2007)oncentration is largely restricted to microscopic scale and
and Lovejoy and Schertzer (2007). This example will againsills for compositional data are reached over very short dis-
be used in this paper. Geological background on the Pulatances. The nugget effect occurs when extrapolation(sj
cayo orebody will be provided and consideration paid to thetowards the originf — 0) from observed element concentra-
question of how representative is this example of ore depositsion values yields estimates wifh(z) > 0 (or p;, < 1). Often
in general. As explained in more detail elsewhere (e.g. Agterthe nugget effect arises when there is strong local autocorre-
berg, 2007a, b), de Wijs assumed that, if a block of ore is di-lation that cannot be detected because locations of samples
vided into halves, the ratio of average element concentratiorsubjected to chemical analysis are too far apart to describe it
values for the halves is equal to the same constant regardles&lequately.
of the size of the block that is divided into halves. If greater If a segment of the Earth’s crust is sampled and element
value is divided by lesser value, this ratio can be written asconcentration values are determined on the resulting rock
n > 1. Matheron (1962) generalized the original model of samples, the spatial variability of the chemical determina-
de Wijs by introducing the concept of “absolute dispersion” tions generally can be subdivided into a number of sepa-
written asa = (Inn)?/In 16. This approach is equivalent to rate components. In some applications the original data are
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stochastic in that they can be described by random functions CENTRAL

i i iability i PULACAYO  ZONE PACAMAYO
HowevclarZ o.ften .the main compo_nent of spat|al_ variability is U™ e s —
deterministic, either because it is related to differences be _ . T
tween rock units separated by discontinuities (contacts), o § e e s N
because there are regional trends. The latter can be extract £ .= R-QF SRR
from the data by a variety of methods; e.g. by trend sur- § gom 2z mmnis s g
face analysis, calculation of moving averages with or without 3 2 - IR
weights that are powers of the inverse of distance, by various" 454, Undergr;’;,f' S Dy =
methods of kriging, by using splines, or by means of other workings =%t rajo Vein &
methods of signal extraction. After extraction of a deter- 0 . s00om
ministic component, th_e residuals generally are stochastic it F=73 andesite volcanic plugs / Major veins
that they can be described by means of spatial random func  F==pacite porphyry dome i ‘Vkioks

tions. In the simplest case, these residuals are uncorrelate
and their correlogram is a Dirac delta function representing
white noise. Measurement errors would create white noise
If extrapolation towards the origin by means of a function fit-

ted to the correlogram results in a variance that significantlyri9- 2. Simplified cross section of Pulacayo dome with steeply dip-
exceeds variance due to measurement errors, this indicatéd"d Tajo Vein (after Pinto-¥squez, 1993). Mining level depths

existence of a nugget effect implying strong autocorrelation'Vere measured downward from SarbbeTunnel.

over short distances. In this paper, special attention will be

paid to nugget effects, which probably are due to spatial cIusN the end of the paper, spectral analysis of element con-

tering of ore crystals. _ _ . centration values will be briefly discussed in connection with
Matheron (1989). hag p.o.|r.1ted- out that in rock samplmg probable existence of the nugget effect and in the context of
there are two possible infinities if number of samples is in- iy ersal multifractal modeling results obtained by Lovejoy
creased indefinitely: elthgrthe sampling |.nterval is kept CON-4nd Schertzer (2007) for the Pulacayo Mine in Bolivia. The
stant so that more rock is covered, or size of study area iy, ryose of the analyses described in this paper is to help con-

kept constant whereas sampling interval is decreased. Thesgy,q( yiaple models that honor the observations and extrap-
two possible sampling schemes provide additional informa-

; ) , olate from limited spatial sampling to smaller or larger vol-
tion on sample neighbourhood, for sill and nugget effect, re- o5 of rocks including orebodies, so that unbiased and rel-
spectively. In practice, the exact form of the nugget effect

i ) ) atively precise average element concentrations are obtained
usually remains unknown because extensive sampling woulgly, yhese volumes, which can have different shapes. If possi-

be needed at a scale that exceeds microscopic scale butis Ie§%, 'each estimated average concentration value for a volume

than scale of sa.mpllng space commonly used for ore deposit§s 1o should be accompanied by realistic estimates of the
or other geological bodies. Nevertheless, there are now S€Vincertainties associated with it

eral methods by means of which the nugget effect can be

studied. The de Wijs zinc data set is rather small (118 val-

ues). Because of this, larger data sets will be analyzed ag Basic statistical analyses of mining assays

well. As an example taken from another geoscience field,

it will be discussed in the text that alternating, detrended2.1 Geological setting of Pulacayo Mine

lithologies over a length of about 7 km in the KTB borehole

(Goff and Hollinger, 1999) show a small-scale nugget effect. The geological setting of the Pulacayo Mine and genesis
Additionally, a series of 2796 copper concentration valuesof the sphalerite-quartz ore deposit are briefly described in
for chip samples taken at 2-m intervals along the Main KTB a scientific communication by Pinto&géquez (1993). The
borehole show a persistent nugget effect that will be ana-118 zinc values of de Wijs (1951) are for channel samples
lyzed separately. Cheng (1999, 2005, 2006) has proposedut at 2-m intervals across the steeply dipping Tajo vein
a new model for incorporating spatial association and sin-along a horizontal mining drift on the 446-m level. This
gularity in interpolation of exploratory data. The first two level depth was measured downward from elevation of the
sections in this paper will mainly deal with geostatistics andSan Lén Tunnel (Fig. 2). The 2.7 km long Tajo vein was
applications of geometrical probability theory to sampling. It discovered in 1883 and mined until 1956. According to
will be shown later in the paper that Cheng’s approach pro-Ahlfield (1954), this “silver mine” had the largest annual zinc
vides a novel way of incorporating the nugget effect. Theand second largest annual silver production in Bolivia. On
iterative algorithm proposed by Chen et al. (2007) for local average, the Tajo vein was 1.10 m thick with ore containing
singularity mapping will be extended until full convergence 14% Zn and 0.1% Ag. Relative sphalerite (zinc sulphide)
is reached. Local singularities obtained during this procesgontent increased downward in the orebody. According to
provide new information on the nature of the nugget effect. Turneaure (1971) the age of the Tajo vein was Neogene,

[Z=—1Sandstone and conglomerates _f Mydrothermal breccia
B Quartz-alunite altered dacite
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26 F. P. Agterberg: Sampling and analysis of chemical element concentration distribution

3 CHANNEL SAMPLES

X

2m 2m

Fig. 4. Schematic representation of channel sampling in Pulacayo
Mine. Successive channel samples along horizontal mining drift on
446-m level were 1.3-m long and 2-m apart. The Tajo vein, which is
0.5-m wide on average, consists of massive sulphide (hatched pat-
tern) but wall rock on both sides of the vein contained disseminated
sulphide and stringers of sulphide ore. Anticipated stoping width
Fig. 3. Micrograph of massive sulphide ore in Pulacayo Mine (from was 1.3-m but “effective” channel sample width)(was set equal
Villalpando and Ueno, 1987). Ore minerals are sphalerite (sp).to width of vein &0.5m). Lag distance: is 2m or multiple of
tetrahedrite (tet), chalcopyrite (cp) and pyrite (py). 2m.

Negative exponential autocorrelation functions are closely
probably as young as Pliocene. Figure 3 shows ore minefre|ated to Markov chain analysis and to scaling properties
aIS at micrOSCODiC Scale. The Si|VeI’ was in the form Of ﬁne Of Sequences of minera| grains in igneous rocks_ For exam-
grains associated with tetrahedrite. In a conference report byje, Xu et al. (2007) demonstrated existence of small-scale
Villalpando and Ueno (1987) it can be seen that zinc Contengca”ng in “idea' granite" grain Sequences previous'y mod_
of sphalerite varied between 65.62 % and 66.03 %. This im-gled as Markov chains (Vistelius et al., 1983). Both con-
plies that maximum possible zinc content of ore consistingtinuous and discrete first-order Markov processes have neg-
exclusively of sphalerite would be 66 % and this is above theative exponential autocorrelation functions (Yaglom, 1962;
largest value of 39.3 % in our data set. However, because thagterberg, 1974, p. 332). Wang (2008) applied multifrac-
sampled material consisted not only of massive sulphide buta| and Markov chain analysis to sphalerite banding at the
also out of mineralized wall I’OCk, the |argest pOSSible Valuemicroscopic scale in the J|nd|ng lead-zinc deposit, Yunnan
is probably considerably less than 66 %. This upper limit proyince, China. Larger scale examples of this kind of mod-
constrained maximum zinc enrichment. eling as applied to lithological data and copper concentration

On the 446-m level, average thickness of massive vein fill-ya|yes observed in the KTB deep continental crust drill-hole
ing averaged only 0.50m in width but wall rocks on both || be discussed later in this paper.
sides containe_d disseminated sphalerite, partly occurring in - £rom the fact that average zinc content on the 446-m level
subparallel stringers. The channel samples were cut oVer gigers from that reported for the entire Tajo vein, it can be
standard length of 1.30m, corresponding to expected stopzssumed that there exist “trends” in the Pulacayo orebody.
ing width. Consequently, each assay value represents avefgterherg (1961) estimated the amplitude of a sine function
age weight percentage zinc for a rod-shaped channel sane to the first 65 of the 118 zinc values, but his best-fitting
ple of 1.30m cut perpendicular to the vein (Fig. 4). The ympiitude of 2.77 % Zn is not statistically significant. How-
method used for smoothing the 118 zinc values in Fig. 1 wag,yer, it remains possible that there are systematic geographic
described in Agterberg (1974), who assumed that each zing,yiations in zinc content within the data set of Fig. 1. This
value was the sum of a “signal” value and small-scale “noise”shoyid be kept in mind when spectral analysis is performed
with the autocorrelation functiop;, = cexp(—ah), wherec  |ater in this paper (Sect. 5.3) because sinusoidal trends would

represents the small-scale noise variance and the parametgfg it in over-estimation of low-frequency power densities.
a controls the decreasing influence of observed values on

their surroundings. The two parameters were estimated t& 5  E¢ect of logarithmic transformation
bec=0.5157 andi = 0.1892. Signal+noise models of this
type are well-known in several branches of science (cf. Ya-

glom, 1962). Filtering out the noise component producedyica iy transformed assay values. This can have advantages
the signal shown in Fig. 1. Various other statistical methOdS\Nith respect to using untransformed element concentration

such as simple moving averaging, kriging or inverse distancq,mues_ He assumed that “effective length” of each channel
weighting can be used to produce similar smoothed pattemssample could be set equal fo=0.5m, representing the

Matheron (1968) applied geostatistical methods to logarith-
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average width of the Tajo vein on the 446-m level. Obvi- 1
ously, the 118 zinc values of Fig. 1 systematically underes-
timate true zinc content of the massive sulphide vein filling s
because the original sample length was 1.30 m for the mas-
sive vein augmented by lower zinc grade wall rocks. Later . os|
in this paper, the effective length is assumed to be a variable:
parameter that can be estimated from observations. In thé o/
absence of more complete information, it is not unreason-£
able to assume, as Matheron did, that all massive sulphidé o1
zinc concentration values were underestimated by the samé
factor during the channel sampling. The logarithmic vari- <
ances?(Inx) is not affected if this bias factor is constant.
For our exampleg?(Inx) is estimated to be 0.2851. One 02
relatively simple geostatistical sampling method can be il-
lustrated as follows. Suppose that the 118 values for channel
samples that are 2 m apart together provide an estimate of avsig. 5. Estimated autocorrelation coefficients for original data
erage zinc content{15.61 %) of an elongated rod-shaped (blue diamonds) and logarithmically transformed zinc values (red
mining block with a length of 238 m. Dividing this num- squares), shown together with best-fitting negative exponential au-
ber by L =0.5m and raising the quotient to the power 3 tocorrelation functions for original data (blue curve) and logarithmi-
then yieldsV /v = 476. Combining this number with our esti- cally transformed data (red curve), respectively. Patterns are similar
mate of logarithmic variance and using Matheron’s equationf/lustrating that logarithmic transformation of original data does not
az(lnx) = «In{V/v} then yields the absolute dispersion es- S|gn|f|gantly affect autocorrelation in this application to the Pula-
timatea = 0.015, which would apply to other block sizes as &Y° Zin¢ values.

well.

If the logarithmic variance of element concentration val-
ues is relatively large, it may not be easy to obtain reliable
e_\stimates_ of statistics such as mean, va_riance, autocorrela- Estimates for our example are = 2.6137 ando? =
tion function and power spectrum by using untransformed 2851, Estimates according to Eq. (2) then argX) =
element cor)celntra.tmn values. However, Iognormghty of th§15_74 ando2 (X) = 81.74. The untransformed zinc values
frequency dls'grlbutlon c.)ften'can be assumed. Thisis the Maifave mean and variance equal to 15.61 and 64.13, respec-
reason for using logarithmically transformed value_s '”Steadtively. The larger variance estimate resulting from Eq. (2)
of original val_ues. Suppose that element concentration \_/alueﬁ161y indicate a slight departure from lognormality (large-
can be described by; andY; =InX; has normal, Gaussian 5 tajl slightly weaker than lognormal) possibly related

. . . . . 2
frequency distribution with mean and variance . Repre- 4 the fact that the largest possible zinc value is significantly
senting the autocorrelation functions & andY; asp, (k) less than 66 % (see before).

andp, (h), respectively, we have:
Ozpy(h) —In[14 720, (1] ) 2.3 Other.applications of model of de Wijs to ore
deposits

®

o

0 5 10 15 20 25 30
Lag distance, m

o2
/L(X) = e“+7 ; UZ(X) — 62M+2<72 _ EZ‘H'GZ (2)

where y? = o2 (X)/u?(X) (cf. e.g. Agterberg, 1974,
Eq. 10.40). Ify? is sufficiently small,o, (k) andp, (k) are  We consider the question of how representative our relatively
approximately equal. For our example, this condition is sat-small, historical data set of 118 zinc values is of ore deposits
isfied as demonstrated in Fig. 5. Approximate equality ofin general. Matheron (1964) used several other mineral de-
results shown in Fig. 5 applies to both the estimated autocorposits exemplifying his extension of the model of the Wijs.
relation coefficients and negative exponential functions fittedHis primary examples were from the Mounana uranium de-
by non-linear least squares to data points with0. Conse-  posit, Gabon, and the Mehengui bauxite deposit, Guyana.
guently, variograms of zinc values and logarithmically trans-These two deposits occurred relatively close to the Earth’s
formed zinc values also are approximately the same. Later irsurface and were explored by means of subvertical boreholes
this paper the variogram of logarithmically transformed zinc drilled on regular grids. His other examples included the
values will be used. Substituting fitted values from Fig. 5 into Bou-Kiama, Montbelleux, Laouni, Mpassa, and Brugeaud
y (h) =o?(1— py,) yields a variogram (Table 1, see later) that orebodies. In all these situations, the model of de Wijs
is close to estimates originally obtained by Matheron (1964).proved to be satisfactory. Some of these examples and others
also were discussed in later geostatistical textbooks including
If n represents mean of lognormally distributed values,David (1977) and Journel and Huijbregts (1978). Later, how-
mean and variance of untransformed data satisfy the equaever, this type of modeling became de-emphasized, probably
tions: because the model of de Wijs does not allow for sills that
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28 F. P. Agterberg: Sampling and analysis of chemical element concentration distribution

Table 1. Pulacayo Mine variogram model, Experimental values from Matheron (1962, p. 180); Lag distaiten{ Exponential values
from model of Fig. 6;f(¢) as in Eq. (4);8(h) = Experimental valuq/(q);of =B x f(q) is extension variance of 50 cm line segments;
Deviation is difference between colums 2 and 6. The small deviations indicate good fit of Matheron’s variogram model.

h,m. Experimental Exponential f(g) B(h) th Deviation
2 0.303 0.325 2.891 0.105 0.286 0.017
4 0.402 0.367 3.580 0.112 0.354 0.048
6 0.436 0.401 3.985 0.109 0.394 0.042
8 0.465 0.429 4.273 0.109 0.422 0.043
10 0.408 0.452 4.496 0.091 0.444 -0.036
12 0.412 0.471 4.678 0.088 0.462 -0.050
14 0.464 0.486 4.832 0.096 0.477 -0.013
16 0.452 0.499 4966 0.091 0.491 -0.039
18 0.472 0.510 5.083 0.093 0.502 -0.030
20 0.545 0.518 5.189 0.105 0.513 0.032

occur generally and problems associated with working withreliable statistics from original data without use of a more
logarithmically transformed concentration values instead ofefficient estimation method involving logarithmic transfor-
original data. However, as pointed out by Matheron (1974),mation (Aitchison and Brown, 1957; Sichel, 1966). The
lognormality is an issue that must be considered generallylogarithmic variance of the gold values in the other exam-
Multifractal modeling (e.g. use of multiplicative cascades) ple is approximately 1.03. Krige et al. (1960) do not re-
confirms the validity of several aspects of Matheron’s orig- port the corresponding mean value but the following statis-
inal approach. The multifractal autocorrelation function of tics can be derived from a relatively small data set of 61
Cheng and Agterberg (1996) has a sill as well as a nugget efgold values in Krige and Ueckermann (196@).X) = 906.6;
fect with exceptionally strong autocorrelation over very shorto? (X) = 1470410;u = 6.134; ands? =0.929. Substitu-
distances (cf. Sect. 4.2). tion of the latter two estimates into Eq. (2) yields new es-

. _ . 2 _ . ~
Agterberg (1965) estimated autocorrelation coefficientslimates ofu(X) =879.1;0°(X) = 1183972. In this ap
for the original de Wijs zinc data and obtained similar re- plication, the new estimates are probably better than those

sults for titanium data from adjoining borehole samples in ©Ptained from the original gold values without use of an ap-
a magnetite deposit, Los Angeles County, California, origi- ProPriate transformation. , _
nally described by Benson et al. (1962). Later in this paper, 1€ comparison of the Pulacayo zinc example with the

this example will be used for comparison with spectral anal-Whalesback copper and Witwatersrand gold examples illus-

ysis results for the de Wijs zinc data. Figure 6a (modifiedtrat_es that there are similaritigs in that the frequency distri-
from Agterberg, 1974, Fig. 56) shows average autocorrelaPutions of channel samples in all three examples are pos-
tion coefficients and best-fitting negative exponential func-tively skewed and approximately lognormal. Also, in all
tion derived from logarithmically transformed element con- three cases, the autoco_rrelatlon_ func’qon can be appromma_\ted
centration values for copper from the Whalesback copper dePY @ negative exponential function with value less than unity
posit, Newfoundland, and Fig. 6b and ¢ are for two relatively 2t th€ 0rigin indicating existence of a noise component su-
long series of gold assays from the Orange Free State Minet?erlmposed on.thg.spatlal random variable representing more
Witwatersrand goldfields, South Africa (data from Krige et continuous variability at larger distances. In Fig. 1 the noise
al., 1969). In these three examples, the negative exponenti&CmpPonent was filtered out to retain a “signal” with approxi-
function with significant noise component provides a good mately unity autocorrelation function value at the origin (cf.
fit. In each situation, there is finite variance (existence Ongterberg, 1974). The nugget effect can be modeled as ran-

sill) and a de Wijsian variogram can only be fitted for the dom noise at lag distances greater than 2m. However, as

copper and gold examples over relatively short distances (foP19inally realized by Matheron (1971), a nugget effect of

approximately the first six values from the origin in the three tiS type may reflect strong autocorrelation so close to the
examples of Fig. 6). origin that it cannot be seen in semivariograms or correl-

] ] ograms because its spatial extent is less than the sampling
A typical sample of 1090 copper concentration valueSinteryal used in practice. The frequency distribution of the
from the Whalesback deposit (cf. Agterberg, 1974, p. 301)py|acayo zinc example has less positive skewness than those
had mean value of 1.57% Cu and logarithmic variance ofof copper and gold in the other examples. Also, existence of

1.21. Substitution of these values into Eq. (2) yields- a sill is not obvious in the Pulacayo zinc example.
0.857 andr? (X) = 43.84. The positive skewness of the cop-

per concentration is so large that it is not possible to obtain

Nonlin. Processes Geophys., 19, 284; 2012 www.nonlin-processes-geophys.net/19/23/2012/



F. P. Agterberg: Sampling and analysis of chemical element concentration distribution 29

b
0 (a) 0s (b)

038 08

07

° \
05

Autocorrelation coefficient
Autocorrelation coefficient
o
o

0 5 10 15 20 25 0 2 4 6 8 10 12 14 16
Lag distance, m Lag distance, m
1

(©)
09

08
07

0,6

205

Autocorrelation coefficient
o
=
-
-

0 2 4 6 8 10 12 14 16
Lag distance, m

Fig. 6. Estimated autocorrelation coefficients (blue diamonds) and best-fitting negative exponential autocorrelation functions (red curves)
derived from logarithmically transformed element concentration val(@@sAverage of correlograms for 24 channel sample series from
drifts at various levels of Whalesback copper deposit, Newfoundland (after Agterberg, 973@ries of 462 gold assays from the Orange

Free State Mine, Witwatersrand goldfields, South Africa (modified from Krige et al., 1@§3)ther series of 540 gold assays from same

gold mine. In each diagram the fitted exponential (red line) intersects the vertical axis at a point with autocorrelation coefficient less than 1
indicating the existence of a nugget effect.

3 Geometrical probability modeling for model of de
Wijs A

Matheron (1962) showed that the semivariognah) in his L
extension of the model of de Wijs satisfies:

e

A’ h B’
where, as beforey is absolute dispersion. In principle, this
model also can be applied to untransformed data. The folrjy 7 Graphical illustration of relationship between effective
Igwmg applications of ge_ometncal probability are for loga- |ength (), and lag distance(.
rithmically transformed distance.

Suppose that A/BBB’ represents a rectangle with sides S . _ _
AA’=BB'=h, AB=A'B' =L and tar¥ = L/ h (Fig. 7). If along a straight line can be interpreted as an extension vari-
the concentration value for a small volume at a point is taker@Nceof = Bf (0) with B = 6a and:
to be the concentration value of another volume of rock that L h2
either contains the small volume or is located elsewhere, thisf (6) = —In———— + —tan 1= + S @
results in uncertainty expressed by means of the “extension VL2+h* L h L2 VL2+h?
variance”. In Matheron (1962, Sect. 39) or Agterberg (1974, Table 1 shows the first 10 Pulacayo Mine variogram values as
Sect. 10.11) it is discussed in detail that the variogram valueestimated by Matheron (1962, p. 180) using Eg. (4) for log-
of parallel line segments of lengihthat are distanck apart  transformed (base e) zinc values. For comparison, theoretical

y(h)=3a xInh 3)
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0,55 - 35
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Fig. 8. Straight line (red) for Pulacayo zinc values fitted by con-
strained least squares to 10 variogram values taken from Math
eron (1964). Horizontal axis is fof (9). Line was forced through
the point wheref (9) =0 andk = 0 (cf. Eq. 4). Its slopg = 0.0988
yields estimate of absolute dispersio@= 0.0165). Best-fitting line
without constraint (black), that is significantly different, is shown
for comparison.

Fig. 9. Relationship between normalized extension variararée (
andh/L.

assumed that the zinc concentration values can be converted
into measures of amounts of zinc in adjoining 2 m wide sam-
ples along a line parallel to the drift on the 446-level. It im-
plies that every zinc concentration value for a channel sample
variogram values for the exponential model (derived from at a point along this line is taken as representative for a width
autocorrelation model graphically shown in Fig. 5) are listed of 2 m. Associated uncertainty then is given by the extension
as well, illustrating that this model with a sill also provides variancesZ. Figure 9 shows that normalized extension vari-
a good fit. For other theoretical autocorrelation functions fit- anceoé/3a depends on/L . From our estimate = 0.0165,
ted to the Pulacayo zinc values, see Sect. 4.2 and Chen @tfollows thataé:o_OGZZ forh = 2 m wide samples that are
al. (2007). L =50cm long. It probably significantly overestimates true
Equation (4) resulted in multiple estimatesgah) for dif-  value because absolute dispersion is less than 0.0165 over
ferent lag distance#{ in Table 1. A better estimate is ob- very short distances due to the nugget effect (see later). If
tained by using constrained least squares estimation as fokr < 0.0165, the normalized extension variance is greater than
lows. The theoretical variogram values in the second last colvé =0.0622 as derived for the same valuehof. from the
umn of Table 1 are based on a single estimgte-(0.0988) curve in Fig. 9, that is for = 0.0165.
representing the slope of a line of best fit (Fig. 8) forced Matheron (1964) has shown that the average afijoin-
through the point wheref(9) and 2 =0. This additional  ing channel sample concentration values has variance equal
point receives relatively strong weight in the linear regressiontg Ué/n‘ This is another important result because, in Sec-
because it is distant from the cluster of the other 10 pointsjon 5, average values with equal to 3, 5, 7, and 9 will be
used. The constraint can be used because, for decrdasing ysed extensively. The extension varianée: 0.0622 is for
im /@) im L L4 {2 : —1L}+ logarithmically transformed zinc concentration values. As
Im =—IMi{iN———j+ lIm { —1an ~—- discussed in Sect. 2.2, it can be assumed that the zinc val-
"0 =0 L2+hz =0 L h ues (X; with i =1,...,118) for the original channel samples
lim {———=}=0 (5)  systematically underestimate zinc values for the massive sul-
h=0 /L2 h? phide (Fig. 4). By setting? =02 andu(X) = X; in Eq. (2),
The new estimate of absolute dispersior- 8/6 =0.0165 it is possible to estimate the varianee¥ X;) of the original
not only produces theoretical variogram values, which arezinc values. These variances can then be used to calculate
nearly equal to the estimates based on the logarithmicallyapproximate 95 % confidence limits for zinc concentration
transformed zinc values, it also is nearly equakte 0.015  values of 1.3 mx 2m plates formed by extending the 1.3 m
previously derived from the logarithmic variance in the previ- long channel samples by 1 m on both sides. Table 2 shows
ous section, confirming the applicability of Matheron’s orig- £1.960 (X;) error bars for 11 original zinc values and for
inal method within a neighbourhood extending from aboutaverages of adjacent values for wider plates at the same lo-
2mto 400 m. cations. These sets of overlapping plates, that are 20 m apatrt,
Matheron’s geometrical approach can be used for severalvere selected for example so that both low and high zinc
other purposes. For example, in applications of multifrac-concentrations are represented. The error bars in Table 2
tal modeling to the Pulacayo Mine (Cheng and Agterberg,for plates wider than 2m are relatively narrow. Uncertainty
1996; Chen et al., 2007; Lovejoy and Schertzer, 2007), it isis greatest for the 1.3m 2m plates but this is probably
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becausex = 0.0165 is underestimated over very short dis- oo
tances resulting in error bars that are too wide (see previ- oo
ous paragraph). The problem of overestimation of extension
variances of average element concentration values for small
plates due to local strong autocorrelation was previously con=
sidered by Matheron (1989, p. 73-75) as follows. Ten profes-
sional geostatisticians were provided with a set of variogramg °*
values with unit of lag distance equal to 180 m. Indepen-E 0008
dently the participants in this experiment were asked to (a) fit oo
a variogram, and (b) calculate the corresponding extension
variance for a square plate measuring 180 m on a side. Each
variogram fitted by a participant had a nugget effect, with, in o o5 o1 05 02 0z 03 03 04 045 05
addition, an exponential or (third-order polynomial) “spheri- Fifecive Channel Sample Length (. m
gal” variogram .curve. .The corresponding averggg of j[en esT:ig. 10. Constrained least squares estimatiorgdor L =0.5m
timated extension variances was 0.4810.0127 indicating  (see Fig. 8) repeated for effective channel sample lengths less than
excellent agreement between participants. Next, the samg.5m. variogram and autocorrelation functions fitted for distances
10 people were provided with additional variogram values, ~ 2 m, where absolute dispersiomis= 0.0165, lose validity over
for shorter unit lag distance interval of 20 m. Again they were shorter distances due to the nugget effect, that results in a decrease
asked (a) fit a variogram, and (b) calculate the correspondingn Matheron'se, especially wherL < 0.03m. At the microscopic
extension of the 180 m 180 m square plate. The variogram scale { <0.003m, cf. Fig. 3)x can be expected to increase rapidly
models used during the second stage of the experiment wer@gain.
“richer” becoming either: nugget + spherical + spherical, or
nugget + exponential + spherical, or nugget + exponential +4 Nugget effect and local singularity analysis
exponential. A few other answers were given as well. The
revised average extension variance became 0.2686062. 4.1 Strong autocorrelation and decorrelation over very
Clearly this revised estimate of the extension variance is less  short distances
than the first estimate and outside the 95 % confidence of the
first estimate. Similar results were obtained during a thirdin Sect. 2, it was pointed out that there is uncertainty as-
stage of this experiment using an even shorter unit lag dissociated with the definition of effective length=0.5m of
tance. the channel samples in the Pulacayo Mine. This is because
The preceding experiment illustrates (a) different vari- these samples were taken across entire wigtth.80 m) of
ogram models applied to the same data sets can produce sirdrift whereas Tajo vein has (horizontally measured) thick-
ilar estimates of extension variances; and (b) extension variness of 0.50 m on the 446-m level. This thickness value was
ance estimates are too large if there is a “nugget effect” incorused by Matheron and earlier in this paper as a best esti-
porating strong autocorrelation over very short distances. Irmate of L. It has been shown that the choice b= 0.5
the remainder of this paper it will be attempted to model thisresults in estimates of that are satisfactory for lag distances
type of nugget effect by (a) extrapolation from the original greater than 2m (up to 400 m). For shorter lag distances,
variogram values, (b) multifractal modeling, and (c) spectralhowever, it is useful to generalize Matheron’s concept of ab-
analysis. The Pulacayo zinc example will be re-analyzedsolute dispersion by defining(L), which depends on the
Because this series is based on 118 values only, the estimatedlue of L. Consequentlyy = «(0.5) for the applications
autocorrelation (or variogram) values have limited precisiondescribed in Sect. 3. Theoretically, the method used to es-
as previously shown by Agterberg (1965, 1967). For this reatimate 8(0.5) = 6«(0.5) in Fig. 8 can be used to optimize
son, autocorrelation for a very large data set was studied asur choice ofL. Figure 10 shows estimates @{L) that
well. II will be shown that there is a nugget effect in cop- would be obtained for effective channel sample lengths less
per concentration values from along the deep KTB boreholeghan 0.5 m. Fol > 3 cm,a(L) increases slightly from about
with short-distance extent that is similar in consecutive serie€.01 to 0.0165 al. =0.5m; for L < 0.03m, there is rapid
of 1000, 1000 and 796 values, respectively. decrease ta(L) =0. Figure 11 shows sum of squared de-
viations from lines of best fit for different values af The
optimum solution ¢(L) = 0.021) is obtained at =13 cm.
The de Wijsian variogram model that best fits the 10 ob-
served values of Table 1 is for linear samples that are not only
shorter than the channel samples on which zinc concentration
was measured(= 1.3 m) but also shorter than the thickness
of the Tajo vein £ =0.5m). This results probably reflects
small-scale clustering of the chalcopyrite crystals. It should

0,014

0,012

0,01

0,002
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Table 2. Zinc concentration values (in %) with 95 % confidence intervals for thin plates elongated in the direction of themining drift with
channel samples at their centers. Results are shown for every 10th value in the original seriesof 118 Pulacayo zinc values. Error bars for
1.3mx 2 m are too wide because small-scale spatial correlationis not being considered.

Plate size 1.3mx2m 13mx6m 13mx10m 13mx14m 1.3mx18m

#10 24.1+£122  19.9+56 19.4+ 4.2 17.5£3.2 17.0£ 28
#20 151477 13.8+39 14.0+£31 13.3+24 13.2+21
#30 9.5+4.8 12.1+34 15.2+33 13.2+24 14.7+2.4
#40 10.6:5.4 15.6+4.4 17.0£3.7 15.5£29 142+ 23
#50 27.4£139 18.6+£5.3 17.4+38 17.4+32 17.2+2.8

#60 47+24 9.0+ 25 8.7+19 8.1+15 9.0+ 15
#70 9.7£4.9 9.2+ 2.6 10.5£23 10.3£1.9 10.2+1.6
#80 10.6:54 111432 10.8+2.3 9.3+17 9.6+ 1.6

#90 30.8£156 31.6£9.0 30.8+6.7 30.7£5.7 29.2+4.7
#100 22.6:115 16.4+4.6 18.6+4.1 20.8+3.8 21.4+35
#110 7.9£4.0 17.8+£50 17.2+38 15.9+29 14.6+24

be kept in mind that this conclusion remains subject to uncer- oo
tainty because of limited precision of the variogram values

of Table 1. Also, anisotropy may have played a role because, o«
zinc concentration value variability perpendicular to the Tajo £
vein could well differ from variability parallel to the vein. 3
However, the best explanation is that over short lag distance
h (e.g. within the domain 0.003m & < 2m) there exists a
strong nugget effect that is not readily detectable at distance
of h>2m. At the microscopic level we would expectto H
increase rapidly again, because of measurement errors arid
the fact that the zinc occurs in sphalerite crystals only (cf.
Fig. 3). The crystal boundary effect may have become negli- ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
gibly small in our application because channel sample length  °© °» o1 O'Elfiecuveiianne@;me|e:;1h (L)f’f 04 o 05
greatly exceeded crystal dimensions.

The _precedmg cons_|derat|on_s imply _that the negative eX'Fig. 11. Sum of squared deviations from lines of best fit as a func-
ponential autocorrelation function previously used (see €.0ion of Matheron'se and linear sample length. The rapid in-
Fig. 5) is too simple for short distancés{ 2m). The true  crease of this function nedr= 0 probably reflects randomness at
pattern is probably close to that shown in Fig. 12, which dif- the microscopic scale plus white noise due to measurement errors.
fers from the earlier model in that strong autocorrelation is Optimum effective channel sample width £ 0.13m) is based on
assumed to exist over very short distances. It is probablyariogram values with limited precision for the 2 to 20m neigh-
caused by clustering of ore crystals, although at the microourhood. Because of this, this estimate is subject to uncertainty. It
scopic scale there remains rapid decorrelation related to med&ould reflect the fact that the Tajo vein was formed by crystallization

surement errors and crystal shapes. The graph in Fig 123f ore minerals outward from a narrow fissure in the surrounding
satisfies the equation: ' " " sandstone and conglomerates (cf. Fig. 2).

+cpe 2" (6)

o
9
N
3

0,026

deviat{#ns from €Bgressio
°
)

Matheron Alpha at Minimum = 0.0131

p(h) =cre™ "
The coefficients in the first term arg = 0.5157 and  assume that, approximatehg = 2. The choice of this value

a1 =0.1892 as in Fig. 5. The second term represents thdor a, provides a good fit over the entire observed correlo-
strong autocorrelation due to clustering over very short dis-gram (Fig. 5). It affects extrapolation toward the origin with
tances. The decorrelation at microscopic scale is representdd< 2 m only. Figure 12b shows that the second term on the
by a small white noise component with variance equal toright side of Eq. (6) cannot be detected in the correlogram
co=0.0208 as will be determined in Sect. 4.4. The coeffi- for sampling intervals greater than 2m. Other types of evi-
cientcp in the second term on the right side of Eq. (6) satisfiesdence for existence of strong autocorrelation over very short
c2=1—co—c1=0.4635. Because of lack of more detailed distances in the Pulacayo orebody will be presented in later
information on autocorrelation over very short distances, itisSects. (4.2, 5.2, and 6.3, respectively). In the Sect. 4.2, a mul-
difficult to choose a good value for the coefficieat We can tifractal autocorrelation function will be derived on the basis

Nonlin. Processes Geophys., 19, 284; 2012 www.nonlin-processes-geophys.net/19/23/2012/



T

. P. Agterberg: Sampling and analysis of chemical element concentration distribution 33

0s P (&) =

ceT@-2 £2
o7 Gk DTDFL_pt@D+L  p _yT@HL S 7
) [e+D +k—17@+] 25 0

whereC is a constantg represents length of line segment

Autocorrelation coefficient (Rho)
o
«

o4 for which an average zinc concentration value is assumed to
03 be representative,(2) is the second-order mass exponént,
02 represents overall mean concentration value «e) is the
o1 variance of the zinc concentration values. The unit interval
. is measured in the same direction as the lag distandéhe
o ° 1 Lagdijame_m % ® % index k is an integer value, that later in this section will be
o transformed into a measure of distance by mears-0¥/h.

Estimation for the 118 Pulacayo zinc values using an ordi-
nary least squares model witti2) = 0.979 gave (see Cheng
1 and Agterberg, Eq. 35):

pr=437[(k+ DM 24 (k- )M 800 (8)

Ln Rho
&

251 The first 15 valuesk(> 1) resulting from Eq. (8) are nearly

3] the same as the best-fitting semi-exponential previously
shown in Figs. 6 and 12. The model can be extrapolated to-
ward the origin by replacing the second-order difference on
"‘ the right side of Eq. (7) by the second derivative:

0 5 10 15 20 25 30
Lag distance, m

(k+1)1(2)+1_2k1'(2)+1+(k_1)1’(2)+1] ;{ (2)_'_1}](1'(2)71 (9)
Fig. 12. Hypothetical autocorrelation function consisting of two
negative exponential functions to incorporate nugget effect overLinear regression of the second derivative f¢2) = 0.979
short lag distances with = <2m. Autocorrelation function for  on estimated values obtained by means of Eg. (8) then re-
nugget effect is superimposed on negative exponential curve for dissults in the straight-line approximation shown in Fig. 13.
tanceg: > 2m previously used to filter out the nugget effectin order Although the largest estimated value of that could be ob-
to r.etain “sigqal" of Fig. 1:.(a) Graph of Eq. (17)(b). Same graph  tzined by Eq. (8) is only 0.487 (fdr= 1), it becomes pos-
as in(a) but with logarithmic scale for autocorrelation (Rho). sible to extrapolate toward smaller valuesiok 1 h, S0
that larger autocorrelation coefficients are obtained, by using
the second derivative on the right side of Eq. (9) instead of

of self-similarity assumptions. It results in a curve (Fig. 14) ; . .

. the second-order difference. The theoretical autocorrelation
h les th Eq. B 2). F - ) S . :
that resembles the one based on Eq. (6) (witk 2). For ex function shown in Fig. 14 was derived by transformation of

ample, for lag distance equal to 60 cm, the theoretical value : : . .
according to Fig. 12a is 0.6, while Fig. 14 yields 0.7. the straight line of Fig. 13 for lag distances withk> 0.014 m.

For integer values (% k < 15), the curve of Fig. 14 repro-

4.2 Theoretical multifractal autocorrelation function duces the estimated autocorrelation coefficients obtained by
Eqg. (8). Using it for extrapolating toward the origin results

Cheng and Agterberg (1996) have shown that the series of an overall pattern that closely resembles the hypothetical

118 Pulacayo zinc values can be modeled as a multifractapattern of Fig. 12a consisting of two superimposed negative

with “partition function” x, (¢) (cf. Evertsz and Mandelbrot, exponentials with a small white noise component. Conse-

1992) for a sequence of “momentg”and line segments of quently, the multifractal autocorrelation model of Cheng and

lengthe. The unit ofe was set equal to the sampling inter- Agterberg (1996), which is based on the assumption of scale-

val (=2m). The log-log plot ofy,(¢) versusg shows ap- independence, confirms the existence of strong autocorrela-

proximately straight lines for different values gf(Cheng  tion over short distance# (< 2m).

and Agterberg, 1996, Fig. 2a). The slopes of these straight ) ) _ )

lines provide estimates of the “mass exponentg), which 4.3 Comparlson _to spatial covariance modeling of KTB

can be used to construct the multifractal spectrum (cf. Feder, ~ Velocity and lithology logs

1988). Cheng and Agterberg (1996) derived the followingA : . functi isti f tw . d
expression for the autocorrelation function of a multifractal N autocovariance function consisting ot two superimpose
of this type: negative exponentials with different scaling constants origi-

nally was obtained by Goff and Holliger (1999) for binary
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Fig. 13. Relation between estimated autocorrelation coefficientsFig. 15. Copper concentration (ppm) values from Main KTB bore-
(blue diamonds) and second derivative of corresponding continuhole together with mean values for 101 m long segments of drill-
ous function (Eq. 9). Best-fitting straight line (colored red) will be core. Locally the original data (blue diamonds) deviate strongly
used for extrapolation to the origin (see Fig. 14). from the moving average (pink line).

le profile for which the spatial covariance in (km'$? was
estimated. The two rock types retained in the binary plot
are mainly metabasité/, = +0.2 km s 1) and mainly gneiss
(V,=-0.2kms™).

The von Karman autocovariance model has been used ex-
tensively to characterize crustal heterogeneity properties not
only for velocity log properties (e.g. Wu and Aki, 1985; Wu
et al., 1994; Goff and Hollinger, 1999, 2003) but also for
geological maps of crustal exposures (e.g. Goff et al., 1994;
Goff and Levander, 1996), seafloor morphology (Goff and
0 s 10 M » = M Jordan, 1988), and in field simulations (Goff and Jennings,
pistance. m 1999). This model was first proposed by voaritan (1948)

: i . . . . and can be written as:
Fig. 14. Theoretical multifractal autocorrelation function derived
_ (ah)"K,(ah)

by using the best-fitting straight line in Fig. 13. For lag distances
h >2m, autocorrelation coefficients approximately satisfy Eq. (9); p(h) = 2>-1(v)
for h <2 m, the model indicates a nugget effect with shape of auto-
correlation function resembling hypothetical curve of Fig. 12. where v is the Hurst number (cf. Mandelbrot, 1983;
Chemingui, 2001; Klimg, 2002), andX, is the modified
Bessel function of order. Fitting of the two-parameter von
lithology values derived from velocity and lithology logs for Karman model to an estimated covariance function can be
the main borehole of the German Continental deep Drillingperformed using the inversion methodology of Goff and Jor-
Program (KTB). In our Fig. 1231 = 0.1892 for larger scale dan (1988). Ifv = 0.5, Eq. (10) reduces (k) = exp(—ah).
variability anda, = 2 was assumed for nugget effect. In Goff and Hollinger’s (1999) best Eq. (10) voraikkran model
Goff and Holliger’s Fig. 7,21 =0.001 for the “large scale” fit for the KTB binary residualV, profile hasy =0.21 and
andas = 0.019 for the “small scale” model. The dimension- a =0.00072. However, a better fit for the autocovariance of
less ratioaz/a; for KTB binary lithology is 19 and some- this series was obtained by these authors using Eq. (6) with
what greater than our ratio of 11 in Fig. 12. Lithology in ¢g=0, ¢1 =0.684,¢c2 =0.316,a1 = 0.001 anda; = 0.019.
the main KTB borehole was determined at points that areThe Hurst numbers for both negative exponentials are equal
1m apart over a length of about 7km. In general, signifi-to 0.5, more than twice the Hurst number of best fit using
cant pre-processing is required for the analysis of long se£q. (10).
ries of this type. Goff and Hollinger (1999) commenced this Because the series considered in the preceding paragraphs
process by plotting raw compressional veloci¥, { aver-  is binary, it is possible to interpret the scaling constants
aged within more or less homogeneous lithological sectiong/ = 1, 2) as follows (cf. Jenkins and Watts, 1968; Agterberg,
against depth. A deterministic component derived from this1974). Suppose the two binary states along the borehole are
plot was extracted for the purpose of detrending followedwritten as +1 and-1. If the mean can be set equal to zero,
by conversion of the lithology log into a binary residug) the autocorrelatiop (k) is equal to the sum of the probability

o oS
° S

Autocorrelation coefficient
°
@

(10)
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0 4.4 Detection of nugget effect in copper determinations
from the KTB borehole

The second example is for a long series consisting of 2796
copper (XRF) concentration values for cutting samples taken
at 2m intervals along the Main KTB borehole already dis-
cussed in the previous section. These data are in the public
domain (citation: KTB, WG Geochemistry). Depths of first
and last cuttings used for this series are 8 m and 5596 m, re-
spectively. Locally, in the database, results are reported for
a 1-m sampling interval; then, alternate copper values at the
o M 100 150 200 250 300 standard 2 m interval were included in the series used for ex-
bag distance. m ample. Most values are shown in Fig. 15 together with a
101-point average representing consecutive 202-m long seg-

Fig. 16. Correlograms for three consecutive series of copper con- . L -
centration (ppm) values from Main KTB borehole. Series 2 (for ments of drill-core. The data set was divided into three se-

depths between 2 and 4 km) and Series 3 (for depths between 4 adé€S (1, 2 and 3) with 1000, 1000 and 796 values, respec-
5.54 km) show similar autocorrelation functions that differ from au- tively. Mean copper values for these three series are 37.8,

tocorrelation function for Series 1 (for depths between 0.05 km and33.7 and 39.9 ppm Cu, and corresponding standard devia-
2 km). tions are 20.3, 11.0 and 20.6 ppm Cu, respectively. Fig. 16

shows correlograms of the three series. Each series shows a

nugget effect that, for series 2 and 3, is accompanied by a rel-
that number of state changes over the intekvialeven minus  atively steeply increasing curve near the origin. Because the
the sum of the probability that it is odd. Fy represents the  autocorrelation coefficients are logarithmically transformed,
Poisson-type probability that there exisstate changes over random fluctuations for near-zero autocorrelation values are

Series 2

h: amplified. It is noted, however, that all three series only had
) e )k positive autocorrelations for the first 150 lag distances. Also,
p(h) = Z(sz —Pop_1); Pr= - (1)) the patterns for series 2 and 3 are strikingly similar.
k=0 ) It can be expected that series of element concentrations

over a vertical distance of about 5.5km will exhibit deter-
ministic trends reflecting systematic changes in rock com-
p(h)y=e"2" (12) positions. It is assumed here that these trends are largely
captured by the moving average curve of Fig. 15. Figure 17
shows autocorrelation coefficients for the three series after
. subtracting the trend values from the original data. All three
For the Goff-Hollinger KTB example, the fact that there series of deviations have autocorrelation functions that are

arr1e twglseparate nhegatlve exporjgnltililsllllustra;es that, over, ) ovimately negative exponential in shape over distances
f’ ort |stanc?s, _t ere are rapid lithology changes or ggqqihan 10 m. Each can be regarded as representing a nugget
nugget effect” fori = 2, but changes at larger scale are con-

i - X effect with equatiom;, = cexp(—ah) . The slope coefficients
trolled by the other negative exponential=(1) function. ot the three curves are nearly equal to one another (0.40,
Thus alternation between mostly metabasite and mostly feIO_38 and 0.41 for series 1, 2 and 3, respectively). The spatial

sic gneisses in KTB is subject to two separate random prog,ent of this nugget effect is much less than the small scale

cesses. Th('e.alternation either has_ high or lOW, frequenc;binary lithology variation for the same borehole discussed in
W't.h probabilities co_ntrolled by th_e,- (=12 c_oefﬁmen?s. Sect. 4.3. It is interesting that the parameter that deter-
This type of modeling only applies to the binary residual o4 the spatial extent of the nugget effect remains the same
V), profile for KTB. For example, Marsan and Bean (1999, ;e 4 vertical distance of nearly 6 km. The corresponding

2003) have. demonstrated that the KTB sonic qu can b(?/ariance components)of the copper nugget effect are 0.46,
modeled using a multifractal approach. Also, Hollinger and 0.82 and 0.81, indicating that the white noise component is
Goff (2003) have developed a generic model for thg Aa- relatively strong for series 1.

ture of seismic velocity fluctuations. In that paper, these au- Quantitative modeling of the nugget effect in KTB cop-

;cjh(irs rgogeled_thle al#]ocovirltz?]nce funct|on_t_of K-If-? depth'per determinations has yielded better results than could be
etrended sonic log throug € SUpErposition Of Tour Von,y,ined for our examples from mineral deposits including

Karman autocovariances using neg_ative exppnential; Wiﬂ}he Pulacayo Mine. This is not only because the series of

Hurlst ngr:b_eg&g; ?.Stl;or Iarg(ﬁ, meldlum, and intermediate .o mica determinations is much longer but also because the

scales bub=1.95 for tne smatl scale. nugget effect remains clearly visible over lag distances be-
tween 2 m & original sampling interval) and 10 m.

After some manipulation, it follows that

wherea is number of state changes per unit of distance. A
similar result is obtained when the mean is not equal to zero
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0 u{B(¢e)} represents amount of metal, afds the Euclidean
\ dimension of the sampling space. For our 1-dimensional Pu-
lacayo exampleE = 1; and, fore =1, B, extends/2=1m
in two directions from each of the 118 points along the line
parallel to the mining drift. Suppose that average concentra-
tion valuesp{B,(¢)} are also obtained far=3, 5, 7 and 9,
2 y=-02012038% by enlargingB, on both sides. The yardstickscan be nor-
malized by dividing the average concentration values by their
largest length£9). Reflection of the series of 118 points
around its first and last points can be performed to acquire
approximate average values @fB, ( ¢)} at the first and last
0 : ! . . 10 w2 4 points of the series. Provided that the model of Eq. (13) is
bea distance. m valid, a straight line fitted by least squares to the 5 values of
Fig. 17. Correlograms (first 5 lag distances only) for three series ofIn 1+{Bx(¢)} againser(x)In ¢ then prov@es estlmates of both
differences between original copper concentration values and mealf) ¢(x) anda (x) at each (_)f the 118 p_omts. Estlmate':“c();f) )
values shown in Fig. 15. Results are for same series as used f@Nda(x) are shown in Fig. 18 (red line) and Fig. 20 (Series
Fig. 16 (Series 1: green; Series 2: black; Series 3: red). Best-fittingl), respectively. These results of ordinary local singularity
semi-exponentials were obtained by ordinary least squares methothapping duplicate estimates previously obtained by Chen et
(Logarithms base 10). The slopes of the three best-fitting straigh@l. (2007) who proposed an iterative algorithm to obtain im-
lines are nearly equal. This indicates existence of a nugget effecproved estimates. Their rationale for this was as follows.
with same spatial extent along the entire Main KTB borehole. In general,o{B,( ¢)} is an average value of element con-
centration values for smallét’s at points neax with differ-
ent local singularities. Consequently, use of Eq. (13) would
produce biased estimates «(ft) anda(x). How could we
obtain estimates of(x) that are non-singular in that they
are not affected by the differences between local singularities

Cheng (1999, 2005) has proposed a new model for incorpoWithin B,? Chen et al. (2007) proposed to replace Eg. (13)
rating spatial association and singularity in interpolation of bY:
exploratory data. In his approach geochemical or other data (x) = ¢* (x)e* £ (14)
collected at sampling po_mts within a;tudy area are subjecte(\jNherea* (x) andc* (x) are the optimum singularity index
to two treatments. The first of these is to construct a contour, - . oo :
- . ._and local coefficient, respectively. The initial crude estimate
map by any of the methods such as kriging or inverse dIS-C(x) obtained by Eq. (13) at stép=1 is refined repeatedly
tance weighting techniques generally used for this PUrPOSE, ' . the iterativé rocedure:
Secondly, the same data are subjected to local singularityy 9 P '
mapping. The local singularity then is used to enhance ck—1(x)=cx(x)e®~F (15)
the contour map by multiplication of the contour value by Equation (15) is similar to Eq. (3) of Chen et al. (2007).
the factors*~2 wheree < 1 represents a length measure. A Employing the previous least squares fitting procedure at
note on notation is in order at this point. In this paper, Math-each step resulted in the valuescfx) shown in Fig. 18
eron’s absolute dispersion is written as italicsingularity  for the first and fourth step of the iterative process, and for
as normalr and, later in this paper, bold italie will de-  x = 1000 after convergence has been reached. Our values
note Levy index. In Cheng's (2005) approach to predictive for the first four steps of the iterative process exactly dupli-
mapping, the factor* 2 is greater than 1 in places where cated Chen et al. (2007)'s values plotted in their Fig. 1 and
there has been local element enrichment or by a factor lesgartially listed in their Table 1 except for the first and last
than 1 where there has been local depletion. Local singularg valyes in all successive series because a slightly different
ity mapping can be useful for the detection of geochemicalend correction was employed (see before).#=erl, the pat-
anomalies characterized by local enrichment even if contoutern of ¢, (x) resembles the signal in our Fig. 1 that was ob-

maps for representing average variability are not constructegqined previously by eliminating the noise component from

-05

3: y=-0.2092-0.4073x
-25

5 Local singularity analysis

5.1 Basic concepts of singularity analysis

(cf. Cheng and Agterberg, 2009; Zuo et al., 2009). ~ the 118 zinc values. Chen et al. (2007) selectedx) = ay
According to Chen et al. (2007) local scaling behaviour () because at this point the rate of convergence has slowed
follows the following power-law relationship: down considerably.
B . . Lo . .
p{Be(e)} = ME@)} =c(x)e*™~E (13) 5.2 Extension of local singularity iteration algorithm
S

where p{B,(g)} represents element concentration value de-For this paper, the iterative process was continued until ap-
termined on a neighbourhood size measBgeat point x, proximately full convergence was reached in order to obtain
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Fig. 18. Results of applying iterative method of Chen et al. (2007) augmented by continuing iteration process until full convergence is

reached. Original zinc values (blue) are being smoothed during successive iterations. Second series (red line) obtained after first iteration
resembles “signal” in Fig. 1. Values obtained after 4 iterations are shown as black diamonds. At the end of the process, after 1000 iterations
when convergence has been reached, the result is approximately a straight line (brown diamonds) with average value slightly below average

zinc content£ 15.61 % Zn).

30

Distance, m

Fig. 19. Same as Fig. 18 but iterative process was constrained to preserve average zinc value of 15.61 %. Result after 4kterafitns (
same as in Fig. 18 but result after 1000 iteraticns: (LO0O) is slightly different. Intermediate steps foe 10 and 100 are also shown.

more complete information on the nugget effect. In the limit, comparison with Fig. 18, the output for series obtained af-
after about 1000 iterations, the final pattern is as shownter the first and fourth step of the iterative process remains
in Fig. 18 with an average value that is slightly less thanunchanged. There is a very small difference in results for
15.61 % Zn representing the average of the 118 input val« = 1000. This confirms that in local singularity analysis it
ues. This bias is due to the fact that, at each step of thés generally permitted to neglect bias introduced by logarith-
iterative process, straight-line fitting is being applied to log- mic transformation of variables. In Sect. 3 it was mentioned
arithmically transformed variables and results are convertedhat the variance of values used in least squares straight line
back to original data scale. The small bias can be avoideditting ranges frormé =0.0622 tOoé/Q: 0.0069 at the be-

by forcing the mean to remain equal to 15.61 % during all ginning of the iterative process, and these variances remain
steps of the iterative process. End product and some invery small at later steps. Estimated singularitiesier 1,
termediate steps of this new run are shown in Fig. 19. In4 and 1000 are shown in Fig. 20. The resultsiet 1 and
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Fig. 20. Estimated singularities for iterative process wita: 1 (green diamonds of Series &)=5 (black squares of Series 2)ahe- 1000
(red triangles of Series 3). Final singularitiés= 1000) differ only slightly from local singularities estimated by means of Eq. (A ).
Except near beginning and end (locations 1-4 and 115-118) results are identical to estimates of Chen et al. (2087)0G@roriginal
iterative process of Fig. 18 and modified process of Fig. 19 gave the same final singularities.

k =4 duplicate the results previously obtained by Chen et 44
al. (2007).

Full convergence singularitie £ 1000) are significantly 18
different from local singularities and results foe= 4 differ
in two neighbourhoods along the Tajo vein (approximately
from sampling point positions 60 to 75, and 90 to 100, re-
spectively). In Fig. 21, final singularities are plotted against
original zinc concentration values showing a logarithmic
curve pattern. In Fig. 22 a straight line of least squares was
fitted for final singularity versus lag (%Zn) with the resid-
uals (deviations from this best fitting line) shown separately  og

14

1,2

singularity

"Final
o
o

—
in Fig. 23. The residuals exhibit a white noise pattern with Y =-0.4832Ln(x) + 2.3296
variance equal to 0.001178. Using original zinc values, the %4 . o a0 w0 0 %
variance of residuals is estimated to be 1.3837. Because % Zlnc concentration value (%)

Zn variance is 64.13, it follows that the white noise compo-
nent is 0.02079. This is only about 4 per cent of the varianceFig. 21. Relationship between final singularity and zinc concentra-
of the noise component previously used to construct the sigtion value is logarithmic. Final singularities (blue diamonds) are
nal of Fig. 1. The new sampling error could be a measure-same as those for Series 3 in Fig. 20. Logarithmic curve (red line)
ment error of the original chemical determinations for zinc Was fitted by least squares.

and incorporate the crystal boundary effect (Sect. 4.1). For
our example, incorporation of the nugget effect to estimate,
zinc content (e.g. by using the theoretical values on the curv

fitted in Fig. 21), approximately reproduces the observed val . X T
ues. This in itself is a trivial result. However, the example Thgse VaEJiSGSEJ,e obrlly_ Sl'c?htly dlffgrentlfsroaml.n N 0'59C1:h
illustrates that, in general, any of the moving average tech—%? a(lxm:z(o_(ﬂ. Tabl(:a f)'ne Tf?:;/n%iﬁgl’. r(nor)e(itsrgnsg?; fronewn
niques, e.g. those commonly used to construct contour ma " ' : ;

g g y b min = 0.835 andymnax = 1.402 derived by Cheng and Agter-

from measurements at points outside the sphere of influenc . ) . X

of the nugget effect (Cfl? Fig. 12), can be irr)nproved by in- erg (_1996) on the basis of the _blnom;athodelfltted to the

corporating information on local singularities as originally 118 zinc values. The newly denved_val_ueg,@ =0.547 and_ .

proposed by Cheng (2005). max = 1.7_19) are probably better indicating that the origi-
Local singularity is associated with variability over very ngkélnlgimlzlg) Eult:;rg;:ﬁl ?gsc;]t;:gvf/Cheng and Agterberg,

short distances or “nugget effect”. Singularities less than » F19- P y ’

1 signify local Zn enrichment whereas singularities greater

han 1 indicate depletion. Minimum and maximum sin-
gularities areamin = 0.547 andoemax=1.719, respectively.
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Local Singularity Fig. 23. Residuals from straight line of Fig. 22 show white noise
pattern with variance equal to 0.00118.

Fig. 22. Final singularity (black diamonds) plotted againstjlg6
Zn) is according to straight line (red) fitted by least squares. o7

0,6 1

6 Multifractal modeling and spectral analysis

o
2]

6.1 Binomial/p model

o
=

Theory of the binomialf model is presented in textbooks in-
cluding Feder (1988), Evertsz and Mandelbrot (1992), Man-
delbrot (1999) and Falconer (2003). There have been numer%o,z,
ous successful applications of this relatively simple model
including many to solve solid Earth problems (e.g. Cheng, °*|
1994; Cheng and Agterberg, 1996; Agterberg, 2007; Xie et
al., 2007; Cheng, 2008). Although various departures from ¢ 4 12 1 08 08 04 02
the model have been described in these papers and elsewhere, Lo Freuency

the binomialp model basically is characterized by a single Fig. 24. Relative power spectrum for autocorrelation function

parameter. In the original model of de Wijs (1951), this pa- shown in Fig. 12. Decrease in slope at higher frequency side is
rameter is the dispersion index In the Introduction itwas  caused by the nugget effect (Logarithms base 10).

discussed that the absolute dispersion of Matheron satisfies
a = (Inn)2/In16, andy = (1+d)/(1—d). When the param-
eterp is used, we havg = 0.5(1—d). The multifractal spec-
trum of this model has its maximupfi@) =1 (for E=1)at  ,qinaie differs not only fromymax= 1.719 derived in this

@=1,andf(x)=0at paper, it also is less than the estimatga= 1.402 on the

- ) __ right side of the multifractal spectrum in Cheng and Agter-
@min =108(1= p): amax 10827 (16) berg (1996). The estimate=0.121 is much too small. Us-

ing absolute values of differences between successive values,

Another parameter that can be used to characterize thde Wijs (1951) had already deriveti=0.205 resulting in
binomiallp model is the second order mass expong@j = Matheron’sae = 0.0208, and this is close 0= 0.0195 de-
—log, {p?+ (1— p)3}. If the binomialpp model is satisfied, rived on the basis of Fig. 10 in this paper. Use of any of the
anyone of the parameteps d, «, 7(2), &min , max Of o2 (In estimates ofvmin Or amax Obtained in the preceding section
x) can be used for characterization. Using different param-would result in estimates af that are much too large; e.qg.
eters is helpful in finding significant departures from model the full convergence local singularities would yiele= 0.369
validity. andd = 0.392, respectively. Clearly, the binomjalmodel

In the preceding section it was noted that estimates otas limited range of applicability although it shows linear
amin and amax derived for the Pulacayo orebody in Chen patterns for different momentg) on the log-log plot of par-
et al. (2007) and in this paper differ greatly from previous tition function versug when the multifractal spectrum is de-
estimates based on the binomjathodel. However, Fig. 3 rived. The preceding inconsistencies suggest that a more
in Cheng and Agterberg (1996) illustrates that this modelflexible model with additional parameters should be used.
provides excellent fit with 95% confidence interval equal The “universal multifractal model” with three parameters
to t(2) =0.9794+0.038. From this result it would follow was initially developed during the late 1990s by Schertzer

elative Power Density
o
@

thatd =0.121,amin = 0.835, andymax=1.186. The latter
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and Lovejoy (1991). Lovejoy and Schertzer (2007) have suc- s
cessfully applied this model to the 118 Pulacayo zinc values
as will be discussed in the next section.

1

¥ = 0.1969x* - 1.1827x + 1.1749

o
@

6.2 Universal multifractal modeling

ower Density
o

Figure 3a in Lovejoy and Schertzer (2007) shows a realis-£
tic universal multifractal simulation for the Pulacayo ore- = s
body using the following three parameters:évy index
« = 1.8, codimensionC; = 0.03 and deviation from con-
servation H = 0.090. Their approach is explained in de-
tail and illustrated by means of other applications in a e 02 o4 05 08 1 1214 18 18 2
large number of publications including Lovejoy, Gaonac'h, rog Foston fumber

and Schertger (2008), Lovejoy et al. (2001)’_ Schertzer anq:ig. 25. Periodogram (black diamonds) of 118 zinc values with
Lovejoy (editors, 1991), Schertzer and Lovejoy (1996) andquadratic curve (red curve) fitted by least squares (Logarithms base

Schertzer et al. (1997). The codimensioin, which char-  10). The flattening of the curve toward higher frequencies is due to
acterizes sparseness of mean field, &hdan be derived  the nugget effect (Logarithms base 10).

as follows. First a log-log plot of the so-called “first or-

der structure function” (cf. Monin and Yaglom, 1975) is

constructed. Successive moments are obtained for absspectrum consisting of a straight line with slopg. This

lute values of differences between concentration values foparameter can either be estimated directly or indirectly using
points that are distande apart by raising them to the pow- B=1—K>+2H whereK> representing the “second char-
ersq(=0.25,0.5,...,3 for the 118 zinc values). The result- acteristic function”. Lovejoy and Schertzer (2007) estimated
ing pattern forg = 2 represents the variogram and the first K> = 0.05 by double trace moment analysis. With the previ-
point on the pattern fog =0 is the de Wijs index of dis- ously mentioned estimafé = 0.090 this yieldeg ~ 1.12 in
persiond. Straight lines are fitted to all patterns and a new good agreement with the experimental spectrum for the 118
diagram is constructed with the slopes of the ling9 plot- zinc values.

ted againsyy. Slope and value of this new line nege= 1 Spectral analysis of the 118 logarithmically zinc values
yielded H# = 0.090 andC; = 0.02 for the Pulacayo orebody was performed previously (Agterberg, 1967, Fig. 4). The
becaused = &1 andCy = H —&; whereg; is the first deriva-  discrete Fourier transform was taken of autocorrelation cor-
tive of &, with respect tog (Lovejoy and Schertzer, 2007, relation coefficients with lag distances32 m after applying
Fig. 26a and b). Their use of the so-called “double trace mo-a cosine transformation in order to largely eliminate distor-
ment” method (cf. Lavaéle et al., 1992) yielded estimates of tions according to Tukey’s “hanning” method (Blackman and
the Lévy index equal tee = 1.76 andx = 1.78, and codimen-  Tukey, 1958). In a discussion of this result, Tukey (1970)
sionC1=0.023, 0.022, respectively. In general, a relatively pointed out that the resulting spectrum “drooped” although it
small value ofC; with respect toH indicates that the mul- was within the 90 % confidence interval around the theoret-
tifractality is so weak that deviation from conservatigi)(  ical spectrum for the signal-plus-noise model with negative
will be dominant except for quite high moments (Lovejoy exponential autocorrelation function (cf. Fig. 5). Replotting
and Schertzer, 2007, p. 491). In the preceding section it waghe earlier results on a log-log plot shows a linear pattern with
shown that the binomigl model produced inconsistencies straight line of best fit yieldingg = 0.79.

between results for lower and higher moments. Universal The normalized power spectrum corresponding to Eq. (6)
multifractal modeling is more flexible and produces realistic is:
zinc concentration variability. On the other hand, the esti- Ci 7T fui
mate for the second order momeni?) = 0.979+0.038) P(f)=2%2, [1—0,- + ﬁ]
produces a realistic autocorrelation function including the + (/e
nugget effect, which affects the power spectrum for high fre-where f.; =a; /2. A log-log plot of this spectrum is shown
guencies as will be discussed in the next section. The exisin Fig. 24 adopting the coefficients previously used for the
tence ofr(2) as a constant parameter is not tied to validity autocorrelation function satisfying Eq. (6) and plotted in
of the binomialp model for both lower and higher moments Fig. 12. The curve in Fig. 24 is approximately a straight

-1

(17)

(Sect. 4.2). line for lower frequencies but for high frequencies there is a
marked decrease of slope reflecting the nugget effect.
6.3 Spectral analysis Figure 25 shows the periodogram of the 118 zinc values to-

gether with a quadratic curve fitted by least squares. A best-
Another important tool in universal multifractal modeling fitting straight line for the same values resultsfin=0.72,
is spectral analysis. Theoretically, this model results in abut by means of an F-test it can be shown that the quadratic
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0 for example in this section are too wide to allow a better de-
scription of the effect of the nugget effect on the power spec-
> tra.

y =0.1419x" - 1.0884x - 0.1432

A? Jﬁm

. S MWM

-3,5

7 Concluding remarks

In a general way, orebodies are different from most other
rocks (sedimentary, igneous, volcanic, metamorphic rocks)
in that most of them exhibit clear evidence that nonlinear
processes were involved in their genesis. This evidence in-
cludes the following features: (1) element concentration val-
ues in orebodies commonly show a positively skewed fre-
guency distribution that is approximately lognormal; (2) ele-

_ . i _ ment concentration values in orebodies generally exhibit spa-
Fig. 26. Periodogram (black diamonds) of 132 H@oncentra- ia| covariance including a nugget effect at or near the origin;

tion values from boreholes in the Black Cargo Titaniferous mag- - ! .
netite deposit, Los Angeles County, California. Quadratic curve .(2) statistics that apply to entire orebodies of the same type

(red curve)was fitted by least squares. The overall pattern is simila}ndl‘Idlng tqtal _am(_)unt,Of oré ,U,Slj'a”y ShO_W approximately
to that of Fig. 25 for the Pulacayo zinc values. lognormal distributions in the vicinity of their means and me-

dians but the high-value tails of these frequency distributions

fit is significantly better than the linear fit in Fig. 25 (for level €an be Pareto-type; and (3) bedrock and surficial geology in
of significance=0.01). The slope of the curve at the origin the vicinity of orebodies often show patterns with charac-
in Fig. 25 gives = 1.18 with gradually decrease to 0.49 at te.nstlcs S|m|Ia_r to those of concentration values within thg
maximum log wave number on the right. A log-log plot of _m|neral deposits. All of thes_e four features are of economic
the 2-point moving average of the periodogram of Fig. 21|mportance:_(1) and (2) are important for' ore reserve _estlma—
produces a pattern that is close to Lovejoy and Schertzerdon; (2) facilitates regional or global mineral potential es-
(2007, Fig. 3b) spectrum for the de Wijs data. A straight t|mat|qn; and (3) is helpful in prospecting for undiscovered
line fit to the first 20 points of this 2-point moving average 9€POSIts. In a general way, these rules apply to hydrocarbon
gives B = 1.03, which is close tg = 1.18 at the origin of deposits as well (cf. Bar.ton and La Pointe, editors).
Fig. 25 and close t@ ~ 1.12. A possible explanation is that  Although the preceding four features have been known
spectral analysis confirms validity of the universal multifrac- {0 €Xist for a long time, it is only relatively recently that
tal model but with superimposed noise that tends to flatterOnlinear methods to clarify the spatial element concentra-
the spectrum at higher frequencies. For comparison, the préion patterns and their genesis have become available. The
ceding method also was applied to a sequence of 132 titaPfimary purpose of this paper was to help build a bridge
nium concentration values from the Black Cargo TitaniferousP€tween Matheron-type geostatistical sampling methodolo-
magnetite deposit, Los Angeles County, California (Bensondi€S apd geometric propablllty the_ory with nonlinear process
et al., 1962). This sequence, previously analyzed in Agter_modellng methods. Main conclusions are as follows:
berg (1965), is a composite of four sub-sequences obtained - . . . -
from 4 different boreholes. All samples were 5ft in length 1. EX'S“”Q sampling techniques aF’p"Ed W'th',n _knovv_n
except for three 10ft samples at the subsequence meeting o.rebod|es such as chanqel sampling along mining drifts
points. Mean and standard deviation of the 132 numbers are yield average concentratlon_ values for blocks of ore that
2.73% and 1.65% Tig@ respectively. The resulting peri- have rel_atlvely small extension variance an(_j can be gsed
odogram shown in Fig. 26 is similar to Fig. 25 in that the for. mulﬂfractal modellng n -add|t|on o their usage in
best-fitting quadratic trend line has a slope that decreases to- existing ore reserve estimation approaches.
ward higher frequencies. At the origin £ 0) its value is
—1.088 and at maximum frequency £ 1.8195) the slope is
—0.6186. Other results for this example also were similar to
those obtained for the 118 Pulacayo zinc values.

The curves in Figs. 23 to 25 indicate (1) the log-log plots
of the three power spectra are not straight lines but curves
with slopes that decrease toward higher frequencies; and 3. The new method of local singularity mapping applied

Log Power Density

0 0,2 04 06 08 1 12 14 16 18 2
Log Position Number

2. Geometric probability theory applied to Matheron’s ex-
tension of the model of de Wijs suggests that new in-
formation on the nugget effect consisting of local clus-
tering of ore minerals can be derived from experimental
variograms.

(2) at their maximum frequency or highest position num-

ber the curves are probably not horizontal indicating that the
nugget effect is not white noise with Dirac delta autocorrela-
tion function. The sampling intervals of two data sets used
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within orebodies provides new insights into the na-
ture of the nugget effect which has spatial extent less
than distances between samples collected for chemical
analysis; within the Pulacayo orebody, Bolivia, local
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