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Abstract. Within the Lagrangian reference framework we
present a third-order trajectory solution for water particles
in a two-dimensional wave-current interaction flow. The ex-
plicit parametric solution highlights the trajectory of a wa-
ter particle and the wave kinematics above the mean water
level and within a vertical water column, which were calcu-
lated previously by an approximation method using an Eu-
lerian approach. Mass transport associated with a particle
displacement can now be obtained directly in Lagrangian
form without using the transformation from Eulerian to La-
grangian coordinates. In particular, the Lagrangian wave fre-
quency and the Lagrangian mean level of particle motion can
also be obtained, which are different from those in an Eule-
rian description. A series of laboratory experiments are per-
formed to measure the trajectories of particles. By compar-
ing the present asymptotic solution with laboratory experi-
ments data, it is found that theoretical results show excellent
agreement with experimental data. Moreover, the influence
of a following current is found to increase the relative hor-
izontal distance traveled by a water particle, while the con-
verse is true in the case of an opposing current.

1 Introduction

The problem of nonlinear water waves propagating through
areas containing tidal, ocean or discharge current is an im-
portant issue in marine environments. The interaction be-
tween these flows plays vital roles in many aspect of coastal
and ocean engineering, for example forces due to such flow
fields on fixed or floating offshore wind turbines, sediment
transport, contaminant and nutrient dispersion. The phe-
nomenon of wave-current interaction has been studied ex-
tensively since the 1970s. Several theoretical solutions for
waves on currents with uniform or sheared profiles have been

well documented in the review articles of Peregrine (1976),
Jonsson (1990) and Thomas and Klopman (1997). Reports
are also available on experimental studies for combined wave
and current covering various aspects of this problem (Bre-
vik, 1980; Constantin and Strauss, 2004; Kemp and Simons,
1982, 1988; Thomas, 1981, 1990).

Most previous theories dealing with wave-current interac-
tions have employed the Eulerian description, in which the
free surface fluctuations can be expressed in a Taylor series
expansion relative to a fixed water level (i.e., the still water
level). This implicitly assumes that the surface profile of a
wave is a differentiable single-valued function. Unlike the
Eulerian free surface, which is given as an implicit function,
a Lagrangian surface is described through a parametric repre-
sentation of the position of a particle. The use of Lagrangian
coordinates yields the only known nontrivial exact solutions
to the governing equations for gravity water waves (i.e., Ger-
stner’s solution for deep-water waves (Gerstner, 1802) and
a recently found edge wave solution along a sloping beach
(Constantin, 2001) which was extended to stratified flows
(R. Stuhlmeier, 2012)). The main advantage of such a de-
scription is to allow better flexibility for describing the actual
shape of the ocean surface, which will be demonstrated later
in this paper. Based on this reason, it has been shown that the
Lagrangian description is more appropriate for the motion of
the limiting free surface, which cannot be captured by the
classical Eulerian solutions (Biesel, 1952; Chen et al., 2006;
Naciri and Mei, 1992). However, reports on this notable im-
provement using Lagrangian description are rather limited.

The first water wave theory in Lagrangian coordinates
in which the flow possesses finite vorticity was presented
by Gerstner (1802), which was re-discovered by Rank-
ine (1863) and the modern discussion by Constantin (2001)
and Henry (2008). Miche (1944) proposed perturbation La-
grangian solutions to the second order for a gravity wave.
Pierson (1962) applied the Navier-Stokes equation to the
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deep water waves in the Lagrangian formulae and ob-
tained the first-order Lagrangian solution. Sanderson (1985)
obtained second-order solutions for small amplitude inter-
nal waves in a Lagrangian coordinate system. Ng (2004)
re-examined the problem of mass transport due to partial
standing waves in one and two layer fluids. Buldakov et
al. (2006) developed a Lagrangian asymptotic formulation
up to the fifth order for nonlinear water waves in deep water.
Clamond (2007) obtained a third-order Lagrangian solution
for gravity waves in finite-depth water and a seventh-order
solution for deep water waves. To date, only a limited few
theoretical solutions are derived for wave-current interaction
in Lagrangian coordinates. Umeyama (2010) gave a wrong
third-order solution of particle trajectory, which did not in-
clude Lagrangian wave frequency and Lagrangian mean level
shown in Eqs. (88) and (90) derived in this paper. Zaman and
Baddour (2010) presented a first-order solution of particle
trajectory in the combined wave-current flow. The theoretical
investigations of the particle paths beneath a Stokes wave and
solitary wave were recently undertaken by Constantin (2006,
2010).

This paper aims to study particle trajectories of a two-
dimensional wave-current field based on the fully Lagrangian
framework, and to derive asymptotic solutions that can be
used to describe the dynamics for the entire flow field. Pre-
vious works on progressive, standing, short-crested gravity
waves and gravity-capillary waves have been summarized
in the papers by Chen and Hsu (2009), Chen et al. (2010)
and Hsu et al. (2010). In this paper, we look into the ef-
fect of uniform current on a gravity water wave, the motion
of which is assumed to be inviscid, incompressible and ir-
rotational. A set of governing equations in Lagrangian co-
ordinates is derived for two-dimensional progressive gravity
waves on uniform current in a constant water depth. We will
construct asymptotic expansions of the solution in powers of
the wave amplitude, which is assumed to be small using the
Lindstedt-Poincare perturbation method. Approximate solu-
tions including particle trajectory, Lagrangian wave period,
the Lagrangian mean level and mass transport velocity are
derived up to the third order. A detailed analysis of influ-
ences of the uniform current is then carried out. Finally, to
validate the accuracy of the analytical results, a series of lab-
oratory experiments are performed. The trajectories of water
particles in a wave-current interaction flow are shown to have
an excellent agreement with experimental data.

The problem formulation and the procedures for construct-
ing asymptotic solutions are described in Sect. 2. In Sect. 3,
we derive equations for the properties of surface-particle tra-
jectories and present results for some selected wave-current
flow. Section 4 is devoted to a description of experimental
apparatus and of the experimental procedure. In Sect. 5 the
trajectories of surface and subsurface particles are presented.
Some concluding remarks are given in the final section.

 

    

Figure 1 Definition sketch showing a system of progressive wave train on a uniform 

current. 

Fig. 1. Definition sketch showing a system of progressive wave
train on a uniform current.

2 Formulation of the problem

We consider the problem of a two-dimensional monochro-
matic wave with a steady uniform current on an imperme-
able and horizontal bed (Fig. 1). The fluid motion is taken
to be two-dimensional and irrotational, and the wave is right-
going. We choose Cartesian axes withx pointing horizon-
tally to the right andy vertically upward from the still water
level. The mathematical problem is formulated in terms of
Lagrangian variables,a andb, which define the original po-
sition of individual fluid particles. At any timet , we letb = 0
be the free surface, andb = d be the bottom. The Carte-
sian coordinates (x(a,b,t), y(a,b,t)) of fluid particles and
the fluid pressurep(a,b,t) are the unknowns. Based on the
Lagrangian description, the governing equations and bound-
ary conditions for two-dimensional irrotational free-surface
flow are summarized as follows:

J =
∂(x,y)

∂(a,b)
= 1, (1)

∂J

∂t
= xatyb +xaybt −xbtya −xbyat = 0, (2)

xatxb −xbtxa +yatyb −ybtya = 0, (3)

∂φ

∂a
= xtxa +ytya,

∂φ

∂b
= xtxb +ytyb, (4)

p

ρ
= −

∂φ

∂t
−gy +

1

2
[(

∂x

∂t
)2

+(
∂y

∂t
)2

], (5)

p = 0, b = 0. (6)
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v = yt = 0, y = b = −d. (7)

In Eqs. (1)–(7), subscriptsa, b, andt denote partial deriva-
tives with respect to the specified variables,U denotes the
speed of a steady uniform current,g is the gravitational
acceleration,p(a,b,t) is water pressure,φ(a,b,t) is a ve-
locity potential function in the Lagrangian system. Except
for Eqs. (4) and (5), the fundamental physical relationships
defining the equations above have been derived previously
(Lamb, 1932; Naciri and Mei, 1992). Equation (1) is the con-
tinuity equation based on the invariant condition on the vol-
ume of a Lagrangian particle; Eq. (2) is the differentiation of
Eq. (1) with respect to time. Equations (3) and (4) denote the
irrotational flow condition and the corresponding Lagrangian
velocity potential, respectively. Equation (5) is the Bernoulli
equation for the irrotational flow in the Lagrangian descrip-
tion. The wave motion has to satisfy a number of boundary
conditions at the bottom and on the free water surface. Equa-
tion (6) is the dynamic boundary condition of zero pressure
at the free surface. On a rigid and impermeable bottom, the
no-flux bottom boundary condition gives Eq. (7).

3 Asymptotic solutions

To solve the nonlinear Eqs. (1)–(7), we introduce the La-
grangian angular frequencyσ of particle motion, which is
a function of a nonlinear parameter and the Lagrangian level
label(b), making the wave periodic in timet and spacex (or
a) in order to avoid a secular term. We use the Lindstedt-
Poincare technique that yields uniform expansions to un-
cover the solutions in the Lagrangian system. The issue of
convergence is covered by the recent regularity results in
Constantin and Esher (2011). In the Lagrangian approach,
the particle positionsx andy, the potential functionφ, and
pressurep are considered as functions of independent vari-
ablesa, b and timet . Following Chen and Hsu (2009), Chen
et al. (2010) and Hsu et al. (2010), these solutions are sought
in perturbation series by introducing an ordering parameter
ε, which is inserted to identify the order of the associated
term:

x = a+Ut +

∞∑
n=1

εn
[fn(a,b,σ t)+f ′

n(a,b,σ0t)], (8)

y = b+

∞∑
n=1

εn
[gn(a,b,σ t)+g′

n(a,b,σ0t)], (9)

φ = Ua+
1

2
U2t +

∞∑
n=1

εn
[φn(a,b,σ t)+φ′

n(a,b,σ0t)], (10)

p = −ρgb+

∞∑
n=1

εnpn(a,b,σ t), (11)

σ = σ0(a,b)+

∞∑
n=1

εnσn(a,b)= 2π
/
TL, (12)

where the Lagrangian variables (a, b) are defined as the two
characteristic parameters. In these expressions,fn, gn, φn

andpn are expected to be associated with thenth-order har-
monic solutions.f ′

n, g′
n andφ′

n are non-periodic functions
that increase linearly with time.σ = 2π

/
TL is the angular

frequency of particle motion or the Lagrangian angular fre-
quency for a particle reappearing at the same elevation.TL
is the corresponding period of particle motion. Upon substi-
tuting Eqs. (8)–(12) into Eqs. (1)–(7) and collecting terms of
equal order, we obtain a sequence of nonhomogeneous gov-
erning equations that can be solved successively, as shown in
the following sections.

3.1 First-order approximation

Collecting terms of orderε, the governing equations and the
boundary conditions can be obtained as follows:

f1a +f ′

1a +g1b +g′

1b +[σ0a(f1σ t +f ′

1σ0t
)

+σ0b(g1σ t +g′

1σ0t
)]t = 0,

(13)

σ0(f1aσ t +f ′

1aσ0t
+g1bσ t +g′

1bσ0t
)

+σ0a(f1σ t +f ′

1σ0t
)+σ0b(g1σ t +g′

1σ0t
)

+σ0{σ0a[f1(σ t)2 +f ′

1(σ0t)
2]+σ0b[g1(σ t)2 +g′

1(σ0t)
2]}t = 0,

(14)

σ0(f1bσ t +f ′

1bσ0t
−g1aσ t −g′

1aσ0t
)

+σ0b(f1σ t +f ′

1σ0t
)−σ0a(g1σ t +g′

1σ0t
)

+σ0{σ0b[f1(σ t)2 +f ′

1(σ0t)
2]−σ0a[g1(σ t)2 +g′

1(σ0t)
2]}t = 0,

(15)

φ1a +φ′

1a +σ0a(φ1σ t +φ′

1σ0t
)t

= U · [(f1a +f ′

1a)+σ0a(f1σ t +f ′

1σ0t
)t]+σ0(f1σ t +f ′

1σ0t
),

(16)

φ1b +φ′

1b +σ0b(φ1σ t +φ′

1σ0t
)t

= U · [(f1b +f ′

1b)+σ0b(f1σ t +f ′

1σ0t
)t]+σ0(g1σ t +g′

1σ0t
),

(17)

p1

ρ
= U ·σ0(f1σ t +f ′

1σ0t
)−σ0(φ1σ t +φ′

1σ0t
)−g(g1+g′

1), (18)

p1 = 0 at b = 0, (19)

g1σ t = g′

1σ0t
= 0 on b = −d. (20)

The flow is assumed periodic with a crest ata = 0 andt = 0,
and hence the first-order solution can be easily written as

f1 = −α
coshk(b+d)

coshkd
sin(ka−σ t), (21a)

g1 = α
sinhk(b+d)

coshkd
cos(ka−σ t), (21b)

f ′

1 = g′

1 = 0, (21c)

σ0a = σ0b = 0, (21d)

φ1 = (
σ0

k
−U)α

coshk(b+d)

coshkd
sin(ka−σ t), (21e)

σ 2
0 = gk tanhkd, (21f)

www.nonlin-processes-geophys.net/19/185/2012/ Nonlin. Processes Geophys., 19, 185–197, 2012



188 Y.-Y. Chen et al.: Particle trajectories beneath wave-current interaction

p1

ρ
= −gα

sinhkb

cosh2kd
cos(ka−σ t), (21g)

where the parameterα represents the amplitude function of
the particle displacement; the wave amplitude is, as usual,
taken asa0 = α tanhkd, wherek is the wave number (=2π/L,
L is wave length).φ1(a,b,t) is the first-order Lagrangian ve-
locity potential andp1(a,b,t) is the first-order wave dynamic
pressure in the Lagrangian form with pressurep1 = 0 at the
free surfaceb= 0. Equations (21a–g) satisfy all the hydrody-
namic equations formulated in Lagrangian terms including
the irrotational condition, and differ from Gerstner’s wave in
infinite water depth, which possesses finite vorticity. The dis-
persion relation shows that the first-order Lagrangian wave
frequency (σ0) is the same as that of the first-order Stokes
wave frequency in the Eulerian approach (Biesel, 1952). The
first-order free surface in Lagrangian coordinates is given by
settingb = 0 in Eqs. (21a) and (21b), and is similar to expres-
sions for the profile found from the first-order Eulerian equa-
tions. Equation (21d) is the basic velocity potential solution
with a steady uniform current. In Eq. (21f),σ0 is the essen-
tial Lagrangian wave frequency for water particles relative to
the uniform current. From this, it can be demonstrated that
the Doppler’s effect is not apparent in the Lagrangian disper-
sion relation. This is correct: in Eulerian frame of reference,
intrinsic wave frequencyσ0 is different fromabsolutewave
frequency(σ0−kU).

3.2 Second-order approximation

Collecting terms of orderε2 and using Eq. (21), the govern-
ing equations and the boundary conditions can be obtained
as

f2a +f ′

2a +g2b +g′

2b +f1ag1b −f1bg1a (22)

+(σ1af1σ t +σ1bg1σ t )t = 0,

σ0(f2aσ t +f ′

2aσ0t
+g2bσ t +g′

2bσ0t
)

+σ1(f1a +g1b)σ t +σ0(f1ag1b −f1bg1a)σ t

+σ1af1σ t +σ1bg1σ t +σ0[σ1af1(σ t)2 +σ1bg1(σ t)2]t = 0,

(23)

σ0(f2bσ t +f ′

2bσ0t
−g2aσ t −g′

2aσ0t
)

+σ1(f1b −g1a)σ t +σ1bf1σ t −σ1ag1σ t

+σ0(f1af1bσ t −f1aσ tf1b +g1ag1bσ t −g1bg1aσ t )

+σ0[σ1bf1(σ t)2 −σ1ag1(σ t)2]t = 0,

(24)

φ2a +φ′

2a = U · [(f2a +f ′

2a)

+σ0a(f2σ t +f ′

2σ0t
)t]+U ·σ1a tf1σ t

−σ0a(φ2σ t +φ′

2σ0t
)

+σ0(f2σ t +f ′

2σ0t
)+σ1f1σ t

+σ0(f1af1σ t +g1ag1σ t )−σ1a tφ1σ t ,

(25)

φ2b +φ′

2b = U · [(f2b +f ′

2b)+σ0b(f2σ t +f ′

2σ0t
)t]

+U ·σ1btf1σ t −σ0b(φ2σ t +φ′

2σ0t
)

+σ0(g2σ t +g′

2σ0t
)+σ1g1σ t

+σ0(f1bf1σ t +g1bg1σ t )−σ1btφ1σ t ,

(26)

p2
ρ

= −[σ0(φ2σ t +φ′

2σ0t
)+g(g2+g′

2)]

−σ1φ1σ t +
1
2σ 2

0 (f 2
1σ t +g2

1σ t )

+U ·σ0(f2σ t +f ′

2σ0t
)+U ·σ1(f1σ t +f ′

1σ0t
),

(27)

and

p2 = 0 at b=0. (28)

g2σ t = g′

2σ0t
= 0 on b=−d. (29)

Substituting Eqs. (21a∼g) into Eqs. (22)–(24), the second-
order governing equations in terms ofε2, including the con-
tinuity equation and the irrotational condition, are given by

f2a +f ′

2a +g2b +g′

2b

=
1
2k2α2

· {
cosh2k(b+d)

cosh2kd
+

cos2(ka−σ t)

cosh2kd
}

−α · {σ1a ·
coshk(b+d)

coshkd
cos(ka−σ t)

+σ1b ·
sinhk(b+d)

coshkd
sin(ka−σ t)} · t,

(30)

σ0(f2aσ t +f ′

2aσ0t
+g2bσ t +g′

2bσ0t
)

= α2
·k2

·σ0 ·
sin2(ka−σ t)

cosh2kd

−α · [σ1a
coshk(b+d)

coshkd
cos(ka−σ t)

+σ1b
sinhk(b+d)

coshkd
sin(ka−σ t)]

−α ·σ0 · [σ1a
coshk(b+d)

coshkd
sin(ka−σ t)

−σ1b
sinhk(b+d)

coshkd
cos(ka−σ t)]t,

(31)

σ0(f2bσ t +f ′

2bσ0t
−g2aσ t −g′

2aσ0t
)

= α2k2σ0
sinh2k(b+d)

cosh2kd

−α · [σ1b
coshk(b+d)

coshkd
cos(ka−σ t)

−σ1a
sinhk(b+d)

coshkd
sin(ka−σ t)]

−α ·σ0 · [σ1a
sinhk(b+d)

coshkd
cos(ka−σ t)

+σ1b
coshk(b+d)

coshkd
sin(ka−σ t)]t.

(32)

For gravity waves of permanent form, the termstcos(ka −

σ t) andtsin(ka−σ t) that increase linearly with time have to
be zero to avoid resonance. Noting thatσ1b = 0 orσ1 = ω1 =

constant, then the general solution that satisfies the bottom
boundary condition can be written as

f2 = −β2
cosh2k(b+d)

cosh2kd
sin2(ka−σ t)

+
1

4
α2k

sin2(ka−σ t)

cosh2kd

−λ2
coshk(b+d)

coshkd
sin(ka−σ t) (33)

f ′

2 =
1

2
α2k

cosh2k(b+d)

cosh2kd
σ0t (34)

g2 = β2
sinh2k(b+d)

cosh2kd
cos2(ka−σ t) (35)

+
1

4
α2k

sinh2k(b+d)

cosh2kd
+λ2

sinhk(b+d)

coshkd
cos(ka−σ t)
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g′

2 = 0. (36)

Substituting Eqs. (33)–(36) into the irrotational Eq. (25) in
ε2 order, we obtain

φ2a = −2kUβ2
cosh2k(b+d)

cosh2kd
cos2(ka−σ t)

+
1

2
α2k2U

1

cosh2kd
cos2(ka−σ t)

−λ2kU
coshk(b+d)

coshkd
cos(ka−σ t)

+σ0

[
2β2

cosh2k(b+d)

cosh2kd
cos2(ka−σ t) (37)

−α2k
cos2(ka−σ t)

cosh2kd

]
+(ασ1+σ0λ2)

coshk(b+d)

coshkd
cos(ka−σ t),

φ2b +φ′

2b = −2kUβ2
sinh2k(b+d)

cosh2kd
sin2(ka−σ t)

−kUλ2
sinhk(b+d)

coshkd
sin(ka−σ t)

+α2k2U
sinh2k(b+d)

cosh2kd
σ0t (38)

+2σ0β2
sinh2k(b+d)

cosh2kd
sin2(ka−σ t)

+σ0λ2
sinhk(b+d)

coshkd
sin(ka−σ t)

+σ1α
sinhk(b+d)

coshkd
sin(ka−σ t).

Note that the secular terms in Eqs. (37) and Sect.3.2have
to be eliminated. The second-order Lagrangian velocity po-
tential is obtained by integrating over the Lagrangian vari-
ablesa or b as

φ2 =
σ0−kU

k
β2

cosh2k(b+d)

cosh2kd
sin2(ka−σ t)

−
1

2
α2(σ0−

1

2
kU)

1

cosh2kd
sin2(ka−σ t) (39)

+
1

2
α2kU

cosh2k(b+d)

cosh2kd
σ0t +D2(σ0t).

and

αω1+λ2(σ0−kU) = 0. (40)

Substituting the solutions up to the second order into the en-
ergy Eq. (27) in ε2 order, we can get

p2
ρ

= {2σ0
σ0−kU

k
β2

cosh2k(b+d)

cosh2kd
−

3
4σ 2

0 α2 1
cosh2kd

−gβ2
sinh2k(b+d)

cosh2kd
+2Uσ0β2

cosh2k(b+d)

cosh2kd
} ·cos2(ka−σ t)

+{−gλ2
sinhk(b+d)

coshkd
+σ1

σ0−kU
k

α
coshk(b+d)

coshkd

+Uσ0λ2
coshk(b+d)

coshkd
+Uσ1α

coshk(b+d)
coshkd

} ·cos(ka−σ t)

+{−σ0D2σ0t −
1
4gα2k

sinh2k(b+d)

cosh2kd
+

1
4σ 2

0 α2 cosh2k(b+d)

cosh2kd
}.

(41)

Applying the zero pressure condition at the free surface, the
unknown coefficients in Eq. (41) are obtained as

λ2 = 0, ω1 = 0,β2 =
3

8
α2k(tanh−2kd −1),

D2 = φ′

2(σ0t) =
1

4
α2σ 2

0 (tanh2kd −1)t. (42)

The second-order Lagrangian solutions are assembled as

f2 = −
3

8
α2k(tanh−2kd − tanh2kd)

cosh2k(b+d)

cosh2kd
sin2(ka−σ t)

+
1

4
α2k(1− tanh2kd)sin2(ka−σ t),

(43)

f ′

2 =
1

2
α2k(1+ tanh2kd)

cosh2k(b+d)

cosh2kd
σ0t, (44)

g2 =
3
8α2k(tanh−2kd − tanh2kd)

sinh2k(b+d)
cosh2kd

cos2(ka−σ t)+ 1
4α2k(1+ tanh2kd)

sinh2k(b+d)
cosh2kd

,
(45)

g′

2 = σ1 = 0, (46)

φ2 =
σ0−kU

k
β2

cosh2k(b+d)

cosh2kd
sin2(ka−σ t)

−
1
2α2(σ0−kU) 1

cosh2kd
sin2(ka−σ t)

−
1
4α2kU 1

cosh2kd
sin2(ka−σ t),

(47)

φ′

2 =
1

4
α2σ 2

0 (tanh2kd −1)t +
1

2
α2kU

cosh2k(b+d)

cosh2kd
σ0t, (48)

p2
ρ

= {2σ0
σ0−kU

k
β2

cosh2k(b+d)

cosh2kd

−gβ2
sinh2k(b+d)

cosh2kd
−

3
4σ 2

0 α2 1
cosh2kd

+2Uσ0β2} ·cos2(ka−σ t)

−
1
4α2σ 2

0 (tanh2kd −1)− 1
4gα2k

sinh2k(b+d)

cosh2kd

+
1
4α2σ 2

0
cosh2k(b+d)

cosh2kd
.

(49)

The Lagrangian formulation for the particle trajectory at the
second order approximation comprises a periodic component
f2 and non-periodic functionf ′

2. The latter increases linearly
with time and is independent of the Lagrangian horizontal
labela, which represents the mass transport, implying that a
constant net motion would depend only on the vertical levelb

where the particle is located in the uniform current. The tra-
jectory is the smallest near the bottom and is not a closed or-
bit as predicted by the first-order approximation. Moreover,
Eq. (33), a second-order quantity, renders the same form ob-
tained by Longuet-Higgins (1953) for the case of wave alone
(i.e., without uniform current). The solution for vertical dis-
placementg2 includes a second harmonic component and a
time-independent term which is a function of wave steepness
and the Lagrangian vertical labelb. Overall, the expression
of g2 yields vertical shift correction to a second-order which
decreases with water depth. Taking the time average of the
particle elevationg2 over a given period of a particle mo-
tion from Eq. (35), it can be shown that the mean level of
water particle orbit in Lagrangian approach is higher than
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that in the Eulerian counterpart, as suggested by Longuet-
Higgins (1979, 1986) for two-dimensional progressive water
waves.

For the limiting caseU = 0, one can verify that the present
theory reduces to pure progressive waves of constant depth,
as was previously obtained by Chen et al. (2010).

3.3 Third-order approximation

The third-order governing equations and boundary condi-
tions can be obtained by collecting the terms of

f3a +f ′

3a +g3b +g′

3b +f1ag2b +f2ag1b −f1bg2a

−(f2b +f ′

2b)g1a +(σ2af1σ t +σ2bg1σ t )t = 0,
(50)

σ0(f3aσ t +f ′

3aσ0t
+g3bσ t +g′

3bσ0t
)+σ2(f1aσ t +g1bσ t )

+σ2af1σ t +σ2bg1σ t +σ0[σ2af1(σ t)2

+σ2bg1(σ t)2]t +σ0[f1aσ tg2b +f1ag2bσ t

+f2aσ tg1b +f2ag1bσ t −f1bσ tg2a −f1bg2aσ t −(f2bσ t

+f ′

2bσ0t
)g1a −(f2b +f ′

2b)g1aσ t ] = 0,

(51)

σ0(f3bσ t +f ′

3bσ0t
−g3aσ t −g′

3aσ0t
)+σ2(f1bσ t −g1aσ t )

+σ2bf1σ t −σ2ag1σ t +σ0[σ2bf1(σ t)2

−σ2ag1(σ t)2]t +σ0[f1a(f2bσ t +f ′

2bσ0t
)

+f2af1bσ t −f2aσ tf1b

−f1aσ t (f2b +f ′

2b)+g1ag2bσ t +g2ag1bσ t −g1bg2aσ t

−g2bg1aσ t ] = 0,

(52)

φ3a +φ′

3a = U · [(f3a +f ′

3a)+σ0a(f3σ t +f ′

3σ0t
)t]

+σ0(f3σ t +f ′

3σ0t
)+σ2f1σ t +σ0[f1σ tf2a

+(f2σ t +f ′

2σ0t
)f1a +g1σ tg2a +g2σ tg1a]−σ2a tφ1σ t ,

(53)

φ3b +φ′

3b = U · [(f3b +f ′

3b)

+σ0b(f3σ t +f ′

3σ0t
)t]+(Uf1σ t

−φ1σ t )σ2bt +σ0(g3σ t +g′

3σ0t
)

+σ2g1σ t +σ0[f1σ t (f2b +f ′

2b)

+(f2σ t +f ′

2σ0t
)f1b +g1σ tg2b +g2σ tg1b],

(54)

p3
ρ

= U ·σ0(f3σ t

+f ′

3σ0t
)+U ·σ1f2σ t+

U ·σ2f1σ t −[σ0(φ3σ t

+φ′

3σ0t
)+g(g3+g′

3)]

−σ2φ1σ t +σ 2
0 [f1σ t (f2σ t +f ′

2σ0t
)

+g1σ tg2σ t ],

(55)

p3 = 0 at b=0, (56)

g3σ t = g′

3σ0t
= 0 on b=−d. (57)

On substituting the first- and second-order approximations
into the governing Eqs. (50)–(52), the third-order continuity,
irrotational and energy equations become

f3a +f ′

3a +g3b +g′

3b

= αk2(2β2+
1
4α2k)

cosh3k(b+d)

cosh3kd
cos(ka−σ t)

+αk2(2β2−
1
4α2k)

coshk(b+d)

cosh3kd
cos3(ka−σ t)

−α · {[α2k3σ0
sinh2k(b+d)

cosh2kd
+σ2b] ·

sinhk(b+d)
coshkd

sin(ka−σ t)

+σ2a
coshk(b+d)

coshkd
cos(ka−σ t)} · t,

(58)

σ0(f3aσ t +f ′

3aσ0t
+g3bσ t +g′

3bσ0t
)

= αk2σ0[(2β2+
1
4α2k)

cosh3k(b+d)

cosh3kd
sin(ka−σ t)

+(6β2−
3
4α2k)

coshk(b+d)

cosh3kd
sin3(ka−σ t)]

−α · {[α2k3σ0
sinh2k(b+d)

cosh2kd
+σ2b]

sinhk(b+d)
coshkd

sin(ka−σ t)

+σ2a
coshk(b+d)

coshkd
cos(ka−σ t)}

+α ·σ0{[α
2k3σ0

sinh2k(b+d)

cosh2kd
+σ2b]

sinhk(b+d)
coshkd

cos(ka−σ t)

−σ2a
coshk(b+d)

coshkd
sin(ka−σ t)} · t,

(59)

σ0(f3bσ t +f ′

3bσ0t
−g3aσ t −g′

3aσ0t
)

= αk2σ0[(6β2+
3
4α2k)

sinh3k(b+d)

cosh3kd
cos(ka−σ t)

+(2β2+
1
4α2k)

sinhk(b+d)

cosh3kd
cos3(ka−σ t)]

−α · {[
1
2α2k3σ0

sinhk(b+d)

cosh3kd
+σ2b

coshk(b+d)
coshkd

]cos(ka−σ t)

−σ2a
sinhk(b+d)

coshkd
sin(ka−σ t)}

−α ·σ0{[α
2k3σ0

sinh2k(b+d)

cosh2kd

+σ2b]
coshk(b+d)

coshkd
sin(ka−σ t)

+σ2a
sinhk(b+d)

coshkd
cos(ka−σ t)} · t.

(60)

From Eqs. (58)–(60), the secular terms that grow with time
have to be zero. We can obtain

σ2a = 0 andσ2b = −α2k3σ0
sinh2k(b+d)

cosh2kd
. (61)

Integrating Eq. (61) withb, σ2 is given by

σ2 = −
1

2
α2k2σ0

cosh2k(b+d)

cosh2kd
+ω2, (62)

whereω2 is a constant which needs to be solved.
Using Eq. (62), Eqs. (58)–(60) can be reduced to

f3a +f ′

3a +g3b +g′

3b = αk2(2β2

+
1
4α2k)

cosh3k(b+d)

cosh3kd
cos(ka−σ t)

+αk2(2β2−
1
4α2k)

coshk(b+d)

cosh3kd
cos3(ka−σ t),

(63)

σ0(f3aσ t +f ′

3aσ0t
+g3bσ t +g′

3bσ0t
)

= αk2σ0[(2β2+
1
4α2k)

cosh3k(b+d)

cosh3kd
sin(ka−σ t)

+(6β2−
3
4α2k)

coshk(b+d)

cosh3kd
sin3(ka−σ t)],

(64)

σ0(f3bσ t +f ′

3bσ0t
−g3aσ t −g′

3aσ0t
)

= αk2σ0[(6β2+
5
4α2k)

sinh3k(b+d)

cosh3kd
cos(ka−σ t)

+(2β2+
1
4α2k)

sinhk(b+d)

cosh3kd
cos3(ka−σ t)].

(65)

From Eqs. (63)–(65), the solutions off3, f ′

3, g3 andg′

3 can
be assumed as

f3 = [−β3
cosh3k(b+d)

cosh3kd
+

1
6αk(5β2

−
1
2α2k)

coshk(b+d)

cosh3kd
]sin3(ka−σ t)

−[
1
2αk(5β2+α2k)

cosh3k(b+d)

cosh3kd

+λ3
coshk(b+d)

cosh3kd
]sin(ka−σ t),

(66)

g3 = [β3
sinh3k(b+d)

cosh3kd
−

1
2αkβ2

sinhk(b+d)

cosh3kd
]cos3(ka−σ t)

+[
1
2αk(3β2+

1
2α2k)

sinh3k(b+d)

cosh3kd

+λ3
sinhk(b+d)

cosh3kd
]cos(ka−σ t),

(67)
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f ′

3 = g′

3 = 0, (68)

whereβ3 andλ3 are undetermined coefficients which can be
found by using the dynamic free surface boundary condition.

Substituting these terms, the first- and the second-order
solutions into Eqs. (53) and (54), we can get

φ3a +φ′

3a = U · [−3kβ3
cosh3k(b+d)

cosh3kd

+
1
2αk2(5β2−

1
2α2k)

coshk(b+d)

cosh3kd
]cos3(ka−σ t)

−U · [
1
2αk2(5β2+α2k)

cosh3k(b+d)

cosh3kd

+kλ3
coshk(b+d)

cosh3kd
]cos(ka−σ t)

+3σ0 · [β3
cosh3k(b+d)

cosh3kd
−

1
2αk(3β2−

1
2α2k)

coshk(b+d)

cosh3kd
]

·cos3(ka−σ t)

+σ0 · [
1
2αkβ2

cosh3k(b+d)

cosh3kd
+(α ·

ω2
σ0

+λ3 ·sech2kd)
coshk(b+d)

cosh3kd
] ·cos(ka−σ t),

(69)

φ3b +φ′

3b = U · [−3kβ3
sinh3k(b+d)

cosh3kd

+
1
6αk2(5β2−

1
2α2k)

sinhk(b+d)

cosh3kd
]sin3(ka−σ t)

−U · [
3
2αk2(5β2+α2k)

sinh3k(b+d)

cosh3kd

+kλ3
sinhk(b+d)

cosh3kd
]sin(ka−σ t)

+3σ0 · [β3sin3(ka−σ t)

+
1
2αkβ2sin(ka−σ t)] ·

sin3k(b+d)

cosh3kd

+σ0 · [−
1
2αk(3β2−

1
2α2k)sin3(ka−σ t)

+(α ·
ω2
σ0

cosh2kd +λ3)sin(ka−σ t)]
sinhk(b+d)

cosh3kd
,

(70)

From Eqs. (69) and (70), we get

φ3 = U · [−β3
cosh3k(b+d)

cosh3kd
+

1
6αk(5β2−

1
2α2k)

coshk(b+d)

cosh3kd
]

·sin3(ka−σ t)−U · [
1
2αk(5β2+α2k)

cosh3k(b+d)

cosh3kd
+

kλ3
coshk(b+d)

cosh3kd
] ·sin(ka−σ t)

+
σ0
k

β3
cosh3k(b+d)

cosh3kd
sin3(ka−σ t)

−
1
2α(3β2−

1
2α2k)σ0

coshk(b+d)

cosh3kd
sin3(ka−σ t)

+
1
2αβ2σ0

cosh3k(b+d)

cosh3kd
sin(ka−σ t).

(71)

and

φ′

3 = D′

3(σ0t), α ·
ω2

σ0
+λ3 ·sech2kd=0. (72)

The wave pressure can thus be given by

p3
ρ

= {β3[3
σ2

0
k

cosh3k(b+d)

cosh3kd

−g
sinh3k(b+d)

cosh3kd
]−

1
2α(7β2−α2k)σ 2

0
coshk(b+d)

cosh3kd

+
1
2αkgβ2

sinhk(b+d)

cosh3kd
} ·cos3(ka−σ t)

−σ0D
′

3σ0t
+{

3
2αβ2σ

2
0

cosh3k(b+d)

cosh3kd

−
1
2αkg(3β2+

1
2α2k)

sinh3k(b+d)

cosh3kd

+(σ0
α
k
ω2 ·cosh2kd −

1
4α3kσ 2

0 )
coshk(b+d)

cosh3kd

−gλ3
sinhk(b+d)

cosh3kd
} ·cos(ka−σ t).

(73)

The procedure to obtain the solutions at this order is similar
to that ofO(ε2). The secular terms that grow with time have

to be zero. Using zero pressure condition at the free surface
(p3 = 0 atb=0), we obtain

αω2+σ0λ3sech2kd = 0, (74)

From Eq. (74), we get the solutions ofβ3,λ3 andω2

β3 =
1
64α

3k2(9tanh−4kd −22tanh−2kd +13),
λ3 = −

1
16α

3k2(9tanh−2kd −10+9tanh2kd)cosh2kd,

ω2 =
1
16α

2k2(9tanh−2kd −10+9tanh2kd) ·σ0,

D′

3(σ0t) = arbitrary constant= 0.

(75)

Finally, the physical parameters to the third-order solutions
in Lagrangian form are given as follows:

f3 = [−β3
cosh3k(b+d)

cosh3kd
+

1

6
αk(5β2−

1

2
α2k)

coshk(b+d)

cosh3kd
]sin3(ka−σ t)

−[
1

2
αk(5β2+α2k)

cosh3k(b+d)

cosh3kd
+λ3

coshk(b+d)

cosh3kd
]sin(ka−σ t),

(76)

g3 = [β3
sinh3k(b+d)

cosh3kd
−

1
2αkβ2

sinhk(b+d)

cosh3kd
]cos3(ka−σ t)

+[
1
2αk(3β2+

1
2α2k)

sinh3k(b+d)

cosh3kd

+λ3
sinhk(b+d)

cosh3kd
]cos(ka−σ t),

(77)

f ′

3 = g′

3 = φ′

3 = 0, (78)

φ3 = U · [−β3
cosh3k(b+d)

cosh3kd
+

1
6αk(5β2−

1
2α2k)

coshk(b+d)

cosh3kd
]

·sin3(ka−σ t)−U · [
1
2αk(5β2+α2k)

cosh3k(b+d)

cosh3kd

+kλ3
coshk(b+d)

cosh3kd
] ·sin(ka−σ t)

+
σ0
k

β3
cosh3k(b+d)

cosh3kd
sin3(ka−σ t)

−
1
2α(3β2−

1
2α2k) ·σ0 ·

coshk(b+d)

cosh3kd
sin3(ka−σ t)

+
1
2αβ2σ0

cosh3k(b+d)

cosh3kd
sin(ka−σ t),

(79)

σ2 = −
1

2
α2k2σ0

cosh2k(b+d)

cosh2kd

+
1

16
α2k2(9tanh−2kd −10+9tanh2kd) ·σ0, (80)

p3
ρ

= {β3[3
σ2

0
k

cosh3k(b+d)

cosh3kd
−g

sinh3k(b+d)

cosh3kd
]

−
1
2α(7β2−α2k)σ 2

0
coshk(b+d)

cosh3kd

+
1
2αkgβ2

sinhk(b+d)

cosh3kd
} ·cos3(ka−σ t)

+{
3
2αβ2σ

2
0

cosh3k(b+d)

cosh3kd

−
1
2αkg(3β2+

1
2α2k)

sinh3k(b+d)

cosh3kd

+(σ0
α
k
ω2 ·cosh2kd

−
1
4α3kσ 2

0 )
coshk(b+d)

cosh3kd

−gλ3
sinhk(b+d)

cosh3kd
} ·cos(ka−σ t).

(81)

Equation (80) is the second-order angular frequency correc-
tion for a particle, in which the first term is the second-order
Stokes wave frequency and the second term varies monoton-
ically with the vertical labelb or the wavelength-averaged
level of the particles. The result differs from the Eulerian
wave frequency. The third-order solutions of Eqs. (76) and
(77) are periodic functions and have a combination of both
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first and third harmonic components. Thus, the solution of
system has the following expressions:

x = a+Ut +εf1(a,b,σ t)+ε2
[f2(a,b,σ t)

+f ′

2(a,b,σ0t)]+ε3f3(a,b,σ t), (82)

y = b+εg1(a,b,σ t)+ε2g2(a,b,σ t)+ε3g3(a,b,σ t), (83)

φ = Ua+
1

2
U2t +εφ1(a,b,σ t)

+ε2
[φ2(a,b,σ t)+φ′

2(a,b,σ0t)]+ε3φ3(a,b,σ t), (84)

p = −ρgb+εp1(a,b,σ t)+ε2p2(a,b,σ t)+ε3p3(a,b,σ t), (85)

σ = σ0(a,b)+ε2σ2(a,b)= 2π
/
TL (86)

The set of Eqs. (82)–(86) ensures that Bernoulli’s condition
of constant pressure is satisfied on the free surface.

4 Experimental setup and results

The aim of this experiment is to quantitatively investigate
the characteristics of the water particle for periodic progres-
sive gravity waves in uniform water depth. The experiments
of particle trajectory beneath wave-current interaction have
been carried out at the hydraulic laboratory of the Depart-
ment of Marine Environment and Engineering of National
Sun Yat-Sen University. The experimental setup, which com-
prises two interacting systems (1) a flume for the wave gen-
eration and propagation and (2) a recirculating apparatus, al-
lows for a current to be generated. The produced current is
nearly uniform with a variation of±6.7 %. The wave flume
is 35 m long, 1 m wide and 1.2 m high, with a fixed hori-
zontal bottom. The waves are generated by means of a pis-
ton wavemaker, which is driven by a pneumatic system and
is electronically controlled. The surface elevation is mea-
sured by means of several resistance wave gauges. An elec-
tromagnetic current meter (ACM-200A) is used to measure
the current velocity. A camera was set up in front of the glass
wall about 9.0 m from the wave generator to capture the par-
ticle motion. Four wave gauges were located at 7.0 m, 15 m,
16 m and 16.6 m from the wave generator to measure the in-
cident waves. At the end of the tank, a 1:10 slope rubberized-
fiber wave-absorbing beach was built to prevent the reflected
wave.

The orbital experiments (polysterne (PS) particle with di-
ameter about 1mm and density near 1.05 g cm−3) were con-
ducted at two constant water depthsd (50 cm and 80 cm)
and the various wave periodsTE (0.96–2.06 s). The wave
heightH , which was the mean crest-to trough wave height
computed over 20 different waves after the generated pro-
gressive waves became stable (about 7 waves), was varied
over a range of about 3.17–15.2 cm. The particle motion was
measured at different positions from the still water level to
about 10.5 cm depth. In Table 1, the values of the control

parameters, namely the current velocity U, the wave height
H, and wave periodTE are reported along with other La-
grangian quantities parameters which were the mean value
of three different measurements (the particle motion period
TL , mass transport velocity and Lagrangian mean level). It
shows an excellent agreement for the Lagrangian properties
of water particle (Lagrangian wave frequency, mass transport
and Lagrangian mean level) between the present third-order
solution and experimental data.

5 Results and discussions

5.1 Mass transport velocity

Taking time-average over one Lagrangian wave period to the
terms of the horizontal particle displacement, the so-called
drift velocity, over the whole range of depths can be obtained
as follows:

x̄t

c0
=

U+

3∑
n=1

εn[fnt (a,b,σ t)+f ′
nt (a,b,σ0t)]

c0

= U +
1
2α2k2(1+ tanh2kd)

cosh2k(b+d)
cosh2kd

, c0 =
σ0
k

,

(87)

where the overbar denotes time-average over a Lagrangian
wave period, i.e., the period of particle motion, wherec0
is the linear phase speed. The second term of Eq. (87) on
the right-hand side, a second-order correction quantity, is the
same as that obtained by Longuet-Higgins (1953) asU = 0.
From Eq. (87), the mass transport velocity is a function of the
wave steepness, the water depth, uniform current and the ver-
tical Lagrangian label. Differentiating Eq. (87) with respect
to the vertical Lagrangian labelb shows that the second-
order drift velocity is always positive but monotonically de-
cays with depth from the surface to the bottom. In Fig. 2,
the mass transport velocity is plotted against the water depth
and the uniform current in the wave-current interaction field.
From Fig. 2, we can clearly see that uniform current has a
significant effect on the drift velocity. It can be seen that the
effect of increasing current velocity is generally to augment
the magnitude and extent of the time-averaged drift velocity,
thus resulting in large horizontal distance traveled by a parti-
cle compared with the case without uniform current. The in-
creasing of following current is to enhance the magnitude of
the drift velocity over the whole range of depths, and a sig-
nificant amount of fluid that has been transported forward,
on the contrary, the drift velocity decreases by the adverse
current. It is also remarkable that under the same wave, sub-
surface particles travel slower and diminish rapidly with the
vertical position below the free surface.
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Table 1. Experimental conditions and comparison of measured and theoretical results of the particle periodTL , mass transport velocity
UM = x̄t −U and Lagrangian mean wave levelη̄L.

No TE (s) d (cm) H (cm) b (cm) U (cm) H
/
L d

/
L TL(s) UM (b)(cms−1) η̄L(cm)

Measured Theory Measured Theory Measured Theory

a 0.99 50 4.62 0 2.95 0.031 0.333 1.002 1.000 4.41 4.38 0.12 0.11
b 1.00 80 13.20 0 9.63 0.080 0.485 1.061 1.063 19.12 19.15 0.77 0.78
c 1.39 80 15.20 0 8.93 0.052 0.274 1.433 1.430 14.63 14.59 0.65 0.63
d 2.06 80 5.82 0 11.72 0.012 0.158 2.062 2.064 12.12 12.15 0.06 0.07
e 0.96 50 5.23 0 −5.94 0.037 0.349 0.979 0.976 −4.03 −3.98 0.17 0.15
f 0.96 50 6.81 0 −6.60 0.048 0.349 0.982 0.979 −3.36 −3.31 0.26 0.25
g 1.66 50 4.20 −9.5 −7.14 0.013 0.155 1.661 1.663 −6.79 −6.83 0.03 0.04
h 0.93 50 3.17 0 −21.01 0.024 0.376 0.936 0.934 −20.25 −20.21 0.08 0.06

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

b/
d

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

U/c0=0

U/c0=0.1

U/c0=0.2

U/c0=-0.1

U/c0=-0.2

0
t

k
x


 

Figure 2. The dimensionless mass transport velocity profile 0
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relative water depthd/L = 0.5 and the relative wave heightH/L =

0.1 under various current conditions.

5.2 Lagrangian wave frequency

The Lagrangian angular frequencyσ up to third order can
also be obtained as

σ = σ0+σ2(b)

= σ0−
1
2α2k2(1+ tanh2kd)

cosh2k(b+d)
cosh2kd

σo

−σ0
λ3
α

sech2kd.

(88)

Hence, a general Lagrangian wave periodσ differing from
the Eulerian wave period for all particles at different vertical
level b can be obtained directly in the odd-order Lagrangian
solutions. The difference between the Lagrangian frequency
σ and the Eulerian wave frequencyσE is

σ −σE = −
1
2α2k2(1+ tanh2kd)

cosh2k(b+d)
cosh2kd

σo,

σE = σ0−σ0
λ3
α

sech2kd,
(89)

whereσE is the angular frequency computed by Stokes ex-
pansion in the Eulerian system. It can be shown that Eq. (89)
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Fig. 3. The relative ratio for water particle motion at the free surface
between Lagrangian and Eulerian periods for three current condi-
tions.

calculates the resultant wave period in Lagrangian form in a
combined flow field for all the water particles at different ele-
vations within the fluid domain. This equation also indicates
the frequency of particle motion near the surface is smaller
than that at the subsurface. For water particle motion at the
free surface, the relative ratio between the Lagrangian form
TL = 2π/σL and Eulerian formTE = 2π/σE for three differ-
ent current conditions is shown in Fig. 3, in whichTL/TE is
found to increase with a following current (positiveU ), and
to decrease in an opposing current (negativeU ) for a given
wave steepnessH/L. This implies that for a coplanar flow
the water particles near the surface move forward further over
one wave cycle than those against an opposing flow. More-
over,TL is larger thanTE, even with the wave alone (e.g., the
case ofU = 0 in Fig. 3).
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5.3 Lagrangian mean level

Averaging the particle elevation up to the third order over
a given period of particle motion, the present theory gives
the Lagrangian mean levelη̄L(b), which is higher than the
Eulerian mean level̄ηE = 0 as

η̄L − η̄E =
1

TL

∫ TL

0
ydt=

1

4
α2k

sinh2k(b+d)

cosh2kd
. (90)

Longuet-Higgins (1979, 1986) also showed that the La-
grangian mean level is higher than the Eulerian mean level
for progressive water waves. However, his expression is ap-
plicable only to particles at the free surface and is the same
as that given by the first term of Eq. (90) atb = 0.

5.4 Wave profiles and water particle orbits

The most important characteristic of fluid motion described
by the Lagrangian solution is the trajectories of particles
which are represented by Eqs. (82) and (83). The parame-
terα can be determined by the wave heightH defined as half
the vertical distance between the wave crest and wave trough,
in wave numberk and the water depthd given. Hence, we
have

H

2
= [g1+g3]b=0,ka−σ t=2nπ , n ∈ I (91)

the horizontal and vertical particle trajectories are

x = a+Ut +

3∑
n=1

(fn +f ′
n), y = b+

3∑
n=1

(gn +g′
n). (92)

Figure 4 provides a comparison of the wave profiles be-
tween Lagrangian and Eulerian solutions, both to a third-
order approximation. The results reveal that the height of
the wave increases against an opposing current (negative
Fr = U/c0) and decreases on a following current (positive
Fr). In Figure 4a, the Eulerian wave profiles have anomalous
bumps in the trough for the wave conditions tested, which
may not be a realistic physical phenomenon for waves of con-
stant form. On the other hand, the Lagrangian wave profiles
have sharper crests and broader troughs, as well as exclude
any artificial bumps at or near the trough. Clearly the third-
order Lagrangian solution is more exact than the Eulerian
solution of the same order for describing the shape of the
gravity wave. In general, the surface profile is an unknown
function in the Eulerian approach, and the boundary condi-
tions at the free surface can only be satisfied in an approxi-
mately manner. However, the free surface in the Lagrangian
description is represented explicitly by a parametric function
for the particles. The advantage of using Lagrangian descrip-
tion is that it allows flexibility for capturing the actual shape
and the wave kinematics above mean water level. Thus the-
oretically, Lagrangian solution can provide better prediction
for the wave profile at a large Froude number than the Stokes’
expansion to the same order. The wave profiles depicted in
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Fig. 4. A comparison on the wave profiles for the Eulerian and
Lagrangian solutions both to a third-order under different current
conditions(a) Fr = 0.3, (b) Fr = −0.2. Wave conditionsd/L = 0.2
andH/L = 0.1 (Solid line: third-order Lagrangian solution; dash-
dotted line: third-order Eulerian solution).

Fig. 4 also show that they are symmetric with respect to the
crest line, which were recently proven to hold true for irrota-
tional waves

In Fig. 5a–h, water particle orbits plotted for different cur-
rent magnitudes exhibit variations in orbital patterns, both
in shapes and sizes, as a function of its original elevation.
As can be expected in Fig. 5, the orbital displacement based
on a third order solution is non-closed for a pure progres-
sive wave. The elongation or shortening of the orbits in
the case with following or opposing current is apparent in
Fig. 5a–h. Their orbital dimensions in the cases with pos-
itive U values reflect the magnitude of a following current,
and the converse is true for the condition with opposing cur-
rent. It can be seen in each of the orbits plotted that a water
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Fig. 5. Comparisons between the orbits of water particles obtained by the presented theory and those from the experimental measurements
of the PS motions at different water levels b in the various experimental wave cases, where solid line is the theoretical result and point is the
experimental data which the time interval between two adjacent points isTE/20,TE is the wave period.
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particle advances a distance forward, which is commonly re-
ferred to as mean horizontal drift or mass transport in the
direction of wave propagation. The water particle at the free
surface (b = 0) travels fastest, whilst that in the interior of
the fluid propagates slower. To the third-order approxima-
tion, the particle trajectory has non-closed orbit, irrespective
of their initial mean locations. This confirms the theoreti-
cal results obtained in Constantin (2006) and Constantin and
Strauss (2010) for waves of large amplitude.

In the case of wave on a following current, the effect of in-
creasing current speed is generally to augment the magnitude
and extent of the time-averaged drift velocity, thus resulting
in large horizontal distance traveled by a particle compared
with the case without current. Again, the converse is true
when a wave train encounters an opposing current, which
retards the advancement of water particles compared to that
without a current or with a following current. As the strength
of an opposing current becomes comparable with the wave
speed, the water particle at greater depths beneath the still
water level is mainly transport by the opposing current in
larger current velocity and the direction of particle movement
becomes contrary to wave progression. Figure 5a–h show ex-
cellent agreements between the measured trajectory and the
theoretical trajectory predicted by the present third order La-
grangian wave theory. This is also in agreement with the
theoretical findings in Constantin and Strauss (2010).

6 Conclusions

A particle-specific description of irrotational finite-amplitude
progressive gravity waves on a uniform current in water of
uniform depth satisfying all the governing equations and the
boundary conditions is presented. The new Lagrangian so-
lution is obtained to the third order. It can be used not only
to determine the wave properties available in the Eulerian
solution, but also to get the trajectory, the period, the mass
transport and the Lagrangian mean level of a water particle,
which are not available from the Eulerian solution. In the
Lagrangian solution to a second-order, the Lagrangian mean
level of a particle orbit over its motion period is found to
be higher than that of the Eulerian, and it also has a time-
dependent term referred to as the mass transport velocity,
which is applicable to the entire flow field. The frequency
associated with water particle motions in Lagrangian form
differs from that of the Eulerian, and the former is a function
of wave steepness, uniform current speed and the Lagrangian
vertical marked labelb for each individual particle that can
be obtained directly based on the third-order solutions.

From the trajectories of water particles resulting from
wave-current interaction, it is found that particle displace-
ment near the surface decreases due to its mass transport
velocity is resisted by an opposing current. Again in the
case with an opposing current, the water particle further be-
neath the still water level is mainly transported by the op-

posing current in the direction against the progressive wave,
especially with a current in the large Froude numberFr . In
the cases with a following current, the effect of increasing
current speed is generally to increase the magnitude of the
time-averaged mass transport velocity since the current is in
the same direction as the wave propagation, thus resulting in
augmentation to the horizontal distance traveled by a particle.
Finally, a set of experiments analyzing the Lagrangian prop-
erties of nonlinear wave-current interaction flow is conducted
in the wave tank. It shows excellent agreement between the
experimental and theoretical results, including particle tra-
jectories, Lagrangian wave frequency, mass transport veloc-
ity and Lagrangian mean water level predicted by the present
third-order Lagrangian solution.
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