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Abstract. Within the Lagrangian reference framework we well documented in the review articles of Peregrine (1976),
present a third-order trajectory solution for water particlesJonsson (1990) and Thomas and Klopman (1997). Reports
in a two-dimensional wave-current interaction flow. The ex- are also available on experimental studies for combined wave
plicit parametric solution highlights the trajectory of a wa- and current covering various aspects of this problem (Bre-
ter particle and the wave kinematics above the mean watevik, 1980; Constantin and Strauss, 2004; Kemp and Simons,
level and within a vertical water column, which were calcu- 1982, 1988; Thomas, 1981, 1990).
lated previously by an approximation method using an Eu- Most previous theories dealing with wave-current interac-
lerian approach. Mass transport associated with a particléions have employed the Eulerian description, in which the
displacement can now be obtained directly in Lagrangianfree surface fluctuations can be expressed in a Taylor series
form without using the transformation from Eulerian to La- expansion relative to a fixed water level (i.e., the still water
grangian coordinates. In particular, the Lagrangian wave fredevel). This implicitly assumes that the surface profile of a
guency and the Lagrangian mean level of particle motion carwave is a differentiable single-valued function. Unlike the
also be obtained, which are different from those in an Eule-Eulerian free surface, which is given as an implicit function,
rian description. A series of laboratory experiments are per-a Lagrangian surface is described through a parametric repre-
formed to measure the trajectories of particles. By comparsentation of the position of a particle. The use of Lagrangian
ing the present asymptotic solution with laboratory experi- coordinates yields the only known nontrivial exact solutions
ments data, it is found that theoretical results show excellento the governing equations for gravity water waves (i.e., Ger-
agreement with experimental data. Moreover, the influencestner’s solution for deep-water waves (Gerstner, 1802) and
of a following current is found to increase the relative hor- a recently found edge wave solution along a sloping beach
izontal distance traveled by a water particle, while the con-(Constantin, 2001) which was extended to stratified flows
verse is true in the case of an opposing current. (R. Stuhlmeier, 2012)). The main advantage of such a de-
scription is to allow better flexibility for describing the actual
shape of the ocean surface, which will be demonstrated later
in this paper. Based on this reason, it has been shown that the
1 Introduction Lagrangian description is more appropriate for the motion of
the limiting free surface, which cannot be captured by the
The problem of nonlinear water waves propagating throughclassical Eulerian solutions (Biesel, 1952; Chen et al., 2006;
areas containing tidal, ocean or discharge current is an imNaciri and Mei, 1992). However, reports on this notable im-
portant issue in marine environments. The interaction beprovement using Lagrangian description are rather limited.
tween these flows plays vital roles in many aspect of coastal The first water wave theory in Lagrangian coordinates
and ocean engineering, for example forces due to such flovin which the flow possesses finite vorticity was presented
fields on fixed or floating offshore wind turbines, sediment by Gerstner (1802), which was re-discovered by Rank-
transport, contaminant and nutrient dispersion. The pheine (1863) and the modern discussion by Constantin (2001)
nomenon of wave-current interaction has been studied exand Henry (2008). Miche (1944) proposed perturbation La-
tensively since the 1970s. Several theoretical solutions fograngian solutions to the second order for a gravity wave.
waves on currents with uniform or sheared profiles have beerPierson (1962) applied the Navier-Stokes equation to the
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186 Y.-Y. Chen et al.: Particle trajectories beneath wave-current interaction

deep water waves in the Lagrangian formulae and ob-

tained the first-order Lagrangian solution. Sanderson (1985) ¥4

obtained second-order solutions for small amplitude inter-

nal waves in a Lagrangian coordinate system. Ng (2004) C

re-examined the problem of mass transport due to partial -,

standing waves in one and two layer fluids. Buldakov et

al. (2006) developed a Lagrangian asymptotic formulation

up to the fifth order for nonlinear water waves in deep water.

Clamond (2007) obtained a third-order Lagrangian solution

for gravity waves in finite-depth water and a seventh-order

solution for deep water waves. To date, only a limited few

theoretical solutions are derived for wave-current interaction

in Lagrangian coordinates. Umeyama (2010) gave a wrong U

third-order solution of particle trajectory, which did not in-

clude Lagrangian wave frequency and Lagrangian mean level

shown in Eqs.&8) and Q0) derived in this paper. Zaman and

Baddour (2010) presented a first-order solution of particle

trajectory in the combined wave-current flow. The theoretical

investigations of the particle paths beneath a Stokes wave and 7

solitary wave were recently undertaken by Constantin (2006,

2010). Fig. 1. Definition sketch showing a system of progressive wave
This paper aims to study particle trajectories of a two- train on a uniform current.

dimensional wave-current field based on the fully Lagrangian

framework, and to derive asymptotic solutions that can be )

used to describe the dynamics for the entire flow field. Pre-2 Formulation of the problem

vious works on progressive, standing, short-crested gravit . . .
) . . e consider the problem of a two-dimensional monochro-
waves and gravity-capillary waves have been summarize . ) ) .
atic wave with a steady uniform current on an imperme-

in the papers by Chen and Hsu (2009), Chen ?t al. (2010 ble and horizontal bed (Fig. 1). The fluid motion is taken
and Hsu et al. (2010). In this paper, we look into the ef- ) . . ! .
. . .~ to be two-dimensional and irrotational, and the wave is right-
fect of uniform current on a gravity water wave, the motion . : P .
Lo N . . going. We choose Cartesian axes witlpointing horizon-
of which is assumed to be inviscid, incompressible and ir- ) . )
tally to the right andy vertically upward from the still water

rotational. A set of governing equations in Lagrangian co- . . :
. . . - : . . level. The mathematical problem is formulated in terms of
ordinates is derived for two-dimensional progressive gravity : . . . -
Lagrangian variables; andb, which define the original po-

waves on uniform current in a constant water depth. We Wllltsition of individual fluid particles. At any time we leth = 0

construct asymptotic expansions of the solution in powers o
ymp pan: PO be the free surface, and=d be the bottom. The Carte-
the wave amplitude, which is assumed to be small using the’. ; . .
: : : . Sian coordinatesx(a,b,t), y(a,b,t)) of fluid particles and
Lindstedt-Poincare perturbation method. Approximate solu- .
. . ) i . : . the fluid pressurey(a,b,t) are the unknowns. Based on the
tions including particle trajectory, Lagrangian wave period,

the Lagrangian mean level and mass transport velocity ar(la_agranglan description, the governing equations and bound-

derived up to the third order. A detailed analysis of influ- ary conditions folr two-dlmen3|9nal irrotational free-surface
. : ) . flow are summarized as follows:

ences of the uniform current is then carried out. Finally, to

validate the accuracy of the analytical results, a series of lab-,  9(x,y) (1)

oratory experiments are performed. The trajectories of watef’ = §(a,b)

particles in a wave-current interaction flow are shown to have

an excellent agreement with experimental data.

L 4

v

[

h 4

Y

aJ

The problem formulation and the procedures for construct-—= — x v, + x, yp; — Xpr va — X Yar =0, 2
ing asymptotic solutions are described in Sect. 2. In Sect. 3,97
we derive equations for the properties of surface-particle trax,, x, — x;,x, + yar vb — yi ya =0, (3)

jectories and present results for some selected wave-current
flow. Section 4 is devoted to a description of experimental@ _

+ o0 + (4)
. =XtXa T YtYas T =XtXbT Yt Yb,
apparatus and of the experimental procedure. In Sect. 5 th@a eI gp ! !

trajectories of surface and subsurface particles are presenteg, ) 1 9x 9
- . . . . _ 2 V.2
Some concluding remarks are given in the final section.  —=-———gy+5[(-) "+ ()71, (5)
0 ot 20t ot
p=0, b=0. (6)
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v=y,=0, y=b=-—d. (7 where the Lagrangian variables, ¢) are defined as the two
characteristic parameters. In these expressignsg,, ¢,
and p,, are expected to be associated with tltle-order har-
monic solutions. f,,, g, and¢, are non-periodic functions
that increase linearly with timeo = Zn/TL is the angular

loci ol f ion in the L K E frequency of particle motion or the Lagrangian angular fre-
ocity potential function in the Lagrangian system. Xceptquency for a particle reappearing at the same elevatipn.

for Egs. @) and ©), the fundamental physical relationships is the corresponding period of particle motion. Upon substi-

defining the equations above have been derived previousl¥utin ; :
) s . ) g Egs. 8)—(12) into Egs. ()—(7) and collecting terms of
(Lamb, 1932; Naciri and Mei, 1992). Equatiat) {s the con- equal order, we obtain a sequence of nonhomogeneous gov-

tlnunyfeqLIiann bgsed on tre' Elvarlanr': cg_r}fdmon on the ]YOI'erning equations that can be solved successively, as shown in
ume of a Lagrangian particle; EQ)(s the differentiation of . following sections.

Eq. (1) with respect to time. Equation8)(and @) denote the
irrotational flow condition and the corresponding Lagrangiang 1 First-order approximation

velocity potential, respectively. EquatioB) (s the Bernoulli

equation for the irrotational flow in the Lagrangian descrip- Collecting terms of ordes, the governing equations and the
tion. The wave motion has to satisfy a number of boundaryboundary conditions can be obtained as follows:
conditions at the bottom and on the free water surface. Equa- , , ,

tion (6) is the dynamic boundary condition of zero pressure f1a + /1, + 81 +81;, +[00a (fio: + f154,) (13)

at the free surface. On a rigid and impermeable bottom, the+00b(glol+g/laot)]t =0,

no-flux bottom boundary condition gives EQ@)(

In Egs. ()—(7), subscripts:, b, and: denote partial deriva-
tives with respect to the specified variabl&s,denotes the
speed of a steady uniform current, is the gravitational
accelerationp(a,b,t) is water pressurep(a,b,t) is a ve-

00(f1aot + Flaog + 81bot + 81poyr)
+00a (fror + flo) 000 (8101 + 810y, (14)
3 Asymptotic solutions +00{00a 1012 F 1 5g012) + 000 [8101)2 8] 52} = 0.

To solve the nonlinear Eqs1)—(7), we introduce the La-  00(fibor + flpop — 81act = 8140r)

grangian angular frequeney of particle motion, which is 90 (fior + fisy) —00a (8101 +815,,) (15)
a function of a nonlinear parameter and the Lagrangian lever20tooLfagn2 + f112] = 00al81(51)2 + 8152 1} = 0.

label (b), making the wave periodic in timeand space (or

a) in order to avoid a secular term. We use the Lindstedt- $1 + 91 00 @101 + @151 (16)
Poincare technique that yields uniform expansions to un-="U (/i + f1,) +00a(fior + fise) 11400 fior + fige:):

cover the solutions in the Lagrangian system. The issue of , ,

convergence is covered by the recent regularity results in?1 + @1+ 00 (D101 + P150,)1 ) ) (17)
Constantin and Esher (2011). In the Lagrangian approach;=U - [(f1o+ /1) +00s (fio: + f1501)1]+00(8101 +8151)

the particle positions andy, the potential functior, and m

pressurep are considered as functions of independent vari-— =U - 90(fio: + fi55) = 00(P101 + P00 — (81 +81).  (18)
ablesa, b and timer. Following Chen and Hsu (2009), Chen

et al. (2010) and Hsu et al. (2010), these solutions are sought1=0 at b=0, (19)
in perturbation series by introducing an ordering parameter ,
¢, which is inserted to identify the order of the associated&lo: =815y =0 ON b=—d. (20)
term: - The flow is assumed periodic with a crestat 0 andr =0,
x =a~|—Ut+Zs”[fn (a.b.ot)+ f1(a.b,oot)], @) and hence the first-order solution can be easily written as
n=1
costk(b+d) .
- fi= —ot#SIn(ka —ot), (21a)
" , coshkd
y=b+) &"[gn(a.b.ot)+g}(a.b,o00)], (9) ,
=1 sinhk(b+d) cosk " (21b)
=-— —0
1 . L= ostkd a ’
— —r72 n ’
p=Ua+3U t+;e [#n(@.b.ot)+¢,(@.boonl, (10) g (21c)
0 o00a =00 =0, (21d)
p=—pgb+Y & pu(a.b.ot), (11)
yr ] 00 coshk(b+d) .
=(——-U)a——————sin(ka —ot), 2le
N o1 (k )o coshid (ka—ot) (21e)
= b)+ n by =21 /T, 12
o =oo(a,b) ;e on(a,b) =21 [T, (12) o2 = ghtanhtd, (1)
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cogka —ot), (219)

where the parameter represents the amplitude function of
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B2 = —[o0(¢201 +Popy) +8(82+ 83)]

the particle displacement; the wave amplitude is, as usualyq

taken asip = otanhkd, wherek is the wave number (32/L,

L is wave length)¢i(a, b, t) is the first-order Lagrangian ve-
locity potential angy1(a, b, t) is the first-order wave dynamic
pressure in the Lagrangian form with presspie= 0 at the
free surfacéb= 0. Equations (21a—g) satisfy all the hydrody-
namic equations formulated in Lagrangian terms including
the irrotational condition, and differ from Gerstner’'s wave in
infinite water depth, which possesses finite vorticity. The dis-

persion relation shows that the first-order Lagrangian wave foa+ 13
a

frequency §o) is the same as that of the first-order Stokes

wave frequency in the Eulerian approach (Biesel, 1952). The
first-order free surface in Lagrangian coordinates is given by—o - {01, -

settinghb =0in Egs. (21a) and (21b), and is similar to expres-
sions for the profile found from the first-order Eulerian equa-
tions. Equation (21d) is the basic velocity potential solution
with a steady uniform current. In Eq. (218y is the essen-

tial Lagrangian wave frequency for water particles relative to

the uniform current. From this, it can be demonstrated that—% - [91a
the Doppler’s effect is not apparent in the Lagrangian disper-+o1»

sion relation. This is correct: in Eulerian frame of reference,
intrinsic wave frequencyy is different fromabsolutewave
frequency(og —kU).

3.2 Second-order approximation

Collecting terms of ordes? and using Eq. (21), the govern-

ing equations and the boundary conditions can be obtained—o"[

as

foa+ fo, + 826+ 8op + f1a81 — 15814 (22)

+(014 f1o1 +0158161)t =0,
00(f2a0t + fz/agot + 820t +g/2b(,o,)

+01(f1a +81) ot +00(f1a81 — f1681a)01
+014 fiot + 0168151 + 001014 f1(51)2 T O1681(51)2]t =0,

(23)

o0(f2vor + fz/ba'o[ —82a0t — g/zag()t)

+01(f1 — &1a)or +01b flor — 014810+

+00(f1a f1bor — flact f1b + 81a81bot — 815 81act)
+00lo1s f1(61)2 — 01a81(61)21t =0,

(24)

$2q+ 95, =U -[(f2a+ f3,)

+00a (f201 + f255)1]+ U - 014l flot
—00a (P20 +B)

+00(f201 + [355) T 01 f101
+00(f1a f1o1 + 81a8101) — O1at P10+,

(25)

$25+ g, = U - [(f2b + f23) + 000 (f201 + f350)1]
+U - 015t fio1 — 006 (P201 + B )

+00(8201 + 805,) 018101

+00(f1b f1o1 + 81b8151) — O1bI P16t

(26)
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—01010: + 308 (f2,, +8%,,) (27)
+U - 00(f201 + f50) + U - 01(f101 + 1500

p2=0 at b=0. (28)
8201 = 8oy =0 ON b=—d. (29)

Substituting Egs. (2%ag) into Egs. 22)—(24), the second-
order governing equations in termsaf including the con-
tinuity equation and the irrotational condition, are given by

+g2,+ 8,
_ 1,2 2. { coshZ(b+d) + cosdka—ot) }
costtkd costtkd (30)
_ Coi%(b ) cogka — o)
+oy,- SMKOED sinka — 1)) -1,
00(f2a0t + faug0 82601 + 8pos)
— 2. k2. on. SiN2Aka—at)
=a-k%-00 cosifkd
coshk(b+d)
T, googea COSka =) (31)
“costig SiNtka —o'1)]
—a-0p .kEkGla Co(s:g;(b;d) sintka —ot)
— —s"los(&;d) cogka—ot)lt,
00(f2bot + Fopeor — 82a01 = 8401)
— a2k2q, SinhZ (b+d)
- 0™ cosikd
coshk(b+d)
(sfi%bhk(bcgﬁ)izd- costha — o) (32)
“cosmed ~ Sintka —o1)]
—o-00-[01, —S'ng)ks(&;d) coska—ot)
coshk(b+d)

+o sin(ka—ot)]t.

coshkd

For gravity waves of permanent form, the termt®ska —
ot) andtsin(ka —o't) that increase linearly with time have to
be zero to avoid resonance. Noting thgt=0 oro1 = w1 =
constant, then the general solution that satisfies the bottom
boundary condition can be written as

coshZ(b+d)

cosltfkd
5, Sin2ka—ot)

costftkd
coshk(b+d)

coshkd
coshZ(b+d)
costfkd

= sin2(ka—ot)

f2

1
401

— sin(ka —o't) (33)

1
-

2

fr=Za%k oot (34)

sinhZ((b+d)

costfkd
2, sinhZ(b+d)

costkd

g2=p2 cos2ka—at) (35)
sinhk(b+d)

coshkd

1
+Za coSka—ot)

www.nonlin-processes-geophys.net/19/185/2012/
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g,=0. (36) Applying the zero pressure condition at the free surface, the

unknown coefficients in Eq4(Q) are obtained as
Substituting Eqs.33)—(36) into the irrotational Eq.5) in a40)

2 - 3
¢~ order, we obtain ho=0. w1=0,fr— éazk(tanh_zkd —1.

coshz(b+d
b24 =—2kUﬂ2$cosZka—at) 1
L . kd D= y(o0t) = ;a3 tantfkd - 1y. (42)
+§a2k2UTcosZka —ot)
coscr?:(;b —I|<-dd) The second-order Lagrangian solutions are assembled as
—okU———"""cogka—ot)
coslkd fo= —§a2k(tanh‘2kd - tant?kd)wsinmm —ot)
coshZ(b+d) 1.8 coshzd (43)
+oo ZﬂZW cosdka—ot) (37) +Za2k(1—tanr?kd)sin2(ka —ot),
2, Cosdka —ot) 1 coshZ(b+d
VS ettt 2 (b+d)
* 7 costkd f3= 5Pk tanttkd) =2 oo, (44)
coshk(b+d
+ (o1 -{-Uo)»z)# coSka—ot), — 302k (tanh2kd — tantRkd) SNh& (b+d)
oshkd 82=gok( - )W y (45)
cos2ka —ot) + s 2k(1+tanttkd) X CED,
sinhx(+d) .
bob+ B, =—2kUﬂ2#sm2(ka—at) g=01=0, (46)
costkd
sinhk(b+d) . — 00—kU p_coshZ(b+d) <; _
—kUkzﬁsm(ka —ot) ¢21 ) k P2 cos{?kd _sz(ka o)
. SN2 (bt d) —?az(ao—kU)CqsﬁdeInZ(ka—ol) 47)
+a‘k UWUOt (38) _710‘ kUCOSf?deIHZ(ka_O-t)’
sinhx(b+d) . 1 1 coshZ(b+d)
+200B82——————=sin2(ka — o't ! — g0 - PSS § Sttt A
0B2 p—T X ) 9= 70%0§ (tantfkd — 1)t + S0 kU —— ——out, (48)
sinhk(b+d) .
ookzw Sinka —o't) % _ {2i0;0;€k:/ B2 °°§2§‘éﬁ§d>
. _ sinhx(+d) _ 3_2 2
%ﬁfsin(ka—m). g’f}z lcgos}?kd Zk4aoa )cosﬁkd 49)
0S +2Uo0pB2}-cos2ka—ot
. 1.2 2 ta.nhzkd—l 1 stinhZC(b-i-d)
Note that the secular terms in Eq37) and Sect3.2have 32705 ( ) = Z8Ak= o
to be eliminated. The second-order Lagrangian velocity p0-+%a205%
tential is obtained by integrating over the Lagrangian vari-
ablesa or b as The Lagrangian formulation for the particle trajectory at the
kU coshZ(b+d) . second order approximation comprises a periodic component
Po= %0 . > :F + )sm2(ka —ot) f2 and non-periodic functiorfy. The latter increases linearly
1 L cositkd with time and is independent of the Lagrangian horizontal
—Za?(0g— =kU) sin2ka —ot) (39) labela, which represents the mass transport, implying that a
2 2 costtkd constant net motion would depend only on the vertical lével
+1'a2kU coshZ(b+d) o0t + Da(oot). where the particle is located in the uniform current. The tra-
2 costtkd jectory is the smallest near the bottom and is not a closed or-

bit as predicted by the first-order approximation. Moreover,
Eqg. 33), a second-order quantity, renders the same form ob-
aw1+A2(00—kU) =0. (40) tained by Longuet-Higgins (1953) for the case of wave alone
i . . (i.e., without uniform current). The solution for vertical dis-
Substituting Fhe golutlons up to the second order into the enblacemenggz includes a second harmonic component and a
ergy Eq. €7) in ¢ order, we can get

time-independent term which is a function of wave steepness

and

P2 — (25, Uo—kkU pBposha(bid) _ 35202 # and the Lagrangian vertical labkl Overall, the expression

g, STEGtd) | 21}30 5, COSNE(d) | ~Cgéslgka 1) of g, yields vertical shift correction to a second-order which
P2 costtid vz costtkd 1 decreases with water depth. Taking the time average of the

+{—ghpXED 4 iy C0RU. €05 (rkjj_ : (41) particle elevationg, over a given period of a particle mo-

coshkd cos
+UUO)\Z%+U_01W%}'COSUW_UU tion from Eq. @5), it can be shown that the mean level of
+{—00D 2051 — %gaZk%ﬁa@aZ% . water particle orbit in Lagrangian approach is higher than

www.nonlin-processes-geophys.net/19/185/2012/ Nonlin. Processes Geophys., 1919852012
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that in the Eulerian counterpart, as suggested by LonguetUO(f3a0t+f3aooz+33b0t+g3baoz)

Higgins (1979, 1986) for two-dimensional progressive water = akzao[(2ﬁ2+ 30%k)

waves.

For the limiting casé/ = 0, one can verify that the present
theory reduces to pure progressive waves of constant depth,

as was previously obtained by Chen et al. (2010).

3.3 Third-order approximation

The third-order governing equations and boundary condi- 4

tions can be obtained by collecting the terms of

f3a+ f3, + 83+ 85, + f1a82b + f2a81 — f1r824

—(f2p+ f3) 814+ (024 f1o1 +0258101)t =0, (50)

00(faaot + f3ug + 83601 + 83pogr) +02(fiact + g1bar)
+024 flot +02p810t + 00024 f1(51)2
+02p81(1)211 + 00l f1aot 825 + f1a82b0+
+f2a01816 + f2a81b0t — f1bo182a — f1b82a01 —
+ fopog)81a — (f2p + [3,) 814011 =0,

(51)
(beat

00( f3por + fébo’ot —83act — géao'ot) +02(f1bor — 8laot)
+02 f151 — 0248151 +00[02b f1(54)2
—02481(o1)21t + 000 f1a (f2bot + fpp0:)

+ /24 fibot — f2aot f1b

— 1act (2o + f3) + 81a82b0t + 82a81b0+t
_gaglaat] = oa

B30+ By = U [(faa+ F4) +00a faot + oo )11
+00(f301 + f354:) + 02 f1o1 + 00l fio1 fou
+(f201 + [0 fla + 8101824 + 82018141 — 0201 P10+

$3p+ 5, =U - [(fao + f3,)

005 (301 + f350)t1 + (U fios
—$101)02pt +00(8301 + 835,,)

028101 + 00l f10: (fon + f33,)

+(f201 + [0 f16 + 8101825 + 8201811

=U-00(f351
+fég0;)+U'Ulf2m+
U -02 f151 — [00(¢301
¢35, +8(83+83)]
_GZ¢101+Uo[flat(f2<rt+f2{,0t)
+816182011s

p3=0 at b=0,

(52)

— 81 82a0t

(53)

(54)

(55)

(56)

8301 = 8hyyy =0 ON b=—d. (57)

cosh (b+d) _
ok —d cosPid sin(ka —o't)
+(6f2— 30%k) % L(?;)sm&ka ot)]
o {[a Zrlng ds'”“ 20D | gy S D sinka —o1)  (59)
N
273 _ sin + sinhk(b+d)
+a.ao{[rokz bk ;70 cosPid +o2p] 5osmg - COSka —ot)
~02, 2D sin(ka — o1)} -1,
f3b0'l+f3bgot 83act — ggag
h3 (b
—akzoo[(ﬁﬁz—l—B(;kzic)%COS(ka ot)
+(2B2+ 3a zk)%cosi{ka ot)]
_ard 2 35 SNk (b+d) costk(b+d) _
@il k00" c i + 92 o 1C0Ska —a1) g0
— 0, I AD sin(ka —o'1)}
—ot~ao{[a2k3a sinhzcr(?b+d)
cosikd
Ny Rauitancy COSHC(”*‘” sin(ka —o't)
smhk %-&-d)

+o24 Wcos(ka or)}-t.
From Egs. $8)—(60), the secular terms that grow with time
have to be zero. We can obtain
sinhZ(b+d)
09, =0 anda = — 2k30' —_—.
2 = T R kd
Integrating Eq. (61) withb, o> is given by
coshZ(b+d)
coslttkd
wherew; is a constant which needs to be solved.
Using Eq. 62), Egs. 68)—(60) can be reduced to
f3a + fga +f§3?€b+d%3b = ak2(2ﬁ2
2 Cos +
k)w COS(ka Ut)
+ak2(2,32

(61)

1 2k2

(63)
1 2 coshk(b+d) _
k)—osﬁ”k J cos3ka—ot),

00(f3aor + f3ao'ot + 830t +g3bgot)
= akPool (22 + La?k) EPED) ik — o1

e coshkd
+(682 — %azk)c"s—“’*d)sins(ka —o)],

costPkd

(64)

00(f3bor + fgbgot 83a0t — 83u00r)
= ak200[(682 + a2k) % cogka—ot)

+(2B2+ 2a%k) % cos3ka —o1)].

(65)

From Egs. 63)—(65), the solutions off3, f3, g3 andgj can
be assumed as

- . — ha&(b+d
On substituting the first- and second-order approximations/3=[—#3 Cos—h%:,r”r 5ok (5p2

into the governing Eqs50)—(52), the third-order continuity,

irrotational and energy equations become

f3a+ f3,+ 83 +85,
—ak2(2ﬂ2+1a2k)wcos(ka ot)

+ak?(2B2— 1 2k)mc053ka ot)

st kd )
2430 w +ogp]- SNKGED) Gin kg — op)

costfkd coshkd
coSka—ot)}-t,

(58)
—o-{[a

coskk(b+d)
+02 coshkd

Nonlin. Processes Geophys., 19, 1887, 2012

-1 2k)%]smaka ot) (66)

cosiPkd
coshk(b+d)

+A3 cosPid Isin(ka —ot),

g3= (B3 sinh&(b+d)

coshkd costPkd

1 1 2 S|nh3c(b+d)
—|—[205k(3,32+ k) costkd

sinhk (b+d) .
+)‘3—cosr§kd lcoska—ot),

Lok SO ) 005 3ka — or)

(67)
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f3=283=0, (68)

wherepBs andiz are undetermined coefficients which can be
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to be zero. Using zero pressure condition at the free surface

(p3 =0 atb=0), we obtain

found by using the dynamic free surface boundary condition.@®2 +oorgsecifkd =0, (74)

Substituting these terms, the first- and the second-orde

solutions into Eqs.53) and 64), we can get

$a+ by, = U - [~3kpa 2 30
+iak?(5p, -3 Zk)w]cosaka ot)
~U-13 Sek2(5fi o Zk)ms*’g#
coshkd
+kA3 —005”‘<b+">]cos(ka ot)

cos‘113c(b+d) 1 _ 1 2;coshk(b+d)
+363]£ﬂ co)sr?kd ak(3p2 2% k)= ostra " cosPkd ]
COS3ka—ot

—|—Uo~[%ak,3 cosh&(b+d)+( UO

) cosSH((h+d)
+13-seclfkd) LSk bt+d) A 1-coska—at),

(69)

Gakz(Sﬁz 2k)s'”h"(g+d) Isin3(ka —o't)

_U [3 k2(5/32+ Zk) Sln %I'g?-‘rd)
+kAg w]sm(ka—gozsj “

costPkd (70)
4300 [B3Sin3(ka —ot)

1 . sinZk(b+d)
+3akBasintka—ot)]- ~cosPid

+00- [~ 3ak(3B2— 3a?k)sin3(ka —ot)

sinhk (b+d)
o2 2 CosfFkd + 1) sin(ka — oD Gostra

From Egs. 69) and (70), we get

—77.7_ R, Cosh&(b+d) _ 2 costk(b+d)
$p3=U"[-P3 coshkd +6ak(5ﬂ2 k)= ostra L?osr?kd ]

.Sin3(ka—ot)—U.[%ak(5/32+ Zk)COSh:;ZZ
kx3w] -sin(ka —o't)

Lo O (o) B
+ B o sin3(ka —o't) (71)

—30(3p2— %Olzk)%% sin3(ka —ot)

st kd
+3 Olﬂzao
cosh&(b-’,—d)

coshid sin(ka —o't).

and

@5 = D3(o0ot), o- i—j +A3-secKkd=0. (72)

The wave pressure can thus be given by

B _ (B3 396 coshd(b+d)
p_h3<bd cosh"kd He(bad
sinh3 (b+ )] ot(7,32 azk)azcos (b+d)

o et d coshkd
+3akgpo %} cos3ka—ot)

GODG}gOz +{ Zaﬂ 2 COE;}&UH—d) (73)
2 sinh3k(b+d)
—30kg(3B2+ 30%k) = coshtd
+(00%wp- cosH’—ka’ — 2a%k0?)

—g\3 —S':(T’;:?;d) }-coSka—ot).

coshk(b+d)
coshkd

From Eq. (74), we get the solutions gf,13 andw»

B3= —a3k2(9tanh‘4kd 22tanh?kd +13),

A= ——Ga 3k2(9tanh 2kd — 10+ 9tanttkd) costtkd,
w2 = f5a’k?(9tantr?kd — 10+ 9tantfkd) - oo,
Dj(oot) = arbitrary constan 0.

(75)

Finally, the physical parameters to the third-order solutions
in Lagrangian form are given as follows:

f3:[—ﬂ3% + Sk g 2k>%r;;‘”]sin3<ka—m>
kGt 2k)cosh3c(b+al) cosrk(b+d)]sm(ka_m) (76)
2 2 costPkd * cosRkd ’

_ sinh&(b+d) _ 1 sinhk (b+d)
g3=[B3 cosBrd ZakﬂZW]COSQIm ot)

+lAak(3B2+ 1a%) —S"‘C*(‘)fg;;” (77)

sinhk (b+d) -
+A3 costkd lcoSka —ot),

f3=83=¢3=0, (78)

— U -[— B, C0shZ(b+d) _1 2, costk(b+d)
b3=U-[-B3=_ 5. +6ak(5ﬂ2 h&k) dcosr?kd ]
-sin3ka—ot)—U - %dk(5,32+052k) coiosré}];(;
+kAz Mﬂg‘”] -sin(ka — o)
+%0B3 —COSh b+d) sin3ka — o't)

1 co qkdz coshk(b+d) .;
—QO[(3,32— iO{ k) 00" Wsm?(ka —O't)

1 cosh&(b+d) i _
+2a’3200—cosh°’kd Ssinfka —ot),

(79)

coshZ(b+d)
costtkd

1
+1—6a2k2(9tanh—2kd — 10+ 9tantfkd) - og, (80)

1
02 = —Eazkz

00 cosh&(b+d) sinh3<(b+d)]

costPkd

25 = (B33
p - hk(b+d)
2 2cos
a(7ﬁ2_ hkk) cosi¥kd
2otkg;B thgd)} cos3ka—ot)
2cos (b+d)

+{20‘ﬁ COJs.ﬁz sinhZ (b+d) (81)
zakg(3,32+§a k)=

cosiPkd
(00 sz costfkd
_ 13k 2)cosrk(b+d)
3

N smhk(b+c?)
ks—cosﬁkd }- cos(ka ot).

Equation 80) is the second-order angular frequency correc-
tion for a particle, in which the first term is the second-order
Stokes wave frequency and the second term varies monoton-
ically with the vertical labeb or the wavelength-averaged
level of the particles. The result differs from the Eulerian

The procedure to obtain the solutions at this order is similarwave frequency. The third-order solutions of Eg&s)(and
to that of O (¢2). The secular terms that grow with time have (77) are periodic functions and have a combination of both
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192 Y.-Y. Chen et al.: Particle trajectories beneath wave-current interaction

first and third harmonic components. Thus, the solution ofparameters, namely the current velocity U, the wave height

system has the following expressions: H, and wave periodg are reported along with other La-

2 grangian gquantities parameters which were the mean value
x=a+tUt+efila,b,ot)+e%[fa(a,b,01) of three different measurements (the particle motion period
+f3(a,b,oot)]+ 3 f3(a,b,at), (82) 1., mass transport velocity and Lagrangian mean level). It

shows an excellent agreement for the Lagrangian properties
of water particle (Lagrangian wave frequency, mass transport
and Lagrangian mean level) between the present third-order
solution and experimental data.

y=b+egi(a,b,ot)+e%ga(a,b,or) +e3g3(a,b,ot), (83)

1
p=Ua+ éU2z+g¢>l(a,b,az)

2 / 3
+el¢2(a,b,ot) +¢y(a,b,o0t)]+&"¢3(a,b,o1), 84 5 Results and discussions
= 2 b 3 b 85 .
p=—pgbtepiab.ot) e pala.b.at) e ps(a.b.on). (85) 5.1 Mass transport velocity
o = oo(a,b) +&%0a(a,b) =21 [T, (86)

Taking time-average over one Lagrangian wave period to the
The set of Eqs.§2)—(86) ensures that Bernoulli's condition terms of the horizontal particle displacement, the so-called

of constant pressure is satisfied on the free surface. drift velocity, over the whole range of depths can be obtained
as follows:

4 Experimental setup and results U+ i e fur(@.b,o 1)+ £ (a,b,o00)]
& _ =l (87)

o

The aim of this experiment is to quantitatively investigate 12,2 . Rk ) CoshZ (b+d) _ oo
—U+§Ol k (1+tan kd)m, CO_T’

the characteristics of the water particle for periodic progres-
sive gravity waves in uniform water depth. The experimentswhere the overbar denotes time-average over a Lagrangian
of particle trajectory beneath wave-current interaction havewave period, i.e., the period of particle motion, whete
been carried out at the hydraulic laboratory of the Depart-is the linear phase speed. The second term of &f. ¢n
ment of Marine Environment and Engineering of National the right-hand side, a second-order correction quantity, is the
Sun Yat-Sen University. The experimental setup, which com-same as that obtained by Longuet-Higgins (1953)/as0.
prises two interacting systems) (@ flume for the wave gen- From Eq. 87), the mass transport velocity is a function of the
eration and propagation ang) @ recirculating apparatus, al- wave steepness, the water depth, uniform current and the ver-
lows for a current to be generated. The produced current isical Lagrangian label. Differentiating EqBT) with respect
nearly uniform with a variation of-6.7 %. The wave flume to the vertical Lagrangian labél shows that the second-
is 35m long, 1 m wide and 1.2m high, with a fixed hori- order drift velocity is always positive but monotonically de-
zontal bottom. The waves are generated by means of a piszays with depth from the surface to the bottom. In Fig. 2,
ton wavemaker, which is driven by a pneumatic system andhe mass transport velocity is plotted against the water depth
is electronically controlled. The surface elevation is mea-and the uniform current in the wave-current interaction field.
sured by means of several resistance wave gauges. An eleErom Fig. 2, we can clearly see that uniform current has a
tromagnetic current meter (ACM-200A) is used to measuresignificant effect on the drift velocity. It can be seen that the
the current velocity. A camera was set up in front of the glasseffect of increasing current velocity is generally to augment
wall about 9.0 m from the wave generator to capture the parthe magnitude and extent of the time-averaged drift velocity,
ticle motion. Four wave gauges were located at 7.0 m, 15 mthus resulting in large horizontal distance traveled by a parti-
16 m and 16.6 m from the wave generator to measure the inele compared with the case without uniform current. The in-
cident waves. Atthe end of the tank, a 1:10 slope rubberizedereasing of following current is to enhance the magnitude of
fiber wave-absorbing beach was built to prevent the reflectedhe drift velocity over the whole range of depths, and a sig-
wave. nificant amount of fluid that has been transported forward,
The orbital experiments (polysterne (PS) particle with di- on the contrary, the drift velocity decreases by the adverse
ameter about 1mm and density near 1.05g&nwere con-  current. It is also remarkable that under the same wave, sub-
ducted at two constant water dep#g50cm and 80cm) surface patrticles travel slower and diminish rapidly with the
and the various wave periods (0.96-2.06s). The wave vertical position below the free surface.
height H, which was the mean crest-to trough wave height
computed over 20 different waves after the generated pro-
gressive waves became stable (about 7 waves), was varied
over a range of about 3.17-15.2 cm. The particle motion was
measured at different positions from the still water level to
about 10.5cm depth. In Table 1, the values of the control

Nonlin. Processes Geophys., 19, 1887, 2012 www.nonlin-processes-geophys.net/19/185/2012/



Y.-Y. Chen et al.: Particle trajectories beneath wave-current interaction 193

Table 1. Experimental conditions and comparison of measured and theoretical results of the particlelpenuass transport velocity
Uy = x; — U and Lagrangian mean wave levgl.

No Tg(s) d(em) H(m) b(em) U(m) H/L d/L TL(s) Uy (b)(cms™1) iz (cm)
Measured Theory Measured Theory Measured Theory
a 0.99 50 4.62 0 295 0.031 0.333 1.002 1.000 4.41 4.38 0.12 0.11
b 1.00 80 13.20 0 9.63 0.080 0485 1.061 1.063 19.12 19.15 0.77 0.78
c 1.39 80 15.20 0 8.93 0.052 0.274 1.433 1.430 14.63 14.59 0.65 0.63
d 2.06 80 5.82 0 11.72 0.012 0.158 2.062 2.064 12.12 12.15 0.06 0.07
e 0.96 50 5.23 0 -594 0.037 0.349 0.979 0.976 —4.03 -3.98 017 0.15
f 0.96 50 6.81 0 -6.60 0.048 0.349 0.982 0.979 -3.36 —-331 0.26 0.25
g 1.66 50 4.20 -95 -7.14 0.013 0.155 1.661 1.663 —6.79 —-6.83 0.03 0.04
h 0.93 50 3.17 0 —21.01 0.024 0.376 0.936 0.934 —20.25 —-20.21 0.08 0.06
0.0 03
/ /
/ /
0.2 / / 1/
| |
[ 1
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ke ! o
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Fig. 2. The dimensionless mass transport velocity pro§Heat the
relative water deptld /L = 0.5 and the relative wave height/L =
0.1 under various current conditions.

5.2 Lagrangian wave frequency

The Lagrangian angular frequeneyup to third order can
also be obtained as

Fig. 3. The relative ratio for water particle motion at the free surface
between Lagrangian and Eulerian periods for three current condi-

tions.

calculates the resultant wave period in Lagrangian form in a
combined flow field for all the water particles at different ele-

o =0g+02(b)
= 00— 30%k*(1+tanifkd) °°§2§“§1;”’) 0 (88)  vations within the fluid domain. This equation also indicates
—ao%secﬁkd. the frequency of particle motion near the surface is smaller

Hence, a general Lagrangian wave periodiffering from
the Eulerian wave period for all particles at different vertical

level b can be obtained directly in the odd-order Lagrangian

than that at the subsurface. For water particle motion at the
free surface, the relative ratio between the Lagrangian form
T. =2n /o and Eulerian fornTe = 27 /o for three differ-
ent current conditions is shown in Fig. 3, in whigh/ Tg is

solutions. The difference between the Lagrangian frequenc¥ound to increase with a following current (positiz8, and

o and the Eulerian wave frequenegy is

coshz(b+d)

0O—0f= _%a2k2(1+tanh7-kd) coshzd

O = oo—ao%secl?kd,

[eX]

(89)

to decrease in an opposing current (negakijefor a given
wave steepnesH /L. This implies that for a coplanar flow
the water particles near the surface move forward further over
one wave cycle than those against an opposing flow. More-

whereoy is the angular frequency computed by Stokes ex-over, T} is larger tharfg, even with the wave alone (e.g., the

pansion in the Eulerian system. It can be shown that&4). (

www.nonlin-processes-geophys.net/19/185/2012/

case ofU =0 in Fig. 3).
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5.3 Lagrangian mean level €))

Averaging the particle elevation up to the third order over 04
a given period of particle motion, the present theory gives
the Lagrangian mean leval (b), which is higher than the
Eulerian mean levejg =0 as

1

1 sinhx(b+d
}T’L—}T)E:—/ ydt:—a2k¢
T Jo 4

costtkd

Longuet-Higgins (1979, 1986) also showed that the La-
grangian mean level is higher than the Eulerian mean level
for progressive water waves. However, his expression is ap-
plicable only to particles at the free surface and is the same
as that given by the first term of EQQ®) atb =0.

(90)

kn

5.4 Wave profiles and water particle orbits

The most important characteristic of fluid motion described
by the Lagrangian solution is the trajectories of particles
which are represented by Eg82) and 83). The parame-
tera can be determined by the wave heightlefined as half
the vertical distance between the wave crest and wave trough
in wave numbek and the water deptli given. Hence, we
have

kn

H
E =[g1+ gS]b:O,ka—crt:Zm'r , nel (91)

the horizontal and vertical particle trajectories are

3 3
x=a+Ut+Yy (fatf). y=b+) (ga+g). (92

n=1 n=1 0.5

Figure 4 provides a comparison of the wave profiles be- kx
tween Lagrangian and Eulerian solutions, both to a third-
order approximation. The results reveal that the height of . . )
the wave increases against an opposing current (negativ'f:e'g' 4, A comparison on the wave profiles for the_ Eulerian and
F, = U/co) and decreases on a following current (positive Lagrgrjglan solutions both to a third-order undt_ar different current
Fy). In Figure 4a, the Eulerian wave profiles have anomalouscond'tlons(a) Fr =03, .(b) Fr=-0.2. Wave conqmond/; =02
) . ’ - - ~andH/L =0.1 (Solid line: third-order Lagrangian solution; dash-
bumps in the tro_ug_h for the wave conditions tested, whichyquad jine: third-order Eulerian solution).
may not be a realistic physical phenomenon for waves of con-
stant form. On the other hand, the Lagrangian wave profiles

have sharper crests and broader troughs, as well as exclude .
any artificial bumps at or near the trough. Clearly the third- Fig- 4 also show that they are symmetric with respect to the

order Lagrangian solution is more exact than the EulerianC"eSt line, which were recently proven to hold true for irrota-
solution of the same order for describing the shape of thdional waves

gravity wave. In general, the surface profile is an unknown In Fig. 5a—h, water particle orbits plotted for different cur-
function in the Eulerian approach, and the boundary condi+ent magnitudes exhibit variations in orbital patterns, both
tions at the free surface can only be satisfied in an approxiin shapes and sizes, as a function of its original elevation.
mately manner. However, the free surface in the LagrangiarAs can be expected in Fig. 5, the orbital displacement based
description is represented explicitly by a parametric functionon a third order solution is non-closed for a pure progres-
for the particles. The advantage of using Lagrangian descripsive wave. The elongation or shortening of the orbits in
tion is that it allows flexibility for capturing the actual shape the case with following or opposing current is apparent in
and the wave kinematics above mean water level. Thus theFig. 5a—h. Their orbital dimensions in the cases with pos-
oretically, Lagrangian solution can provide better predictionitive U values reflect the magnitude of a following current,
for the wave profile at a large Froude number than the Stokesand the converse is true for the condition with opposing cur-
expansion to the same order. The wave profiles depicted iment. It can be seen in each of the orbits plotted that a water
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(a) T =0.99sec ,H=4.62cm ,d=50cm ,b=0cm , U=2.95cm/sec
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Fig. 5. Comparisons between the orbits of water particles obtained by the presented theory and those from the experimental measurement:
of the PS motions at different water levels b in the various experimental wave cases, where solid line is the theoretical result and point is the
experimental data which the time interval between two adjacent poifits’ 20, Tt is the wave period.
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particle advances a distance forward, which is commonly re{posing current in the direction against the progressive wave,

ferred to as mean horizontal drift or mass transport in theespecially with a current in the large Froude numbgr In

direction of wave propagation. The water particle at the freethe cases with a following current, the effect of increasing

surface § = 0) travels fastest, whilst that in the interior of current speed is generally to increase the magnitude of the

the fluid propagates slower. To the third-order approxima-time-averaged mass transport velocity since the current is in

tion, the particle trajectory has non-closed orbit, irrespectivethe same direction as the wave propagation, thus resulting in

of their initial mean locations. This confirms the theoreti- augmentation to the horizontal distance traveled by a particle.

cal results obtained in Constantin (2006) and Constantin andFinally, a set of experiments analyzing the Lagrangian prop-

Strauss (2010) for waves of large amplitude. erties of nonlinear wave-current interaction flow is conducted
In the case of wave on a following current, the effect of in- in the wave tank. It shows excellent agreement between the

creasing current speed is generally to augment the magnitudexperimental and theoretical results, including particle tra-

and extent of the time-averaged drift velocity, thus resultingjectories, Lagrangian wave frequency, mass transport veloc-

in large horizontal distance traveled by a particle comparedty and Lagrangian mean water level predicted by the present

with the case without current. Again, the converse is truethird-order Lagrangian solution.

when a wave train encounters an opposing current, which

retards the advancement of water particles compared to th%ﬁ‘:k_”o"‘:'edgeme“tghet a“ﬂ‘l‘?rs thl"’(‘“k the anor;y:jngus ”tefsretis
: : : or Invaluable comments. IS WOrk was supported In par e

without a current or with a following current. As the strength o T orants 101.2611-1-110-504 101_262;_%_006_018_0023’ i

of an opposing current becomes comparable with the wav 9-2923-E-110-001-MY3 in Taiwan

speed, the water particle at greater depths beneath the still '

water level is mainly transport by the opposing current in giteq by: C. Kharif

larger current velocity and the direction of particle movementRreyiewed by: H. B. Branger and another anonymous referee

becomes contrary to wave progression. Figure 5a—h show ex-

cellent agreements between the measured trajectory and the

theoretical trajectory predicted by the present third order La-References

grangian wave theory. This is also in agreement with the

theoretical findings in Constantin and Strauss (2010). Biesel, F.: Study of wave propagation in water of gradually varying

depth, Gravity Waves, US National Bureau of Standards, Circu-

lar 521, 243-253, 1952.
. Brevik, I.: Flume experiment on waves and current I, Smooth bed,
6 Conclusions Coast. Eng., 4, 149-177, 1980.

) . o ) ) o . Buldakov, E. V., Taylor, P. H., and Eatock Taylor, R.: New asymp-

A particle-specific description of irrotational finite-amplitude (ot description of nonlinear water waves in Lagrangian coordi-
progressive gravity waves on a uniform current in water of nates, J. Fluid Mech., 562, 431—444, 2006.
uniform depth satisfying all the governing equations and theChen, Y. Y., Hsu, H. C., Chen, G. Y., and Hwung, H. H.: Theoret-
boundary conditions is presented. The new Lagrangian so- ical analysis of surface waves shoaling and breaking on a slop-
lution is obtained to the third order. It can be used not only ing bottom, Part 2 Nonlinear waves, Wave Motion, 43, 356-369,
to determine the wave properties available in the Eulerian 2006.
solution, but also to get the trajectory, the period, the mas<Shen, Y. Y.and Hsu, H. C.: Third-order asymptotic solution of non-
transport and the Lagrangian mean level of a water particle, linear standing water waves in Lagrangian coordinates, Chinese

. . . . Physics B., 18, 861, 2009.
which are not available from the Eulerian solution. In the Chen, Y. Y., Hsu, H. C., and Chen, G. Y.: Lagrangian experi-

Lagrangian so!utlon to_ a Seco,nd'ord,er’ the .Lagr-anglan MeAN ent and solution for irrotational finite-amplitude progressive

Ievellof a particle orbit over its motlon pgnod is found_to gravity waves at uniform depth, Fluid Dyn. Res., 42, 045511,

be higher than that of the Eulerian, and it also has a time-  4j:10.1088/0169-5983/42/4/04552D10.

dependent term referred to as the mass transport velocityzlamond, D.: On the Lagrangian description of steady surface grav-

which is applicable to the entire flow field. The frequency ity waves, J. Fluid Mech. 589, 433-454, 2007.

associated with water particle motions in Lagrangian formConstantin, A.: Edge waves along a sloping beach, J. Phys. A, 34,

differs from that of the Eulerian, and the former is a function ~ 9723-9731, 2001.

of wave steepness, uniform current speed and the Lagrangiggonstantin, A.: On the deep water wave motion, J. Phys. A, 34,

vertical marked labeb for each individual particle that can ~_ 1405-1417, 2001. o

be obtained directly based on the third-order solutions. Confstantlnz A and Strauss, W.: Exact steady periodic water waves
From the trajectories of water particles resulting from with vorticity, Commun. Pure Appl. Math., 57, 481-527, 2004.

. . it is f d th icle displ Constantin, A.: The trajectories of particles in Stokes waves, Invent.
wave-current interaction, it is found that particle displace- \,.« 166, 523-535, 2006.

ment near the surface decreases due to its mass transp@bnstantin, A.: On the particle paths in solitary water waves, Q.
velocity is resisted by an opposing current. Again in the  Appl. Math., 68, 81-90,2010.

case with an opposing current, the water particle further beConstantin, A. and Strauss, W.: Pressure beneath a Stokes wave,
neath the still water level is mainly transported by the op- Commun Pure Appl. Math., 63, 533-557, 2010.

Nonlin. Processes Geophys., 19, 1887, 2012 www.nonlin-processes-geophys.net/19/185/2012/


http://dx.doi.org//10.1088/0169-5983/42/4/045511

Y.-Y. Chen et al.: Particle trajectories beneath wave-current interaction 197

Constantin, A. and Escher, J.: Analyticity of periodic traveling free Ng, C. O.: Mass transport in gravity waves revisited, J. Geophys.,
surface water waves with vorticity, Ann. Math., 173, 559-568, Res., 109, C04012|0i:10.1029/2003JC002122004.

2011. Peregrine, D. H.: Interaction of water waves and currents, Adv.
Gerstner, F. J.: Theorie de wellen, Abh. d. K. bohm. Ges. Wiss., Appl. Mech., 16, 9-117, 1976.
reprinted in Ann der Physik 1809, 32, 412—-440, 1802. Pierson, W. J.: Perturbation analysis of the Navier-Stokes equations

Hsu, H. C., Chen, Y. Y., and Wang, C. F.: Perturbation analysis of in Lagrangian form with selected linear solution, J. Geophys.,
short-crested waves in Lagrangian coordinates, Nonlinear Anal- Res., 67, 3151-3160, 1962.

ysis: Real World Application, 11, 1522-1536, 2010. Stuhlmeier, R.: On edge waves in stratified water along a sloping
Jonsson, |. G.: Wave-current interaction, The Sea, Ocean Eng. Se- beach, J. Nonl. Math. Phys., 18, 127-137, 2011.
ries, 9, 1990. Rankine, W. J. M.: On the exact form of waves near the surface of

Kemp, P. H. and Simons R. R.: The interactions of waves and a deep water, Philos. T. R. Soc. A, 153, 127-138, 1863.
turbulence current: waves propagating with the current, J. FluidSanderson, B.: A Lagrangian solution for internal waves, J. Fluid
Mech., 116, 227-250, 1982. Mech., 152, 191-137, 1985.

Kemp, P. H. and Simons R. R.: The interactions of waves and a turThomas, G. P.: Wave-current interactions: an experimental and nu-
bulence current: waves propagating against the current, J. Fluid merical study, Part 1. Linear waves, J. Fluid Mech., 110, 457—

Mech., 130, 73-89, 1988. 474, 1981.
Lamb, H.: Hydrodynamics, 6th ed. Cambridge University Press, Thomas, G. P.: Wave-current interactions: an experimental and nu-
1932. merical study. Part 2, Nonlinear waves, J. Fluid Mech., 216, 505—
Longuet-Higgins, M. S.: Mass transport in water waves, Philos. T. 536, 1990.
R. Soc. A, 245, 533-581, 1953. Thomas, G. P. and Klopman G.: Wave-current interactions in the
Longuet-Higgins, M. S.: The trajectories of particles in steep, sym- near-shore region, Adv. Fluid. Mech Ser., Computational Me-
metric gravity waves, J. Fluid Mech., 94, 497-517, 1979. chanics Publications, 66—84, 1997.
Longuet-Higgins, M. S.: Eulerian and lagrangian aspects of surfacdJmeyama, M.: Coupled PIV and PTV measurements of particle
waves, J. Fluid Mech., 173, 683-707, 1986. velocities and trajectories for surface waves following a steady

Miche, A.: Mouvements ondulatoires de la mer en profondeur con- current, J. Waterw. Port C-ASCE, 137, 85-94, 2010.
stante ou écroissante, Annales des ponts et chaussees, 25-7&aman, M. H. and Baddour, E.: Interaction of waves with non-
131-164, 270-292, 369-406, 1944. colinear currents, Ocean Eng., 38, 541-549, 2010.
Naciri, M. and Mei, C. C.: Evolution of a short surface wave on a
very long surface wave of finite amplitude, J. Fluid Mech., 235,
415-452,1992.

www.nonlin-processes-geophys.net/19/185/2012/ Nonlin. Processes Geophys., 1919852012


http://dx.doi.org/10.1029/2003JC002121

